Własności magnetyczne i magnetoopór warstw wielokrotnych NiFe/Au/Co/Au

M. Urbaniak, F. Stobiecki, B. Szymański IFM PAN

08.05.2007 Będlewo

Własności magnetyczne i magnetoopór warstw wielokrotnych NiFe/Au/Co/Au

Współpraca:

U N I K A S S E L **V E R S I T A T**

IFM PAN Poznań

Uniwersytet w Białymstoku

Własności magnetyczne i magnetoopór warstw wielokrotnych NiFe/Au/Co/Au

- Wprowadzenie
- Struktura i własności magnetyczne
- Korelacja namagnesowanie-opór
- Modyfikacje struktury
- Podsumowanie

Podłoże: naturalnie utleniony Si(100)

t_{NiFe}=0.5-4 nm

t_{Au}=1.5-3 nm

Rozpylanie katodowe

Podłoże: naturalnie utleniony Si(100)

t_{NiFe}=0.5-4 nm

t_{Au}=1.5-3 nm

Rozpylanie katodowe

[Ni₈₀Fe₂₀(2 nm)/Au(3 nm)/Co(0.8 nm)/ Au(3 nm)]_N Podłoże: naturalnie utleniony Si(100)

t_{co}=0.2-1.5 nm

t_{NiFe}=0.5-4 nm

t_{Au}=1.5-3 nm

[Ni₈₀Fe₂₀(2 nm)/Au(1.9 nm)/Co(t_{c_0})/Au(1.9 nm)]_N Cu Kα

 $[Ni_{80}Fe_{20}(2 \text{ nm})/Au(1.9 \text{ nm})/Co(0.6 \text{ nm})/Au(1.9 \text{ nm})]_{10}$ $[Co(0.6 \text{ nm})/Au(4.4 \text{ nm})]_{15}$

 $[Ni_{80}Fe_{20}(2 \text{ nm})/Au(5 \text{ nm})]_{15}$ $Ni_{80}Fe_{20}(38 \text{ nm})$

 $Ni_{80}Fe_{20}$ - materiał miękki magnetycznie, $H_C \approx 160$ A/m

- Środkowy obszar pętli w polu prostopadłym jest charakterystyczny dla układów z pasiastą strukturą domenową
- Dla obu konfiguracji pola warstwy Co i NiFe przemagnesowują się quasi niezależnie

[Ni₈₀Fe₂₀(2 nm)/Au(1.9 nm)/Co(0.8 nm)/Au(1.9 nm)]_N

$$K_u = \frac{1}{2} \mu_0 (M_S^{NiFe})^2$$

Anizotropia kształtu:

$$\cos(\varphi) = \frac{H}{M_s}$$

Oś łatwa warstw Co jest prostopadła do powierzchni warstwy wielokrotnej

W pierwszym przybliżeniu warstwy Co i NiFe można traktować jako niesprzężone

Zależność *M*(*H*) struktury NiFe/Au/Co jest wtedy arytmetyczną sumą zależności *M*(*H*) warstw Co i NiFe.

Zmiana lokalnej symetrii na interfejsie

W układach Co/Au powstaje powierzchniowy przyczynek do anizotropii magnetycznej

W badanych układach grubość warstw Co jest porównywalna z odległościami międzypłaszczyznowymi w kierunku prostopadłym do warstwy \Rightarrow silny udział efektów powierzchniowych.

Zmiana lokalnej symetrii na interfejsie

W układach Co/Au powstaje powierzchniowy przyczynek do anizotropii magnetycznej (K_{1s})

$$K_{eff} = \frac{2K_{1s}}{t_{Co}} + K_{1v} - \frac{1}{2}\mu_0 (M_S^{Co})^2$$

$$K_{eff} = \frac{2K_{1s}}{t_{Co}} + K_{1v} - \frac{1}{2}\mu_0 (M_S^{Co})^2$$

$$H_{S} = \frac{2K_{eff}}{M_{S}^{Co}}$$

$$\frac{1}{2}(M_{S}^{Co}H_{S} + \mu_{0}(M_{S}^{Co})^{2}) = \frac{2K_{1s}}{t_{Co}} + K_{1v}$$

[Ni₈₀Fe₂₀(2 nm)/Au(3 nm)]₁₀/Au(0-2 nm)/ Co(0-2.4 nm)/Au(3 nm) $K_{1s} = 4.25 \times 10^{-4} \text{ Jm}^{-2}$ $K_{1v} = 452 \times 10^{3} \text{ Jm}^{-3}$

Własności magnetyczne - sprzężenie Co-NiFe

Dla małych t_{Au} mostki ferromagnetyczne (pinhole) prowadzą do bezpośredniego sprzężenia między warstwami Co i NiFe. t_{Au} ≤ 1.5 nm: silne sprzężenie Co-NiFe (mostki+magnetostatyczne)

nm

 \sim

Au

Klin

Klin Co: 0 - 2.4 nm

Własności magnetyczne - sprzężenie Co-NiFe

 $[Ni_{80}Fe_{20}(2 \text{ nm})/Au(t_{Au})/Co(0.6 \text{ nm})/Au(t_{Au})]_{15}$

FIG. 2. Relative change in resistance vs the cosine of the relative angle between the magnetizations of the two NiFe layers of Si/(60-Å NiFe)/(26-Å Cu)/(30-Å NiFe)/(60-Å FeMn)/ (20-Å Ag). Inset shows the orientation of the current J, exchange field H_{ex}, applied field H, and magnetizations M_1 and M_2 .

$\Delta R \propto \cos(\varphi)$

B. Dieny et al., Phys. Rev. B, 43 (1991) 1297

 $R = R_0 - \Delta R \cos(\varphi)$

 $R = R_0 - \Delta R \cos(\varphi)$

Szeroki zakres liniowości zależności *R*(*H*):

-przemagnesowanie warstwy magnetycznej w kierunku prostopadłym do osi łatwej.

 możliwość stosowania w sensorach pola magnetycznego (bezhisterezowość)

[Ni₈₀Fe₂₀(2 nm)/Au(1.9 nm)/Co(1 nm)/Au(1.9 nm)]₁₀

Wypadkowe pole nasycające odpowiada warstwie przemagnesowywanej w kierunku trudnym.

W zależnościach *R*(*H*) występują lokalne minima oporu.

Pole nukleacji (kreacji struktury domenowej) oraz anihilacji (nasycenia) dla warstw Co jest widoczne w zależnościach *R*(*H*) i *M*(*H*).

Założenia:

- momenty warstw Co są prostopadłe do płaszczyzny warstwy
- warstw NiFe-anizotropia
 typu łatwa płaszczyzna
- pole magnetyczne prostopadłe do płaszczyzny warstwy

 $R(H) = \frac{\partial (R_0 - \Delta R \cdot \cos(\varphi)) + (1 - \partial)(R_0 + \Delta R \cdot \cos(\varphi))}{\partial R \cdot \cos(\varphi)}$

Niezależne przemagnesowanie warstw Co i NiFe nie prowadzi do występowania lokalnego minimim oporu

Gigantyczny Magnetoopór (GMR) – wpływ AMR?

Anizotropowy efekt magnetooporowy jest zbyt słaby by można za jego pomocą tłumaczyć występowanie lokalnych minimów oporu w zależnościach R(H).

Struktura domenowa warstw [NiFe/Au/Co/Au]_N

MFM $3x3 \mu m^2$

 t_{Au} =1.5 nm

 $t_{Au}=3 \text{ nm}$

W stanie remanencji struktura pasiasta i labiryntowa

[Ni₈₀Fe₂₀(2 nm)/Au(*t*_{Au})/Co(0.6 nm)/Au(*t*_{Au})]₁₅

 N_c indeksowane co pół cyklu \Rightarrow poszczególne przełączania CoFe

W wyniku przemagnesowania warstwy CoFe przemagnesowaniu ulega np. 10% ziaren CoPtCr o namagnesowaniu przeciwnym do kierunku pola.

$$H_{przemienne} \ll H_{koercji warstwy twardej}$$

L. Thomas et al., Phys. Rev. Lett. **84**, 3462 (2000)

 $Si(100)/SiO_2/Co_{84}Fe_{16}(10nm)/Cr(1.5nm)/Co_{75}Pt_{12}Cr_{13}(5nm)/Al(1.5nm)$

Struktura domenowa warstw [NiFe/Au/Co/Au]_N

$H \ge H_N$:

- brak struktury domenowej
- zaniedbywalne pola magnetostatyczne

Struktura domenowa warstw [NiFe/Au/Co/Au]_N

W stanie remanencji struktura pasiasta i labiryntowa oraz silne pola magnetostatyczne.

H=0

*Simulation with free oommf package from NIST; $(1\times1 \ \mu m^2)\times55$ nm; Co domains 200 nm wide; α =0.5; regular mesh with cell size of $(5\times0.5\times50$ nm³); stiffness: Co: 30e-12 J/m, Py: 13e-12 J/m

 $\Delta R \propto \cos(\varphi)$

H=0

H=0

W wyniku oddziaływań magnetostatycznych między warstwami Co i NiFe zwiększeniu ulega średnia wartość kosinus kąta między momentami magnetycznymi sąsiednich warstw \Rightarrow spadek oporu.

W wyniku oddziaływań magnetostatycznych między warstwami Co i NiFe zwiększeniu ulega średnia wartość kosinus kąta między momentami magnetycznymi sąsiednich warstw \Rightarrow spadek oporu.

Ze względu na stosunkowo małą szerokość ścian domenowych można je przybliżyć ,,paskami prądowymi".

 Nieskończenie długie domeny (kierunek y)

zerowa szerokość ścian domenowych

Biot-Savart

Pole magnetyczne domen silnie zależy od stosunku szerokość/grubość

Położenie warstwy miękkiej (NiFe)

DW-ściana domenowa

Model ten opisuje warstwy wielokrotne bez warstw z anizotropią w płaszczyźnie $d=d_1+d_2$

 $H = H_d$

Założenie: stała wymiany NiFe = 0!

$$\cos(\varphi_{\uparrow}) = \frac{H_{appl} + H_{d}}{M_{S}^{Co}} \qquad \cos(\varphi_{\downarrow}) = \frac{H_{appl} - H_{d}}{M_{S}^{Co}}$$

W warstwach wielokrotnych można zaniedbać wpływ składowej pola magnetostatycznego warstw Co leżącej w płaszczyźnie warstw NiFe.

W warstwach wielokrotnych można zaniedbać wpływ składowej pola magnetostatycznego warstw Co leżącej w płaszczyźnie warstw NiFe ($B_x \approx 0$).

Parametr energii ściany domenowej τ =2.9 nm (Draaisma Co/Pt τ =0.8nm) [Ni₈₀Fe₂₀(2 nm)/Au(1.5 nm)/Co(0.8 nm)/Au(1.5 nm)]₁₀

,,Modelowa" zależność R(H) jest jakościowo podobna do zależności eksperymentalnej. Pola nukleacji i ΔR nie mogą być wyznaczone na podstawie modelu Draaisma i de Jonge.

Modyfikacja struktury warstw z anizotropia w płaszczyźnie

Warstwa NiFe wykazuje anizotropię w płaszczyźnie – anizotropia kształtu

Modyfikacja struktury warstw z anizotropia w płaszczyźnie

Warstwa NiFe zastąpiona jest warstwą hybrydową Co/NiFe/Co - prowadzi to to zmiany efektywnej anizotropii

Modyfikacja struktury warstw z anizotropia w płaszczyźnie

$[Co_1/Ni_{80}Fe_{20}/Co_1/Au/Co/Au]_N$

Warstwa NiFe zastąpiona jest warstwą hybrydową Co/NiFe/Co - prowadzi to to zmiany efektywnej anizotropii:

pole struktury domenowej Co w większym stopniu wpływa na warstwy NiFe

Wnioski

- Warstwy wielokrotne NiFe/Au/Co/Au wykazują szeroki zakres liniowości bezhisterezowej zależności R(H)
- W zakresach pól odpowiadających występowaniu struktury domenowej w warstwach Co występuje silne oddziaływanie dipolowe między warstwami NiFe i Co
- Charakterystyki R(H) mogą być zmieniane poprzez modyfikację warstw z anizotropią w płaszczyźnie

Info

- Prezentacja wykonana za pomocą OpenOffice Impress (OpenOffice.org 2.0.3)http://www.openoffice.org/.
- Rysunki wykonano między innymi programem POV-Ray (http://www.povray.org/)
- Model Draaisma, de Jonge:
 - H.J.G. Draaisma, W.J.M. De Jonge, J. Appl. Phys. 62 (1987) 3318