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magnetic field



  

Today's plan

● Permanent magnets, electromagnets
● Special sources of magnetic field
● Forces in magnetic field
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−∇⋅∇φ =−( ∂2

∂ x2 +
∂2

∂ y2 +
∂2

∂ z2)φ =−∇ 2φ =−∇⋅M⃗ ∇ 2φ =−
ρ
ε 0

Magnetic scalar potential 

In many practical applications it can be assumed that the magnetization of the body is 
constant (in value and direction) in weak magnetic fields [1]. We have then (from L1*)
∇⋅B⃗=0 B⃗=μ0( H⃗ +M⃗ )

* Lecture no. 1

It follows that:
∇⋅μ 0(H⃗ +M⃗ )=0 → ∇⋅H⃗ =−∇⋅M⃗

If there are no free currents we can define magnetic scalar potential:

H⃗ =−∇φ

Substituting this into the previous equation gives:                             Poisson's equation:

Comparing                     with Poisson's equation we can formally introduce magnetic 
charges:

∇ 2φ =∇⋅M⃗

ρ magn=−∇⋅M⃗
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Magnetic scalar potential 

We have as a solution to  Poisson's equation                     [4]:∇ 2φ =∇⋅M⃗

φ ( r⃗ )=−
1

4π ∫
V

∇ '⋅M⃗ ( r⃗ ' )
∣⃗r− r⃗ '∣

d 3 r '

Using the expression for a derivative of a product (integrating by parts) we obtain:

φ ( r⃗ )=−
1

4π ∫
V

∇ '⋅( M⃗ ( r⃗ ' )
∣⃗r− r⃗ '∣)d 3 r '+ 1

4π ∫
V

M⃗ ( r⃗ ' )⋅∇ '( 1
∣⃗r− r⃗ '∣)d 3 r '

And by the Gauss' theorem for the first term we have:

φ ( r⃗ )=
1

4π ∫
far surface

M⃗ ( r⃗ ' )
∣⃗r − r⃗ '∣

d S '− 1
4π ∫

V
M⃗ ( r⃗ ' )⋅∇( 1

∣⃗r− r⃗ '∣)d 3 r '

We change sign of the 
second term using:

∇( 1
∣r−r '∣)=−∇ '( 1

∣r−r '∣)

Since the magnetization vanishes at infinity (we seek the potential of bounded 
magnetization) the first integral vanishes. In the second integral we move M under
nabla as M does not depend on r. Finally we get:

φ ( r⃗ )=−
1

4π
∇⋅∫

V

M⃗ ( r⃗ ' )
∣⃗r− r⃗ '∣

d 3 r '
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Magnetic charges 

We have (from L1*) the induction of magnetic dipole. We are looking for the magnetic 
scalar potential that gives that field μ0H [2].

B r =
0

4
3 r  m⋅r −m

∣r∣3

Setting:

ϕ( r⃗ )=
μ0

4π
m⃗⋅∇ ' 1

∣⃗r∣
=

μ0

4π
m⃗⋅∇ '( 1

√(x−x ' )2+( y−y ' )2+( z−z ' )2 )=
μ0

4π
m⃗⋅( r⃗

(( x−x ' )2+( y− y ' )2+(z−z ' )2)3/2 )= μ0

4π ((x−x ' )mx+( y− y ' )my+(z−z ' )m z

((x−x ' )2+( y−y ' )2+( z−z ' )2)3/ 2 )
and differentiating (with respect to unprimed coordinates) we get:

μ0 H⃗ =−μ0 ∇ ϕ( r⃗ )=
μ0

4π
3 r̂ (m⃗⋅r̂ )−m⃗

∣⃗r∣3

Integrating over volume containing magnetic moments we get the potential of the dipole 
distribution:

ϕm( r⃗ )=∫ M⃗⋅∇ ' 1
∣⃗r∣

d 3 r ' M⃗ d 3 r '                                                        , where              is the moment of infinitesimal volume
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Magnetic charges 

Using now the identity                                        [11] we get:∇⋅( f a⃗)=a⃗⋅∇ f + f ∇⋅⃗a

M⃗⋅∇ ' 1
∣⃗r∣

=∇ '⋅( 1
∣⃗r∣

M⃗)−
1

∣⃗r∣
∇ '⋅M⃗

Inserting this into the integral from the previous page we can rewrite:

ϕm( r⃗ )=∫ M⃗⋅∇ ' 1
∣⃗r∣

d 3 r '=∫∇ '⋅( 1
∣⃗r∣

M⃗ )d 3 r '−∫ 1
∣⃗r∣

∇ '⋅M⃗ d 3 r '

∫∇ '⋅( 1
∣r⃗∣

M⃗)d 3 r '=∮ M⃗
∣r⃗∣

d⃗sFrom Gauss' theorem we get:

Finally, for the magnetic scalar potential of the bounded dipole distribution, we obtain:

ϕm( r⃗ )=∮
S

M⃗⋅d⃗s
∣r⃗∣

−∫
V

∇⋅M⃗
∣⃗r∣

d 3 r '
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Magnetic charges 

Using now the identity                                        we get:∇⋅ f a=a⋅∇ f  f ∇⋅a

M ∇ ' 1
∣r∣

=∇⋅ 1
∣r∣

M − 1
∣r∣

∇⋅M

Inserting this into the previous integral we can rewrite:

mr =∫ M ∇ ' 1
∣r∣

d 3 r '=∫∇⋅ 1
∣r∣

M d 3 r '−∫ 1
∣r∣

∇⋅M d3 r '

∫∇⋅ 1
∣r∣

M d 3 r '=∮
M

∣r∣
dsFrom Gauss' theorem we get:

Finally, for the magnetic scalar potential of the bounded dipole distribution, we obtain:

ϕm( r⃗ )=∮
S

M⃗⋅d⃗s
∣⃗r∣

−∫
V

∇⋅M⃗
∣⃗r∣

d 3 r '

surface magnetic charges – magnetic poles M⃗⋅d⃗s

∇⋅M⃗ volume magnetic charges
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Magnetic charges 

Example from the magnetostatic coupling of 
thin magnetic films (Neél's coupling):

ϕm( r⃗ )=∮
S

M⃗⋅d⃗s
∣⃗r∣

−∫
V

∇⋅M⃗
∣⃗r∣

d 3 r '

surface magnetic charges – magnetic poles M⃗⋅d⃗s

∇⋅M⃗ volume magnetic charges
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Magnetic volume charges 

Constant magnitude divergenceless vector field 

v⃗=( y
√ x2+y2

,− x
√x2+y2

)

no volume (2D example) charges
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Magnetic volume charges 

Constant magnitude vector field with divergence 

v⃗=( 1.1 y
√ x2+1.21 y2

,− x
√ x2+1.21 y2

)

volume charges present

Visual inspection of magnetic vector fields is of limited use.

∇⋅⃗v= 0.11 x y
(x2+1.21 y2)1.5
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Magnetic volume charges 

Constant magnitude vector field with divergence 

v⃗=( 1.1 y
√ x2+y2

,− x
√x2+y2

)

volume charges present

Visual inspection of magnetic vector fields is of limited use.

∇⋅⃗v= 0.11 x y
(x2+1.21 y2)1.5
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Magnetic volume charges 

no magnetic charges no magnetic charges
∂ M x

∂ x
=0

∂ M y

∂ y
=0→ ∇⋅M⃗ =0 (M z=const)

Urbaniak  Magnetization reversal in thin films and...



  

Magnetic field of current sheet

Current sheet is an extension of current line (i.e. wire). It is a set of current lines bunched 
together to form a conducting stripe. We have from L.1 for the induction of straight wire 
carrying current I: 

B⃗(R)=
μ 0 I
2π R

Integrating (the sheet extends from -∞ to +∞ along y-axis)
we get: 

Bz=
μ 0 M S

Co

2π [arctan(
z2−z
x2−x1

)]z0

z3

Bx=
μ0 M S

Co

2π [ln [(x2−x1)
2−(z2− z)2]]z0

z3
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Magnetic field of current sheet

For the current sheet we have:

Bz=
μ 0 M S

Co

2π [arctan(
z2−z
x2−x1

)]z0

z3

Bx=
μ0 M S

Co

2π [ln [(x2−x1)
2−(z2− z)2]]z0

z3

x1=0, z1=0, z3=3

From far out the magnetic field of the 
current sheet resembles that of the 
current line
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*

*for better viewing the plot shows only the direction of the field (vectors' length is constant)
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Magnetic field of current sheet

Bz=
μ 0 M S

2π [arctan(
z2−z
x2−x1

)]z0

z3

Bx=
μ0 M S

2π [ln [(x2−x1)
2−(z2− z)2]]z0

z3

x1=0,z1=0,z3=3

In the vicinity of the sheet there is a discontinuity 
of a tangential component of the magnetic 
induction B.

th
e 

cu
rr

en
t f

lo
w

s 
in

to
 th

e 
im

ag
e

*

*for better viewing the plot shows only the direction of the field (vectors' length is constant)
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Ampere's law

We have from  L1:                        *. Using Stoke's theorem we obtain [3]:∇×B⃗=μ0 J⃗ ( r⃗ )

∮
closed curve

B⃗( r⃗ )⋅d s= ∫
bounded surface

∇× B⃗( r⃗ )⋅d S= ∫
bounded surface

μ 0 J⃗ ( r⃗ )⋅d S=μ0 I

which is Ampere's Law  

Rewriting we find that:

∮
closed curve

B⃗( r⃗ )⋅d s=μ0 I
The law can be used for 
calculating magnetic fields for 
symmetric current distributions 

* this is called Ampere's law in differential form [4].  

Example: Field within and outside the wire of radius R

a) outside the wire:

b) inside the wire:

∮ B⃗( r⃗ )⋅d s=2π r B → B=
μ 0 I total

2π r

I= I total
r 2

R2 → B=( I total
r 2

R2) μ0

2π r
=

μ 0 I total

2π R2 r
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Discontinuity of B due surface current

We use Amperes's law to find B discontinuity [3].

The contour of integration:
● is planar 
● is perpendicular to the current sheet
● is symmetrically placed with respect to the sheet
● has two of its sides parallel to B
We have then:

∮
closed curve

B⃗( r⃗ )⋅d s=2∣B⃗∣l μ0 I=μ0∣K⃗∣l

, where K is a surface current density (parallel to the boundary at every point).

Finally we get:

∣B⃗∣=
1
2

μ0∣K⃗∣                      and, since B is symmetric with respect to current, for discontinuity we obtain:

Δ B=μ0∣K⃗∣ n⃗2×(B⃗2−B⃗1)=μ0 K⃗

this is applicable to any surface current

or vectorially:
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Continuity conditions for magnetic field

We use the fact that B is divergenceless [4]:

- the surface integral of B over the cylinder surface
  should be zero

∫
cylinder surface

B⃗( r⃗ )⋅d s=(B⃗2⋅⃗n−B⃗1⋅⃗n)Δ S+[ side surfaceintegral ∝ d ]=0

Going d→0 we get:

n⃗2⋅( B⃗2− B⃗1)=0

In magnetostatics tangential components of magnetic induction B experience discontinuity 
due to the presence of surface currents. The normal components of B are always 
continuous.
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Continuity conditions for magnetic field

We use the fact that curl of H is null in the absence of surface currents [10]:

- the path integral of H over the rectangle edges should be zero

∮
rectangle edges

H⃗ ( r⃗ )⋅d l=(H 1 a−H 2 a)+[ side integral ∝ b ]=0

Going b→0 we get:

n⃗2×( H⃗ 2− H⃗ 1)=0
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Continuity conditions for magnetic field
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n⃗⋅B⃗2=n⃗⋅B⃗1 B⃗2×n⃗=
μ 2

μ1
B⃗1×n⃗

n⃗⋅H⃗ 2=
μ1

μ2
n⃗⋅H⃗ 1 H⃗ 2×n⃗=H⃗ 1×n⃗

B⃗=μ H⃗

●Law of refraction for magnetic lines [10]:

tanα 1

tanα 2
=

μ1

μ 2



  

∫
V

(∇φ 3)
2 d 3 r=∫

V
[∇⋅(φ 3 ∇φ 3)−φ 3 ∇2φ 3]d3 r=∫

S
φ 3

∂φ 3

∂n
dS

Uniqueness of solutions of magnetostatic boundary problems

We have four equations for the scalar magnetic potential ([5] A. Aharoni):

∇ 2φ inside=∇⋅M⃗ ∇ 2φ outside=0 φ inside=φ outside

∂φ inside

∂n
−

∂φ outside

∂n
=M⃗⋅⃗n

Let us suppose there are two regular* functions φ1 and φ2 that fulfill the above equations. 
Then the function φ3=φ1 – φ2 must be continuous everywhere. Let us integrate:

*A function is termed regular if and only if it is analytic and single-valued throughout a region R (mathworld.wolfram.com).

0

Regularity condition requires that         decreases as r-2 and φ3 as r-1. So if one extends the 
surface of integration to infinity (dS increases as r2 ) the above integral vanishes. Since 
integrand is a square (i.e. >=0) the divergence of φ3 vanishes.  Φ3 must be constant, but 
non-zero constant is not regular at infinity. φ3  =0 everywhere.  We have then:  

∂φ 3

∂n

φ 1=φ 2

“There is thus only one possible solution to the potential problem of any geometry and any 
distribution of the magnetization. Therefore, it is never necessary to give the intermediate 
steps, or to justify in any other way a solution to a potential problem.” (A. Aharoni,[5] p.111)
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Uniqueness of solutions of magnetostatic boundary problems

“There is thus only one possible solution to the potential problem of any geometry and any 
distribution of the magnetization. Therefore, it is never necessary to give the intermediate 
steps, or to justify in any other way a solution to a potential problem.” (A. Aharoni,[5] p.111)

“It should be noted , however, that while a magnetization distribution determines a unique 
field outside the ferromagnet, the reverse is not true. A measurement of the field outside a 
ferromagnetic body is not sufficient to determine a unique magnetization distribution that 
creates this field” (A. Aharoni,[5] p.112)
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Boundary conditions – an example from Jackson
●Current line parallel to the planar boundary (z=0) separating two regions of different 
 permeabilities
●For z>0 the the permeability is one and for z<0 it is equal to μ
●The current density is present in z>0 region
●Assume that the current flows in a line with (0,0,z) coordinates and that we are interested 
 in the field at the boundary. We postulate that the magnetic induction can be calculated as 
 a superposition of the real current and two image currents.
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●For the field at (x1,y1,z1) of the current element (Jx,Jy,Jz) placed at (x,y,z) we have 
 (Biot-Savart law):

B⃗∝ I⃗× r⃗
∣⃗r∣3 =( Jz y−Jz y1−Jy z+Jy z1

((x1−x)2, ( y1− y )2, (z1−z)2)3/2 , −Jz x+Jz x1+Jx z−Jx z1
(( x1−x)2+( y1− y)2+( z1−z)2)3/2 , Jy x−Jy x1− Jx y+Jx y1

((x1−x)2+( y1− y)2+( z1−z)2)3/2 )

z

x

●In our case ( y=0, y1=0, Jx=0, Jz=0, z1=0, x=0) this 
 simplifies to:

B⃗∝ I⃗× r⃗
∣⃗r∣3 =( −Jy z

(x12+z2)3/2 , 0, −Jy x1
(x12+z2)3/2)

●We assume that the image currents flow in the same 
 direction as the existent current.
●We assume that the first image current is mn1 times the 
 real current and the second mn2 times.



  

Boundary conditions – an example from Jackson
●For z>0 the field is the superposition of fields from the existent current and the first image 
 current:
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B⃗z>0=(−Jy z+Jy mn1 z
(x12+z2)3/2 , 0, −Jy x1−Jy mn1 x1

(x12+z2)3/2 )
●For z<0 we guess that the field originates from the second image current:

B⃗z<0=mn2 ( −Jy z
(x12+z2)3/2 , 0, −Jy x1

(x12+z2)3/2)
●From boundary conditions                    and                            we have:n⃗⋅B⃗2=n⃗⋅B⃗1 B⃗2× n⃗=

μ 2

μ1
B⃗1×n⃗

(Bz
z<0=B z

z>0

Bx
z<0=μ1 B x

z>0)
z1=0

solving a set of equations* we get mn1=
μ1−1
μ1+1

mn2=
2 μ1

μ1+1

*Solve[{(-Jy x1-Jy mn1 x1)+Jy mn2 x1==0,(-Jy z+Jy mn1 z)/(-Jy mn2 z)-(1/mi)==0},{mn1,mn2}]

Multiplying the image currents 
by the appropriate multipliers 
ensures the fulfillment of 
magnetic boundary conditions

●Because of the uniqueness of the solutions of the magnetostatic boundary problems this 
 is the only solution. 



  

Boundary conditions – an example from Jackson
●Current line parallel to the planar boundary separating two regions of different permeability
●For z>0 the the permeability is one and for z<0 it is equal to μ.
●The current density is present in z>0 region.
●For general current distribution it can be shown [1] that the magnetic boundary 
 conditions  are satisfied if the following image currents are added:
-In the region z>0 the effect of the region with permeability μ is equal to the effect of the 
 image current J* of the following components (the J* is placed symmetrically relative to  
 the boundary):
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μ−1
μ+1

J x(x , y ,−z) , μ−1
μ+1

J y (x , y ,− z) , −
μ−1
μ+1

J z (x , y ,− z)

-In the region z<0 the effect of the current is that of the real current multiplied by
2 μ

μ+1



  

Boundary conditions – an example from Jackson
●Stream lines of B produced by a current in the vicinity of “permeability boundary”:
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μ=1

μ=1

μ=1

μ=2

μ=1

μ=10

*

*the image for μ=1 in both regions is slightly scaled down (grey boundary lines in all images are from x=-5 to x=+5)

z

x

Bx does not 
change sign on 
the boundary



  

Boundary conditions – an example from Jackson
●Stream lines of B produced by a current in the vicinity of “permeability boundary”:
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μ1=1

μ 2=10

B⃗μ=1(1,0)=(0.0115749 , 0.0578745)
B⃗μ=10(1,0)=(0.115749 , 0.0578745)

B⃗μ=1(2,0)=(0.0072343 , 0.072343)
B⃗μ=1(2,0)=(0.072343 , 0.072343)

n⃗2⋅( B⃗2− B⃗1)=0

B⃗2×n⃗=
μ 2

μ 1
B⃗1×n⃗

Bμ=10
z

Bμ=1
z =1

Bμ=10
x

Bμ=1
x =10

z

x



  

Magnetic field of two current sheets

Bz=
μ 0 M S

2π [arctan(
z2−z
x2−x1

)]z0

z3

Bx=
μ0 M S

2π [ln [(x2−x1)
2−(z2−z)2]]z0

z3

x1=-2, z1=0, z3=3
x1=2, z1=0, z3=3

We use the same expressions for the induction of magnetic field of current sheet as 
previously:

, but this time for two shifted sheets with the 
opposite current flow direction.
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Magnetic field of two current sheets

Bz=
μ 0 M S

2π [arctan(
z2−z
x2−x1

)]z0

z3

Bx=
μ0 M S

2π [ln [(x2−x1)
2−(z2−z)2]]z0

z3

We use the same expressions for the induction of magnetic field of current sheet as 
previously:

, but this time for two shifted sheets with the 
opposite current flow direction.

Magnetic induction B produced by two 
infinite current sheets corresponds to 
the field of infinite permanent magnet

red – high field, blue – weak field
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Magnetic field of thin magnets*

To note is that, contrary to thick 
magnets,  thin magnets produce 
higher fields in its outer regions 

red – high field, blue – weak field

*magnetic moments of both magnets point
 upward
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Magnetic field of uniformly magnetized sphere - example

We assume that the sphere is homogeneously magnetized in z direction and copying from 
Bartelmann [7] we seek the magnetic potential.
We have:

M⃗ =M 0 ẑ
The problem is axially symmetric: we use a spherical coordinates (r, θ, φ) . The potential 
does not depend on azimuthal angle φ.
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Magnetic field of uniformly magnetized sphere - example

We assume that the sphere is homogeneously magnetized in z direction and copying from 
Bartelmann [7] we seek the magnetic potential.
We have:

M⃗ =M 0 ẑ
The problem is axially symmetric: we use a spherical coordinates (r, θ, φ) . The potential 
does not depend on azimuthal angle φ. We try to expand the potential into Legendre 
polynominals                 :

φ (r ,θ )=∑
l =0

∞ α l P l (cos(θ ))

r l+1

P l (cos(θ ))

Assuming (guessing) that inside the sphere induction B is parallel to z-axis we have:

H⃗ i=
1
μ0

B⃗i−M⃗=(
1
μ0

B0−M 0) ẑ

The continuity conditions for B on the surface of the sphere give:
B⃗i⋅r̂= B⃗out⋅r̂ H⃗ i⋅θ̂ = H⃗ out⋅θ̂

i-inside
out-outside

Since it was assumed that B
inside

||z we obtain:

B⃗i⋅r̂=B0 cos(θ )=−μ 0
∂

∂ r
φ (r ,θ )∣ R=μ 0∑

l=0

∞

α l(l+1)
P l(cos(θ ))

R l+2 =μ0α 1
2
R3 P1(cos(θ )) =μ0α 1

2
R3 cos(θ )

P1(x)=x

The general solution of Laplace's equation when the 
potential does not depend on azimuthal angle is:

φ (r ,θ )=∑
l=0

∞

(β r l+α r−(l+1)) Pl (cos (θ ))
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surface of the sphere



  

Magnetic field of uniformly magnetized sphere - example

From the second continuity condition follows [7]:

d P1(cos(θ ))/ dθ =sin (θ )

H⃗ i⋅θ̂ =( 1
μ 0

B0−M 0)sin (θ )=− 1
R

∂
∂θ

φ (r ,θ )=−∑
l=0

∞ α l

Rl+2

d P l (cos(θ ))
dθ

Because of                                        we have:

( 1
μ 0

B0−M 0)sin (θ )=−
α 1

R3 sin (θ ) B0 cos(θ )=μ 0α 1
2
R3 cos(θ )and from previous page

Comparing coefficients of sine and cosine we get:

( 1
μ 0

B0−M 0)=−
α 1

R3 , B0=μ 0α 1
2
R3

Solving for α1 we get:

α 1=
1
3

R3 M 0

The scalar magnetic potential of the sphere is then:

φ (r ,θ )=
α 1 P1(cos(θ ))

r2 =1
3

R3 M 0
cos(θ )

r2
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Magnetic field of uniformly magnetized sphere - example

Taking the gradient of scalar potential we get magnetic induction [7]:

B⃗=−μ 0 ∇ r ,θ ,φ φ (r ,θ )= 2
3

μ0 R3 M 0
cos(θ )

r3 r̂+1
3

μ 0 R3 M 0
sin (θ )

r3 θ̂

Which corresponds to the dipole field.

The magnetic field of uniformly magnetized sphere has dipolar character in the whole 
space outside the sphere.

H⃗ i=(
1
μ 0

B0−M 0) ẑ

We have a set of equations:

B0=μ 0α 1
2
R3 α 1=

1
3

R3 M 0

It follows from them that:

H⃗ i=(
1
μ 0

B0−M 0) ẑ=−
1
3

M 0 B⃗ i=
2
3

μ0 M 0

Inside uniformly magnetized sphere magnetic induction is parallel to magnetization
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Magnetizable sphere in magnetic field

The sphere of permeability μ is placed in an external field B0 [1,8]. From previous page we 
have: 

B⃗=μ0( H⃗ +M⃗ )=μ H⃗ M⃗ =χ H⃗ (M i=χ ij H j)

B⃗=μ0( H⃗ +χ H⃗ )=μ0(1+χ ) H⃗ =μ o μ r H⃗

usually tensorvolume susceptibility

relative permeability

μ0 H⃗ i=−
1
3

μ0 M

B⃗i=
2
3

μ 0 M
μ(

1
μ 0

B⃗0−
1
3

M⃗ )=B⃗0+
2
3

μ 0 M⃗
+B⃗0 μ0 H⃗ i= B⃗0−

1
3

μ0 M

B⃗i=B⃗0+
2
3

μ0 M ≡μ H⃗ i

Solving for M we get:

M⃗ =B⃗0
3
μ0( μ−μ0

μ+2μ0) B⃗i=B⃗0( 3μ
μ+2μ0)

For high permeability materials:

B⃗ i=3 B⃗0 -  field amplification
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Magnetizable sphere in magnetic field
Since permeability is field dependent (i.e. at high fields M saturates) we have: μ=μ0+

M⃗
H⃗

That is for high external fields:  μ≈μ 0

-  no field amplificationB⃗i=B⃗0( 3μ
μ+2μ0)≈ B⃗0

●The amplification factor 3 is specific to a magnetizable sphere
●For other geometries (elongated rod) it can be considerably larger and is limited by the 

 intrinsic properties of the material (magnetocrystalline anisotropy etc.)
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Demagnetizing factor

If and only if the surface of uniformly magnetized body is of second order the magnetic 
induction inside is uniform and can be written as:

B⃗=μ0(−N⋅M⃗ +M⃗ )

N is called the demagnetizing tensor [5]. If magnetization is parallel to one of principle axes 
of the ellipsoid N contracts to three numbers called demagnetizing (or demagnetization) 
factors sum of which is one:
N x+N y+N z=1
For the sphere, from symmetry considerations:

N x=N y=N z=
1
3

                            from which we obtain: B⃗=μ0(−
1
3

M⃗ +M⃗ )=μ0
2
3

M⃗

For a general ellipsoid magnetization and induction are not necessarily parallel.

Demagnetization decreases the field inside ferromagnetic body.

Demagnetizing tensor describes just the influence of the body's shape on magnetic field 
inside it. The tensor/factor is only auxiliary quantity. 
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Demagnetizing factor

In some limiting cases the calculable demagnetizing factor of the ellipsoid can be used for 
the calculation (approximate) of the fields inside bodies of other shapes.

● For infinite cylinder (in z-direction) there is no discontinuity of magnetization along z-axis 
  so:
N z=0 N x=N y=

1
2and because of axial symmetry:

In the infinite cylinder magnetized along its long axis the induction is*: ⃗B=μ0 M⃗

*Plus the external field if present.

●For infinite planar sample perpendicular to z-axis we have no magnetic charges along x 
and y axes:

N z=1 N x=N y=0and because of axial symmetry:

In the infinite planar sample magnetized in-plane the induction is*: ⃗B=μ0 M⃗
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Demagnetizing factor

c/a

b/a

J.A. Osborn, Phys.Rev. 1945, 67 (351)

L/4π – demag. factor along the longest semi-axis (a)
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Sources of magnetic fields for measurements
●In open magnetic circuits of typical sizes the spatial variations of the intensity and 
 direction of magnetic induction B are to high to provide enough space for experiments 
 involving homogeneous magnetic field.
●Field of one magnet: sample in highly inhomogeneous field
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Sources of magnetic fields for measurements
●In open magnetic circuits of typical sizes the spatial variations of the intensity and 
 direction of magnetic induction B are to high to provide enough space for experiments 
 involving homogeneous magnetic field.
●Field of two magnets: sample in highly homogeneous field, of higher strength, if gap is 
 narrow



  

Special purpose magnets configuration - examples

Refrigerator magnets (to stick things to refrigerator etc.)

● they use special configuration of magnetization to obtain 
one-sided flux* – no magnetic field is present on other side 

● If the magnetization vector is constant and rotates clockwise
 when viewed moving from left to right:

then the flux emerges exclusively below the structure.
● Because Mx depends on x the divergence of M is:

M x=M 0 sin(k x) M y=M 0 cos(k x) M z=0
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∇⋅M⃗ =M 0 k cos(kx )≠0 → magnetic charges within
the tape (or film)

Within the tape the scalar potential must obey Poisson's equation (below and above 
Laplace's): ∇ 2φ (x , y)=M 0 k cos(kx)

The solution is on-sided flux: with regard to the upper region, surface and volume poles 
conceal each other exactly. 

●The one-sided flux increases the holding force almost by a factor of 2.
●Note that spatially alternating magnetization increases gradient to magnetic field B.

*H.A. Shute, J.C. Mallinson, D.T. Wilton, D.J. Mapps, IEEE 2000, 36 (440)
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Special purpose magnets configuration - examples

Halbach cylinders:
● use the same principle as refrigerator magnets to create uniform field within spacious  
  volume
● allow high field magnetic measurements with very-low power consumption: two coaxial 
  Halbach cylinders can produce magnetic field of arbitrary direction

source Wikimedia Commons; author:User:Hiltonj

source: e-magnetsuk.com

1.03 T

*H.A. Shute, J.C. Mallinson, D.T. Wilton, D.J. Mapps, IEEE 2000, 36 (440)
**cerncourier.com/cws/article/cern/28598

For k=2 the uniform field in the centre of the cylinder is*:

B⃗=μ0 M 0 ln( router

rinner ) The induction may be greater than
         .μ0 M 0

Fields reaching 5T were already obtained**.
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Electromagnets
Magnetic circuits [3]:
● not all magnetic boundary problems can be solved analytically 
● for some problems involving arrangements of materials of high permeability sensible first 
order estimates of the fields within the regions of interest can be found without knowing the 
analytic solution
● the problems involve multiply connected tubular regions of high magnetization so that the 
outside field can be neglected at first
● the problem can be extended to systems with small air-gaps – neglecting fringing fields

air-gap
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Electromagnets
The high permeability material is used to produce a magnetic field in a narrow gap [8,9]:
●the material is magnetized by a current carrying wire, wound N times around the core
●for simplicity we assume that core is a torus o central radius equal r, the gap width is d.
From the assumptions of the previous slide (no flux leakage) it follows that (C-core, G-
gap):

air-gap

BC=BG

From Ampere's law we have: ∮
closed curve

B⃗( r⃗ )⋅d l=μ0 I

∮ H⃗ ( r⃗ )⋅d l=(2π r−d )H C+d HG=N I

in the core in the gap

Ampere's law:

Using                                             we get: H⃗C=
1
μ B⃗G , H⃗ G=

1
μ0

B⃗G

Bg=
N I

1
μ (2π r−d )+d 1

μ0
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Electromagnets
● The magnetic induction of typical laboratory electromagnets

 is about 2 T.
●The high field magnets use no magnetic core- instead high

currents produce fields ( Bitter electromagnets) 
● World record for the magnetic field produced by a

 nondestructive electromagnet is 97.4 T (set on August 23,

 2011) at Los Alamos [previous record:91.4 Tesla 

 (Dresden, June 2011)] – three seconds span.
● The strongest man-made magnetic field* ~2800 T (Russia, 2003) – imploding magnets – 

   very short duration (Magnetic Flux Compression Generator)

*C.M. Fowler, L.L. Altgilbers, Электромагнитные Явления  3, 306 (2003) http://emph.com.ua/11/pdf/fowler.pdf
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A live frog levitates inside the 
Ø32mm vertical bore of a 

Bitter solenoid in a magnetic 
field of about 16 T at the 

Nijmegen High Field Magnet 
Laboratory 

image source: National High Magnetic Field Laboratory
The Florida State University, USA, www.magnet.fsu.edu
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Special sources of magnetic fields- examples
Field of electron beam:
● Biot-Savart field
● ~1 μm2, ~1015 Am-2

● beam parameters (σx=3.5μm, σy=0.2μm, σz=9mm)
● 2-10 ps

Fig. 1: Principle of the experiment with the SLAC FFTB*. The highly relativistic electron bunch 
generates magnetic field lines in the laboratory frame that are equivalent to the ones from a 
straight current carrying wire. 

*Stanford Linear Accelerator Center (SLAC) Final Focus Test Beam (FFTB)

C.H. Back, R.Allenspach, W.Weber, S.S.P. Parkin, D. Weller, E.L. Garwin, H.C. Siegmann, Science 1999, 285
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Special sources of magnetic fields- examples
Field of electron beam:
● initially magnetization points in x-direction
● on the line with zero magnetic torque (y=0) no switching (see                      later in this 
  talk)

C.H. Back, R.Allenspach, W.Weber, S.S.P. Parkin, D. Weller, E.L. Garwin, H.C. Siegmann, Science 1999, 285

N⃗ =m⃗×B⃗( r⃗ )
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Special sources of magnetic fields- examples
Field of electron beam:
● initially magnetization points in x-direction
● on the line with zero magnetic torque (y=0) no switching (see                      later in this 
  talk)

C.H. Back, R.Allenspach, W.Weber, S.S.P. Parkin, D. Weller, E.L. Garwin, H.C. Siegmann, Science 1999, 285

N⃗ =m⃗×B⃗( r⃗ )

N⃗ =m⃗×B⃗ ( r⃗ )
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Special sources of magnetic fields- examples
Helmholz coils:
● to obtain nearly uniform field (usually weak) within a large region
● coils placed apart a distance equal to their radii
● each coil carries equal current
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source: Wikimedia Commons; author Geek3
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Force between two current carrying wires
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magnetic field:

F⃗ Lorentz=q E⃗+q v⃗×B⃗ Lorentz force

The magnetic force acting on the volume element carrying
current is [4]:

d F⃗ =ϱ V d 3r v⃗×B⃗= j⃗V×B⃗ d 3r ϱ V

The overall force is obtained by the integration:

F⃗=∫
V

j⃗V ×B⃗ d 3r

- volume charge density*

*local density of electric charge is usually zero so that electrostatic interaction is negligible

Integrating that expression for two infinite, parallel, straight wires gives the expression for 
the attraction force (if currents in both of them flow in the same direction) per unit length:

F⃗=μ0

I 1 I 2

2π d

This equation is the basis of Ampere definition.
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B=
μ0 I
2 π r , q⋅v=(S ρ )

I 2

S ρ
= I 2 ⇒ F=μ 0

I 1 I 2

2π r

Or from field of straight wire (L.1):

cross section of wire electron charge density



  

Force between two current carrying wires
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sThere is a force acting on a moving electric charge placed in 
magnetic field:

F⃗ Lorentz=q E⃗+q v⃗×B⃗ Lorentz force

The magnetic force acting on the volume element carrying
current is [4]:

d F⃗ =ϱ V d 3r v⃗×B⃗= j⃗V×B⃗ d 3r ϱ V

The force between current and magnetic body:
-the force between current and its image current

- volume charge density*

F⃗=μ0

I 1 I 2

2π d
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Force on a magnetic dipole

Applying the Lorentz force to general current distribution we have for a force and torque 
acting on the current distribution*:

F⃗=∫
V

j⃗V ( r⃗ )×B⃗( r⃗ )d 3r N⃗ =∫
V

r⃗× j⃗V ( r⃗ )×B⃗( r⃗ )d 3r

We assume that the volume occupied by the current distribution is much smaller than the 
length scale over which induction B varies. We can then Taylor expand B relative to some 
point in the vicinity of the current [1] (k-cartesian component):

Bk ( r⃗ )=Bk ( r⃗=0)+ r⃗⋅∇ Bk ∣⃗r=0 d 3r'+...

Inserting the expansion into the expression for F we obtain:

F i=∑
jk

ε ijk [Bk (0)∫ j i( r⃗ ' )d 3r'+∫ j j( r⃗ ' ) r⃗ '⋅∇ Bk ∣⃗r =0 d 3r'+...]
0

Following rather lengthy calculations [1,6] we obtain:

F⃗=(m⃗×∇)×B⃗=∇(m⃗⋅B⃗)−m⃗ (∇⋅B⃗)

Because B is divergenceless we finally have (up to the second term of the expansion of B):

F⃗=∇(m⃗⋅B⃗) this expression holds for time varying fields too

*current distribution is assumed to be independent of B - see Faraday induction
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Force on a magnetic dipole

In stationary field B the force expression can be rewritten to the form often used in 
biosciences (magnetophoresis etc.):
E=−m⃗⋅B⃗

F⃗=∇ (m⃗⋅B⃗)=− i⃗ (mx

∂ B x

∂ x
+my

∂ B y

∂ x
+m z

∂ Bz

∂ x
)− j⃗ (...)−...

∇×B⃗=0 : ( J⃗ +∂ D⃗
∂ t

=0 ← current free space , Maxwell )

∂ Bz

∂ y −
∂ B y

∂ z =0
∂ Bx

∂ z −
∂ Bz

∂ x =0
∂ B y

∂ x −
∂ B x

∂ y =0

F⃗=− i⃗ (mx

∂ B x

∂ x
+my

∂ B x

∂ y
+m z

∂ B x

∂ z
)− j⃗(...)−...=(mx

∂
∂ x

+...)( i⃗ Bx+...)

F⃗=(m⃗⋅∇) B⃗
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Force on a paramagnetic particle (small digression)

In case where the moment is proportional to induction B – small fields*:

F⃗=(m⃗⋅∇) B⃗=(χ B⃗
μ0

V⋅∇) B⃗=χV
μ0

( B⃗⋅∇) B⃗

2 B⃗×(∇×B⃗)+2 ( B⃗⋅∇) B⃗=∇( B⃗⋅B⃗)

0

current free space,
no time-varying  fields

F = 1
20

 V ∇B2

*current distribution is assumed to be independent of B - see Faraday induction
[Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D: Appl. Phys., 36, R167  (2003)
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Force on a paramagnetic particle (a small digression)

induction B

force

Arrows show the directions 
of the fields 
(not the magnitude!)

Force 
everywhere
 attractive !
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Torque on a magnetic dipole

The torque is calculated similarly from the general expression: 

F⃗=∇(m⃗⋅B⃗)

N⃗ =∫
V

r⃗× j⃗V ( r⃗ )× B⃗( r⃗ )d 3r

This time however already the first term of B expansion gives nonvanishing term:

N⃗ =m⃗×B⃗( r⃗ ) From each of these two equations it follows that the potential 
energy of a dipole in magnetic field can be expressed as: 

E=−m⃗⋅B⃗

●The above expression does not in general describe the total energy of a dipole; placing 
 the moment in magnetic field requires the additional energy with which the current source 
 maintains the magnitude of the moment under the influence of magnetic (Faraday) 
 induction.
● In case of elementary particles with the spin (electron, neutron etc) their intrinsic 
  magnetic moment is constant and the above expression gives the total energy. 
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Things to remember from today's talk:

● Magnetic charges although not physical are useful in 

  solving magnetostatic problems
● Biot-Savart law and magnetic charges methods are 

  equivalent
● Demagnetizing fields originate from magnetic charges of 

  the magnetized body itself; they diminish magnetic field 

  within ferromagnets
● The force on magnetic dipole is related to magnetic field 

  gradient
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