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Magnetic anisotropy*

1.Magnetocrystalline anisotropy

2.Shape anisotropy

3.Surface anisotropy

4.Stress anisotropy

*this is virtually the same lecture as the one I had in 2012 at IFM PAN/Poznań; there are only small changes/corrections
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hard-axis reversal

●hard-axis reversal is characterized by higher field needed to saturate the sample

●the easy-axis reversal is usually characterized by higher hysteresis losses  

Anisotropy of hysteresis



  

●In case of large sphere (containing many atoms) the shape of the sample does not 
 introduce additional anisotropy
●In small clusters the magnetization reversal is complicated by the reduction of symmetry 
 (and the increased relative contribution of surface atoms) 

In Fe sphere of radius 1μm the surface 
atoms constitute roughly 0.04% of all atoms 

Anisotropy of hysteresis – hysteresis of a sphere



  

●In case of large sphere (containing many atoms) the shape of the sample does not 
introduce additional anisotropy
●In small clusters the magnetization reversal is complicated by the reduction of symmetry 
(and the increased relative contribution of surface atoms) 

sphere-like – no 
breaking of crystal 
symmetry for high r

M. Jamet et al., PHYSICAL REVIEW B 69, 024401 (2004)

Anisotropy of hysteresis

Co                     Fe



  

Free magnetic moment in empty space (without 
the external field) – the energy does not depend 
on the orientation of the moment

Anisotropy of hysteresis



  

● Co atoms deposited by molecular beam epitaxy on Pt(111) surface
● Coverage less than 0.03 ML
● “The XMCD signal (Fig. 1C) is the difference between the XAS* spectra recorded for 
parallel and antiparallel alignment of the photon helicity with the applied field B. Fields of 
up to 7 T were used to magnetize the sample at

P. Gambardella et al., Science 300, 1130 (2003)

 
angles 0° and 70° with respect to the surface
normal.”

● The presence of Pt surface induces 
very high magnetic anisotropy of  
9.31.6 meV/atom

● In SmCo5 magnets the anisotropy is 
0.3 meV/Co atom

isolated Co adatoms

very high saturation field

Anisotropy of hysteresis – single atoms on a crystal surface

*XAS – X-ray absorption spectroscopy



  

The local 
neighborhood 
determines 
the 
preferential 
direction of 
the magnetic 
moment 
- spin-orbit 
coupling 

Anisotropy of hysteresis



  

●For all practical purposes the atomic magnetic moments of a macroscopic homogeneous 
magnetic sphere behave as if placed in infinite crystal of the same shape.

A. Aharoni: ”in ferromagnetism there is no physical meaning to the limit of an infinite crystal 
without a surface” [2]

●We do not know a priori the dependence of the energy of the crystal on the orientation of 
magnetic moment of the sample.
●It can be shown [1] that energy density related to the orientation of magnetic moment in a 
crystal structure can be expanded into power series of direction cosines relative to the 
crystal axes:

Ecrystal (M⃗ )=b0+ ∑
i=1,2 ,3

biα i+ ∑
i , j=1,2,3

bijα iα j+ ∑
i , j , k=1,2,3

bijkα iα jα k+ ... (1)

α 1 , α 2 , α 3 - direction cosines of magnetization

(α 1 ,α 2 ,α 3)=(sin(θ )cos(ϕ) , sin(θ )sin(ϕ) ,cos(θ )) θ , ϕ - polar and azimuthal angles

●The experience shows that it is enough to use very limited number of expansion terms to 
describe the magnetic systems – the usual limit are sixth order anisotropy constants

Anisotropy of hysteresis



  

●An example of the use of sixth order anisotropy constants for hysteresis description:

B. Barbara et al., J. Phys. C: Solid State Phys. 11 L183 (1978)

Anisotropy of hysteresis



  

●Intrinsic symmetries of the physical properties reduce the number of independent 
components of anisotropy tensors.
●The energy of the system is the same for both opposite orientations of magnetic moment. 
From Eq. (1) we have:

∑
i=1,2,3

biα i= ∑
i=1,2,3

bi(−α i) for all α i ⇒ b1=b2=b3=0

●The magnetocrystalline anisotropy energy may not depend on odd powers of direction 
cosines α. Consequently all odd rank tensors in the expansion (1) are identically null [1].

the same energy

Ea (M⃗ )=Ea(−M⃗ )

Magnetic anisotropy

*rank of a tensor – number of its indices



  

●Neumann's Principle:
The symmetry elements of any physical property of crystal must include all the symmetry 
elements of the point group* of the crystal.

●Consider a cubic crystal system with a 3-fold rotation axis [111] and the first  nonvanishing 
anisotropy tensor (second rank): 

*A point group is a group of symmetry operations all of which leave at least on point unmoved.

bij=[
b11 b12 b13

b21 b22 b23

b31 b32 b33
]

M =(
0 0 1
1 0 0
0 1 0)

and coordinates transform 
according to the following 
rule:

a ' i=∑
j

M ij a j

●Voigt's Principle:
The conditions of Neumann's principle are fulfilled if the physical property of the crystal is 
described by the tensor which is invariant under point symmetry operations which leave the 
crystal unchanged

●The transformation matrix corresponding to that rotation is: 

●It follows that the physical property tensor must fulfill the condition                   for all 
symmetry operations of the point group.

b=M T bM

Magnetic anisotropy – symmetry of crystals

“T” - transpose of a matrix (see next slide)



  

●From Voigt's principle it follows for tensor b: b=M T bM

bij=(
0 1 0
0 0 1
1 0 0)[

b11 b12 b13

b21 b22 b23

b31 b32 b33
](

0 0 1
1 0 0
0 1 0)=[

b22 b23 b21

b32 b33 b31

b12 b13 b11
]

●Comparing the elements of both (identical) tensors we get:

b11=b22 b12=b23 b13=b21

b21=b32 b22=b33 b23=b31

b31=b12 b32=b13 b33=b11

effect of the rotation of 
the crystal on tensor bij

rotation by 120Deg about [111] direction 

b11=b22=b33=a
b21=b32=b13=b
b31=b12=b23=c

●The invariance in respect  the 120 Deg rotation leaves only 3 independent components:

bij=[
a c b
b a c
c b a]

*

*transpose of a matrix: A matrix which is formed by turning all the rows of a given matrix into 
columns and vice-versa. The transpose of matrix A is written AT (www.mathwords.com)

Magnetic anisotropy – symmetry of crystals



  

●We apply the same procedure again, but this time with other symmetry element of cubic 
crystal, namely 90Deg rotation around z-axis:

b=M T bM

bij=(
0 1 0
−1 0 0
0 0 1)[

a c b
b a c
c b a](

0 −1 0
1 0 0
0 0 1)=[

a −b c
−c a −b
b −c a ]

●Comparing the elements of the first row of both (identical) tensors we get:

effect of the rotation of 
the crystal on tensor bij

rotation by 90Deg about [001] direction 

bij=[
a 0 0
0 a 0
0 0 a]

c=−b , b=c ⇒ b=c=0

●It follows that the second rank tensor consistent with the above two symmetry operations 
possesses one independent component:

●Similar analysis can be performed for other tensors in the expansion (1):

Ecrystal (M⃗ )=b0+ ∑
i=1,2 ,3

biα i+ ∑
i , j=1,2,3

bijα iα j+ ∑
i , j , k=1,2,3

bijkα iα jα k+ ... (1)

Magnetic anisotropy – symmetry of crystals



  

●Inserting tensor b into the third term of expansion (1) we get:

∑
i , j=1,2,3

bijα iα j=a(α 1
2
+ α 2

2
+ α 3

2
)=a - independent of the orientation of magnetic moment

●In cubic system there are no second order terms in the expansion of energy in directional 
 cosines [1].
●Using similar procedure we obtain the complete expression for the energy contribution 
 related to the orientation of magnetic moment in cubic system [1]: 

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )(α 1
2α 2

2
+ α 2

2α 3
2
+ α 3

2α 1
2
)+ K 2(T )α 1

2α 2
2α 3

2

●For other crystal systems the similar procedure is employed to obtain the Ecrystal(M,T) 
expressions.
●For hexagonal crystals the energy can be expressed as [1]:

-the coefficients K0, K1 … are the linear combinations of tensor components b11, b1111, 
b111111 etc. [4].

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )(α 1
2
+ α 2

2
)+ K 2(T )(α 1

2
+ α 2

2
)
2
+ ...

which is usually expressed, using trigonometric identities, as:

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )sin2θ + K 2(T )sin4θ + ... (2)

Magnetic anisotropy – symmetry of crystals

angle with respect to easy axis



  

●Inserting tensor b into the third term of expansion (1) we get:

∑
i , j=1,2,3

bijα iα j=a(α 1
2
+ α 2

2
+ α 3

2
)=a - independent of the orientation of magnetic moment

●In cubic system there are no second order terms in the expansion of energy in directional 
 cosines [1].
●Using similar procedure we obtain the complete expression for the energy contribution 
 related to the orientation of magnetic moment in cubic system [1]: 

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )(α 1
2α 2

2
+ α 2

2α 3
2
+ α 3

2α 1
2
)+ K 2(T )α 1

2α 2
2α 3

2

●The terms of the type αi
4 are omitted since because of the identity [4,5]:

-the coefficients K0, K1 … are the linear combinations of tensor components b11, b1111, 
b111111 etc. [4].

2(α 1
2α 2

2
+ α 2

2α 3
2
+ α 3

2α 1
2
)+ α 1

4
+ α 2

4
+ α 3

4
=1

they can be incorporated into K0, K1 terms.

●The terms of the type αi
6 can be similarly replaced by            and                   terms [6].α i

2α j
2 α 1

2α 2
2α 3

2

Magnetic anisotropy – symmetry of crystals



  

●Number of independent components 
of the (second rank) tensor depends 
on the crystal symmetry

●In crystals of cubic system there is 
one independent component of the 
tensor.

●Hexagonal systems are characterized 
by two independent components of the 
second rank tensors.

image source: Дж. Най Физические Свойства Кристаллов,
Издательство МИР 1967*

Magnetic anisotropy – symmetry of crystals
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*original, English version: Physical properties of crystals: their representation by tensors and matrices,  J. F. Nye



  

●Torque curve – depicts the torque required to rotate the magnetization away from an easy 
direction as a function of the angle of rotation [3].
●Let us consider a uniaxial anisotropy crystal with easy axis lying in the plane parallel to the 
external magnetic field.
●Let the magnetocrystalline energy of the crystal be described by the expression [see eq. 
(2)]:

Ecrystal (M⃗ ,T )=K 1(T )sin2θ

●If the sample is saturated and the easy axis is turned by the angle  from the initial position 
(i.e., easy-axis parallel to the field) the magnetic moment of the sample (parallel to H)  
exerts a torque on the crystal. For unit volume of the crystal the torque is:

L=−
dE
dθ

=2 K1 cosθ sinθ
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●Fitting the measured 
dependence one can find 
anisotropy coefficients

Magnetic anisotropy – torsion curves

at θ≈90Deg energy only weakly 
depends on θ so the torque is small 



  

●Torsion magnetometer:

image source:  B. D. Cullity, Introduction to magnetic materials, Addison-Wesley, Reading, Massachusetts 1972

The twist angle of the wire, giving the 
torque, is obtained from the difference 
in readings from the two dials [3].

The specimens are usually in form of a disk with 
diameter/thickness ratio close to 10 [3].
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Magnetic anisotropy – torsion curves



  

Magnetic anisotropy – torsion curves

●Torsion cantilever:

C. Rossel et al., Rev. Sci. Instrum. 69, 3199 (1998)

●Silicon torsion bar plays a role of the 
 torsion wire
●The deflection (rotation) of the torsion 
 bar is detected
●Sensitivity exceeds 510-13 Nm

torsion beam

differential 
capacitive 
sensor
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●Energy surface – the distance from origin along the given direction is proportional to 
magnetocrystalline energy of the crystal with magnetization along that direction.
●We start from the expression of the magnetocrystalline energy for cubic crystals:

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )(α 1
2α 2

2
+ α 2

2α 3
2
+ α 3

2α 1
2
)+ K 2(T )α 1

2α 2
2α 3

2
+ ...

●For K0=1, K1=0 and K2=0 we have isotropic energy surface:

(*Mathematica6.0 code 
for energy surface:*)
K0=1;K1=0;K2=0;
a1=Sin[teta] Cos[fi];
a2=Sin[teta] Sin[fi];
a3=Cos[teta];
Energy=K0+K1(a1^2  a2^2+a3^2  a2^2+a1^2  a3^2)+K2(a1^2   a2^2    a3^2);
xsurface=Energy a1;
ysurface=Energy a2;
zsurface=Energy a3;
obrazek=ParametricPlot3D[{xsurface,ysurface,zsurface},{fi,0,2\[Pi]},{teta,-\[Pi],\[Pi]},PlotStyle->{Orange,Specularity[White,10]},
ImageSize->600,PlotRange->{-1.2,1.2},Axes->None,AxesLabel->{X,Y,Z},BoxStyle->Directive[Thickness[0.01],Black]];
osdiag=Line[{{0,0,0},{1,1,1}}];
osx=Line[{{0,0,0},{1.2,0,0}}];
moment=Sphere[{1,1,1},1];
obrazekwy=Show[obrazek,Graphics3D[{Blue,Thickness[0.02],osx}],Graphics3D[{Blue,Thickness[0.02],osdiag}]]

●Energy does not depend on the orientation of the magnetic 
moment

●The magnetization reversal (hysteresis) itself does not 
depend on K0 but to show the difference between the cases 
of K1>0 and K1<0 we need a reference level – the surface 
of the sphere.   

Magnetic anisotropy – energy surfaces



  

●Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

energy surface for K0=1, K1=2 and K2=0 energy surface for K0=1, K1=-2 and K2=0

*both images have the same scale

[111] direction

[100] direction

typical for bcc cubic crystals (Fe) typical for fcc cubic crystals (Ni)

easy axis

Magnetic anisotropy – energy surfaces



  

●Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

[111] direction

[100] direction

                                                           1,0,0 - easy directions 

[010] direction

Magnetic anisotropy – energy surfaces

energy surface for K0=1, K1=2 and K2=0

*both images have the same scale

typical for bcc cubic crystals (Fe)



  

●Hexagonal crystals magnetocrystalline energy surfaces:

[001] direction

Ecrystal (M⃗ )=K 0+ K 1sin2θ + K 2 sin4θ

energy surface for K0=0, K1=-1 and K2=0

typical for hcp cobalt crystals                                                               [0,0,1] - easy direction 

[001] direction

Magnetic anisotropy – energy surfaces



  

●Cubic crystals magnetocrystalline energy surfaces for different values 
of the external field applied along [111] direction*:

energy surfaces for K0=1, K1=2 and K2=0

*images do not have the same scale

H=0 H=0.5

H=1

H=1.5

E crystal(M⃗ , H⃗ )=K 0+ K 1(α 1
2α 2

2
+ α 2

2α 3
2
+ α 3

2α 1
2
)+

K 2α 1
2α 2

2α 3
2
+ H (α 1β 1+ α 2 β 2+ α 3 β 3)

β 1, β 2, β 1 - direction cosines of H

field direction

Energy surfaces – the influence of the external field



  

●Cubic crystals magnetocrystalline energy surfaces for different values 
of the external field applied along [111] direction*:

energy surfaces for K0=1, K1=2 and K2=0

*images do not have the same scale

H=0 H=0.5

H=1

H=1.5

●with increasing field H the number of local minima 
(blue dots) decreases

●above saturation there is only one local minimum

Energy surfaces – the influence of the external field



  

●Bulk magnetocrystalline anisotropy constants of basic ferromagnetic elements at 4.2K [1]:

Fe (bcc) Co (hcp) Ni (fcc)

K1 [J/m3]
       

[meV/atom]

54800

4.0210-3

760000

5.3310-2

-126300

-8.6310-3

K2 [J/m3]

[meV/atom]

1960

1.4410-5

100500

7.3110-3

57800

3.9510-3

●Magnetocrystalline anisotropy of permalloy (Ni81Fe19):

K≈0 kJ/m3

●Magnetocrystalline anisotropy of rare-earth magnets [3]:

YCo5     K≈5.5106 J/m3

SmCo5  K≈7.7106 J/m3

Anisotropy constants of ferromagnetic elements



  

●Consider the crystal in which two uniaxial anisotropies are present together [3]. We limit 
our discussion to second order terms [see Eq.(2)]:

EA=K 0+ K Asin2θ , EB=K 0+ K Bsin2
(90−θ )=K 0+ K B cos2θ

●The total energy of the moment is:

E total=K '0+ K Asin2θ + K B cos2θ

●If KA=KB the energy is independent of θ:

E total=K '0+ K B(sin2θ + cos2θ )+ (K A−K B)sin2θ =K '0+ K B

Two equal uniaxial anisotropies at right angle
are not equivalent to biaxial anisotropy.

●If KA and KB are not equal the equilibrium angle is given by:

Polar plots of
 EA and EB (with K0=0.5)

EA + EB

∂E total

∂θ
=

∂

∂θ
(K A−K B)sin2θ =

∂

∂θ
(K A−K B)(1−cos(2θ )

2 )=
(K A−K B)sin (2θ )=0

●Solutions are θ =00 , 900 , 1800

A-axis

Mixed anisotropies

B-axis



  

●From the second derivative (must be positive for minimum) we obtain [3]:

The direction of easy magnetization is not along some axis lying between AA and BB axes 
but is along the axis pertaining to higher anisotropy.

∂
2 E total

∂θ 2
=2(K A−K B)cos(2θ ) ⇒

KA>KB KA<KB

Easy axis – θ=0 Deg Easy axis – θ=90 Deg

●Case of the two uniaxial anisotropies which are not perpendicular:

-in case of anisotropies of equal strength the resultant easy
 axis  CC lies midway between axes AA and BB

-otherwise the CC axes makes smaller angle with axis
 pertaining to stronger anisotropy

easy
axis

Polar plots of
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●We consider an electron an the nucleus in a quasi-classical vector model [7]. 

●The electron circulates around the 
nucleus of charge +Ze
●Alternatively the motion can be seen 
as a nucleus orbiting the electron (in its 
frame of reference)
●The circulating nucleus constitutes the 
electric current producing magnetic 
field H at the place of the electron

●From Biot-Savart law the field produced by the nucleus moving with velocity v is: 

B⃗= ∫
2π r

dB=
μ0

4π
∣v∣(Z e)

2π r
d̂v×(−r )

r3
2π r=−

μ 0 Z e

4π r3
v⃗× r⃗ dB=

μ 0 I

4π

d̂I× r⃗

r3

current integration path

●We know that me r v is a angular momentum. We have then*:

B⃗=
μ 0 Z e

8π r3me

L⃗

*relativistic calculation introduce correction factor ½ (Thomas factor [7])

Spin-orbit coupling



  

●The spin of the electrons acquires additional energy due to the field of nucleus:

Δ E LS=−μ s⋅B⃗=
g sμ B

ℏ
S⃗⋅B⃗

Δ E LS=g sμB

μ0 Z e

8π r3meℏ
S⃗⋅L⃗ quasi-classical expression for spin-orbit coupling energy

●In hydrogen atoms the LS field is of the order on 1 T (for 0.1nm orbit) [7] and the energy 
 of the interaction is of the order of several tenths of eV.
●In quantum mechanical calculations concerning transition ferromagnetic metals, in which 
 magnetism is due to the d electrons, it is sufficient to consider only the coupling averaged 
 over d-orbitals. The interaction energy is then [8]:

Δ E LS=ξ l⃗⋅⃗s

Spin-orbit coupling



  

●The spin-orbit coupling depends on atomic number Z 
[8]:
-within the given series of periodic table it increases like 
Z2

-for 3d metals ξ is of the order of 50-100meV

image source: A.R. Mackintosh, O. K. Andersen
The electronic structure of transition metals in Electrons at the Fermi Surface

 edited by M. Springford, Cambridge University Press 1980
 retrieved from http://books.google.pl

Z2

Z2

ferromagnetic
elements

Spin-orbit coupling



  

●The spin of electron interacts with the crystal structure via spin orbit coupling

●Due to spin-orbit coupling different orientations of electron spins correspond to different 
orientations of atomic orbitals relative to crystal structure
●As a consequence some orientations of the resultant magnetic moment are energetically 
favorable – easy directions. 

Microscopic mechanism of magnetocrystalline anisotropy

●the moment of a spin (red arrow) is “strongly” coupled to the electron cloud (blue disc)
●when external magnetic fields rotates the spin moment the electron cloud follows
●if the clouds overlap there is a additional energy due to coulomb repulsion  



  0 90 180 270 360

-5

0

5

10

 B=0
 B=8

E
to

ta
l

θ

●Describes magnetization reversal in single domain magnetic particles/films
●The reversal is characterized by the orientation of single magnetic moment
●The anisotropy may be of magnetocrystalline, shape etc. origin
●For the uniaxial anisotropy case the energy can be described as (compare 
magnetocrystalline anisotropy energy expression for hexagonal system) [8]:

E total=K 0+ K 1sin2θ −B⃗⋅M⃗ =K 0+ K 1sin2θ −M B cos(γ −θ )

Zeeman energy

●The energy landscape for different values of B (K0=0,K1=1,M=1, γ=300):

direction of the
applied field

●On increasing the field the minima shift 
toward its direction
●The angle antiparallel to field 
corresponds to absolute maximum

**

*some times called macrospin model

Stoner-Wohlfarth model*

** this expression is for a unit volume of the material: M:=MV [Am2], K=KV [J]



  

●The dependence angle(field) obtained from the energy landscapes of the previous slide 
gives hysteresis loops:
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●For field applied along 
easy-axis the reversal is 
completely irreversible

●For field applied 
perpendicularly to EA 
direction the reversal is 
completely reversible

●For field applied in 
arbitrary direction 
magnetization is “partly 
reversible and partly 
irreversible” [9]

Stoner-Wohlfarth model
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●Hard axis reversal. We can rewrite the expression for the total energy using components 
of the field parallel (Bx) and perpendicular (By) to easy axis [9]: 

E total=K 0+ K 1sin2θ −M B cos(γ −θ )=K0+ K 1 sin2θ −B x M x−B y M y=

K 0+ K 1 sin2θ −Bx M cos(θ )−B y M sin(θ )

●Energy becomes minimum at a specific angle which can be determined setting:

∂E total

∂θ
=2K 1 sinθ cosθ + B x M sin (θ )−B yM cos(θ )=0

●With                 this can be written as:α =
2K 1

M
α sinθ cosθ + B xsin(θ )−B ycos(θ )=0

B y

sin(θ )
−

B x

cos(θ )
=αor

●If field is applied perpendicularly to EA we have (Bx=0, By=B):

sin(θ )=
B
α

If field is applied perpendicularly to the easy axis the component of magnetization parallel 
to the field is a linear function of the external field up to saturation which happens at*:

BS=
2K 1

M

B=
2K1

M

*in practical applications K[Jm-3], M[Am-1]
B [1T=

kg
s2⋅A

]

[
K
M

=
J /m3

A /m
=

J

A⋅m2
=

kg⋅m⋅m /s 2

A⋅m2
=
kg

s2
⋅A

=1T ]

Stoner-Wohlfarth model

proportional to M⃗ component parallel to B⃗



  

●Depending on the value of the external field there may one or two equilibrium orientations  
of magnetic moment. For a given field value the two orientations collapse to one when [9]:

∂
2 E total

∂θ 2 =0

●From the expression for the energy (previous slide) we have:

∂
2 E total

∂θ 2 =α (cos2θ −sin2θ )+ Bx cos(θ )+ B ysin (θ )=0 α =
B y

sin (θ )
−

B x

cos(θ )

From previous slide:

∂
2 E total

∂θ 2
=cos2θ sin2θ ( B y

sin3
(θ )

+
Bx

cos3
(θ ) )=0

●We are looking for the solution of the set:

α=
B y

sin (θ )
−

B x

cos(θ )
,

B y

sin3
(θ )

+
Bx

cos3
(θ )

=0

●By a direct substitution of the first equation into the second we get:

Bx=−α cos3θ , B y=α sin3θ

●Introducing reduced fields (                         ) it may be written as:b x=
B x

α
=−cos3θ

b x
2/3

+ b y
2 /3

=1 =cos2θ + sin2θ equation of astroid

α+
Bx

cos(θ )
=

B y

sin (θ )
,

By

sin(θ )

1

sin2
(θ )

+
Bx

cos3
(θ )

=0

Stoner-Wohlfarth – astroid curve



  

●Stoner-Wohlfarth astroid separates region, in (hx,hy) plane, with two minima of energy 
from that with only one minimum*
●When the external field is changed so that the astroid is crossed the discontinuous 
changes of the orientation of magnetization can take place

Hx

Hy

Stoner-Wohlfarth – astroid curve

*Y. Henry et al.  PHYSICAL REVIEW B 79, 214422 (2009)

●we start with magnetic moment pointing in negative direction(-180 Deg, 
parallel to easy axis) and zero applied field
●we increase then the field (parallel to easy axis) into positive values 
and the minimum at -180 Deg becomes less deep
●finally, at B=2 (H

x
=1), the -180 Deg orientation ceases to be a minimum 

(first and second derivatives are zero – we cross Stoner-Wohlfart 
astroid) and we end up with a single minimum at 0 Deg – magnetic 
moment switches to that minimum



  

●Stoner-Wohlfarth astroid separates region, in (hx,hy) plane, with two minima of energy 
from that with only one minimum*
●When the external field is changed so that the astroid is crossed the discontinuous 
changes of the orientation of magnetization can take place

*Y. Henry et al.  PHYSICAL REVIEW B 79, 214422 (2009)
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Stoner-Wohlfarth – astroid curve



  

●Stoner-Wohlfarth astroid separates region, in (hx,hy) plane, with two minima of energy 
from that with only one minimum

M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon,and A. Pérez, Phys. Rev.Lett 86, 4676 (2001)

Stoner-Wohlfarth – astroid curve



  

●Polycrystalline samples without a preferred orientation of the grains do not show, in 
macroscopic experiments, any magneto crystalline anisotropy [9].
●If the sample is not spherical the magnetostatic energy of the system depends on the 
orientation of magnetic moments within the sample (or macrospin in a simplified picture).
●The effect is of purely magnetostatic origin and is closely related to demagnetizing fields 
(see my lecture 2 from 2012):

If and only if the surface of uniformly magnetized body is of second order (an ellipsoid, a 
paraboloid, a hyperboloid) the magnetic induction inside is uniform and can be written as:

B⃗=μ0(−N⋅M⃗+ M⃗ )

N is called the demagnetizing tensor [5]. If magnetization is parallel to one of principle axes 
of the ellipsoid N contracts to three numbers called demagnetizing (or demagnetization) 
factors sum of which is one:

N x+ N y+ N z=1

For a general ellipsoid magnetization and induction are not necessarily parallel.

Demagnetization decreases the field inside ferromagnetic body.

Shape anisotropy



  

●Polycrystalline samples without a preferred orientation of the grains do not show, in 
macroscopic experiments, any magneto crystalline anisotropy [9].
●If the sample is not spherical the magnetostatic energy of the system depends on the 
orientation of magnetic moments within the sample (or macrospin in a simplified picture).
●The effect is of purely magnetostatic origin and is closely related to demagnetizing fields.

●The energy of the sample in its own stray field is given by the integral [9]:

E demag=−
1
2 ∫ B⃗demag⋅M⃗ dV=

1
2 ∫μ 0(N⋅M⃗ )⋅M⃗ dV B⃗demag=−μ 0 N⋅M⃗

●If the sample is an ellipsoid the demagnetizing field is uniform throughout the sample:

E demag=
1
2
V μ0(N⋅M⃗ )⋅M⃗ , V−volume of the sample

●N is a diagonal tensor if the semiaxes of the ellipsoid coincide with the axes of the 
coordination system.

Shape anisotropy



  

●For the general ellipsoid sample we have [9]:

N=[
1/3 0 0
0 1/3 0
0 0 1/3] ⇒ E demag=

1
2

μ 0 M
21
3

(α 1
2
+ α 2

2
+ α 3

2
)=

1
6

μ 0 M
2

●For a spherical sample we have:

E demag=
1
2
V μ0(N⋅M⃗ )⋅M⃗ =

1
2

μ0 M
2(N aα 1

2+ N bα 2
2+ N cα 3

2) M⃗ =M (α 1,α 2,α 3)

no dependence on the 
magnetic moment orientation

●For an infinitely long cylinder* Nc is null:

N=[
1/2 0 0
0 1/2 0
0 0 0] ⇒ E demag=

1
2

μ 0 M
2 1
2

(α 1
2
+ α 2

2
)=

1
2

μ 0 M
2 1
2

(sin2
(θ )cos2

(ϕ)+ sin2
(θ )sin2

(ϕ)
2
)=

E demag=
1
4

μ0 M
2 sin2

(θ )

(α 1 ,α 2 ,α 3)=(sin(θ )cos(ϕ) , sin(θ )sin(ϕ) ,cos(θ ))

*polar axis is a symmetry axis

Uniaxial anisotropy- 
characteristic for elongated 
particles (see Stoner-
Wohlfarth model)

Shape anisotropy
N ellipsoid=[

N a 0 0
0 N b 0
0 0 N c

]



  

●For infinitely expanded and/or very thin ellipsoid we have [9]:

N=[
0 0 0
0 0 0
0 0 1] ⇒ E demag=

1
2

μ 0 M
2α 3

2
=

1
2

μ 0 M
2 cos2

(θ )
The in-plane orientation of 
magnetic moment of thin plate is 
energetically favorable*

*in case magnetocrystalline and other anisotropies favoring perpendicular orientation are absent
**magnetization data from: Francois Cardelli Materials Handbook, Springer 2008 (p.502), http://books.google.pl

●The equation can be rewritten to often used form:

E demag=
1
2

μ0 M
2
(1−sin2

(θ ))=
1
2

μ 0 M
2
−

1
2

μ0 M
2 sin2

(θ )=K 0+ K shape
V sin2

(θ ) ,

with K shape
V

=−
1
2

μ 0 M
2

Fe (bcc) Co (hcp) Ni (fcc)

K1 [J/m3] 54 800 760 000 -126 300

KV
 [J/m3] 1 910 000 1 290 000 171 000

●Magnetocrystalline and shape anisotropy constants for thin films of elements at 4 K**:

Shape anisotropy in thin films 
usually dominates over 
magnetocrystalline anisotropy

Shape anisotropy



  

●From Stoner-Wohlfarth model we have:

BS=μ 0 M S H S=M S

BS=
2K 1

M
●Substituting the expression for shape anisotropy of thin films                            we get:K shape

V
=−

1
2

μ0 M
2

In macrospin approximation the perpendicular saturation field of thin film is equal to its 
magnetization.

or

Shape anisotropy



  

Shape anisotropy – purely magnetostatic interactions

Example:
● n × n  magnetic moments (spins) placed in plane on a square-lattice (a=0.2 nm)
● magnetic moments interact purely magnetostatically
● each moment is a 1 Bohr magneton (≈1×10-24 Am2) 



  

Shape anisotropy – purely magnetostatic interactions

B=
0

4

3 m⋅r r−mr⋅r 

r⋅r 5 /2 E=−m⋅B



  

Shape anisotropy – purely magnetostatic interactions

E
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E||
5 10 15 20 25 30
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p
in

 [
1
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n

Magnetostatic interactions favor in-plane orientation of magnetic 
moments (spins) in thin magnetic films

E⊥≥E∥



  

Surface anisotropy – reorientation phase transition

presence of an interface:
- orbital motion of electrons is affected by the  introduced 
  symmetry breaking
- the asymmetry of the averaged orbital moments
  defines the interface contribution to the magnetic
  anisotropy
 -in ultrathin magnetic films the interface part becomes 
  even  dominating in some cases

A.Stupakiewicz et al., PRB 80, 094423 (2009) 



  

●Due to broken symmetry at interfaces the anisotropy energy contains terms with lower 
order in direction cosines than in the infinite crystal.

●Energy of magnetic moments of atoms 
occupying lattice sites in the vicinity of the 
surface is different for two shown 
orientations
●Each of the magnetocrystalline anisotropy 
constants can be phenomenologically 
divided into two parts, one related to volume 
contribution and the one to surface 
contribution [9]:

where t is the crystal thickness.

K eff =K v+ K s / t

●Energy of magnetic moments of atoms 
occupying lattice sites far from the outer 
boundary of the crystal depends only on
the intrinsic symmetry of the crystal

Surface anisotropy – reorientation phase transition



  

●Let us assume that volume contribution to the anisotropy favors in-plane alignment of 
magnetic moments (it could be magnetocrystalline, shape, stress etc. anisotropy).

●Due to perpendicular surface anisotropy the moments close 
to the surface (black arrows) are deflected out of plane

●If the thickness of the sample/film is high the exchange 
coupling of the surface moments with the bulk ones keeps the 
overall moment of the sample nearly in plane

●If the thickness of the film is low, and the surface anisotropy 
is strong enough all moments point perpendicular to plane.
●Using macrospin approximation the total energy of the 
sample dependent on the orientation of magnetic moment can 
be written as [10] (we assume that the energy does not 
depend on azimuthal angle):

-positive Ki favor perpendicular orientation

E a=K 0−K 2 cos2
(θ )−K 4 cos4

(θ )+ .... *

*different notations of anisotropy constants can be encountered: R. Skomski et. al, Phys. Rev. B 58, 11138 (1998)

Surface anisotropy – reorientation phase transition



  

●Minimizing Ea with respect to θ yields the equilibrium angle:

∂
2 E a/∂θ 2

=2K 2 cos(θ )sin(θ )+ 4 K 4 cos3
(θ )sin (θ )=0 ⇒ cos(θ )sin (θ )(2K 2+ 4K 4 cos2

(θ ))=0

●We have extrema for:

θ =0, π /2, cos2
(θ )=

−K 2

2 K 4

●It can be shown that [10]:

-for K2>0 and K4>0 the magnetization is 
perpendicular to the plane

-for K2>0 and 2K4<-K2 the canted 
magnetization is a ground state

-the region for K2<0 and 2K4>-K2 is called a 
coexistence region – both perpendicular and 
in-plane orientations of magnetization 
correspond to local minimum; they are 
separated by energy barrier 
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●Recalling the presence of surface anisotropy terms we get:

Ea=K 0−(K 2
v
+ K 2

s
/ t)cos2

(θ )−(K 4
v
+ K 4

s
/ t)cos4

(θ )+ ....
each anisotropy constant is divided into

bulk (volume) and surface term

●Neglecting higher order terms we get the sample thickness for which the effective 
anisotropy is zero (neglecting constant K0):

tRPT=−
K 2

s

K 2
v

●Usually, when considering thin films, the sample has two surfaces contributing surface 
anisotropy. As a consequence the multiplier 2 is added*:

tRPT=−
2K 2

s

K 2
v

*in general both surfaces can be characterized by different surface anisotropy constants.

●For film thickness > tRPT the magnetization of the film lies in-plane (if the external field is 
 absent).
●RPT may be caused by:
-temperature change
-change of the thickness of magnetic layer (in wedge-shaped layers thickness depends on 
 a position)
-change of the thickness of the overlayer

RPT – reorientation phase transition 
SRT -spin reorientation transition

Surface anisotropy – reorientation phase transition



  

●From the expression with surface anisotropy we have:

RPT – reorientation phase transition 
SRT -spin reorientation transition
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K eff =K 2
v
+ 2K 2

s
/ t

K eff t=K 2
v t+ 2K 2

s

●Plotting                 one can determine 
volume and surface contributions to 
anisotropy with a linear fit:
-KV - slope
-KS – Keff t (t=0)

K eff t vs t

tRPT=−
2K 2

s

K 2
v

Surface anisotropy – reorientation phase transition



  Kisielewski et al., J. Appl. Phys. 93, 7628 (2003)

●RPT may be caused by:
-temperature change
-change of the thickness of magnetic layer
-change of the thickness of the overlayer

K eff
=K v

+ 2K s
/ t

Surface anisotropy – reorientation phase transition



  

●RPT may be caused by:
-temperature change
-change of the thickness of magnetic layer
-change of the thickness of the overlayer

Surface anisotropy – reorientation phase transition
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●Magnetostriction is a change of materials physical dimensions as a result of the change of 
the orientation of magnetization
●The direction of magnetization changes under the influence of external field or 
temperature.
The relative deformation is usually small; of the order of 10-6 to 10-5 [6]; in Tb λ is approx. 
0.002 at RT.
●The typical strain versus field dependence shows saturation which is expressed by the 
value of magnetostriction constants λ:

●In giant magnetostriction materials the 
 strain exceeds 0.5%
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Stress anisotropy and magnetostriction



  

●Magnetostriction is a change of materials physical dimensions as a result of the change of 
the orientation of magnetization
●The direction of magnetization changes under the influence of external field or 
temperature.
The relative deformation is usually small; of the order of 10-6 to 10-5 [6]; in Tb λ is approx. 
0.002 at RT.
●The typical strain versus field dependence shows saturation which is expressed by the 
value of magnetostriction constants λ:

●The dependence dl/l(H) is different for 
different orientations of applied field relative 
to crystal axes R
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●In most practical applications the saturation distortion can be described by expression with 
small number of constants [11]: 

λ=
3
2

λ100(α 1
2β 1

2
+ α 2

2 β 2
2
+ α 3

2 β 3
2
−

1
3

)+ 3λ111(α 1α 2 β 1 β 2+ α 2α 3 β 2 β 3+ α 3α 1 β 3 β 1) ,

where α1, α2 , α3 – direction cosines of magnetic moment direction;β1 ,β2, β3- direction 
cosines of the direction along which the deformation is measured.

●In amorphous and polycrystalline materials (without the texture) the above expression 
simplifies to:

λ=
3
2

λ S (cos2θ −
1
3

)

●Distortion along the external magnetic field 
 direction is twice that observed for plane 
 perpendicular to the field (see the 
 drawing→)
●Below Curie temperature the spontaneous 
 magnetization leads to spontaneous 
 distortion of lattice [9]: cubic cell deforms 
 to tetragonal system

initial shape of the sample

 PolarPlot[{1+0.4 (Cos[t]^2-(1/3)),1},{t,0,2 Pi}]

field directions

distorted specimen

λ> 0

Stress anisotropy and magnetostriction



  

●Stress applied to a ferromagnetic body will affect the orientation of magnetization through 
magnetostriction [6].
●The applied stress changes the magnetization reversal characteristics: 

im
a

ge
 f

ro
m

: 
B

. 
D

. 
C

u
lli

ty
, 

In
tr

o
d

u
ct

io
n

 t
o

 m
a

gn
e

tic
 m

a
te

ria
ls

,
A

d
d

is
o

n
-W

e
sl

e
y,

 R
e

a
d

in
g,

 M
a

ss
a

ch
u

se
tt

s 
1

9
7

2

*called inverse magnetostrictive effect, too

Fig. 8.16 Effect of applied tensile stress on the magnetization of
                68 Permalloy. After Bozorth [G.4].

Stress anisotropy – magnetomechanical effect*



  

●The part of the energy of a cubic crystal depending on magnetic moment orientation and 
the stress applied to crystal can be shown to be [3]:

E=K 1(α 1
2α 2

2
+ α 2

2α 3
2
+ α 3

2α 1
2
)+ ...−

3
2

λ100σ (α 1
2γ 1

2
+ α 2

2γ 2
2
+ α 3

2γ 3
2
)

−3λ111σ (α 1α 2γ 1γ 2+ α 2α 3γ 2γ 3+ α 3α 1γ 3γ 1) , γ 1, γ 2, γ 3 - direction cosines of 
the external stress σ

magnetocrystalline anisotropy

●When the magnetostriction is isotropic (                      ) the last two terms reduce to*:λ100=λ111=λ si

E stress=−
3
2

λ siσ cos2θ , θ

*with (α 1 ,α 2 ,α 3)=(sin (θ )cos(ϕ) , sin(θ )sin (ϕ) ,cos(θ ))

where    is the angle between macrospin (magnetization) 
and the the stress directions

●The effect of stress on isotropic sample depends on the sign of the λsiσ product

●The effect of stress is to introduce additional anisotropy to the ferromagnetic system

Stress anisotropy – magnetomechanical effect



  

●The effect of the stress on magnetization reversal for positive λsiσ product [3]:
1) the magnetic moments within the specimen point in one of four easy directions
2) the application of tensile stress causes domains with magnetic moment perpendicular to 
    the stress to dwindle
3) still higher stress leaves only magnetic moments parallel to the stress
4) application of the weak magnetic field is sufficient to move 180 Deg domain wall and 
    saturate the specimen

●If compressive stress was applied instead “vertical domains” would disappear and the field 
 would initially (for small H) be perpendicular to magnetic moments.
●In Ni samples the stress of 6.4106 Pa [3] causes stress anisotropy to be roughly equal to 
magnetocrystalline anisotropy.

Stress anisotropy – magnetomechanical effect



  

●Exchange bias occurs when ferromagnet and antiferromagnet are coupled by exchange 
 interaction between magnetic moments on the common interface [3,7,12].
●The bias manifests itself as a shift of hysteresis loop along the field axis.

20nm diameter Co particles covered by 
~3 nm of CoO antiferromagnet

G.H. Wen, R.K. Zheng, K.K. Fung, X.X. Zhang, JMMM 270, 407 (2004)

Exchange anisotropy (exchange bias)



  

●Exchange bias occurs when ferromagnet and antiferromagnet are coupled by exchange 
 interaction between magnetic moments on the common interface [3,7,12].
●The bias manifests itself as a shift of hysteresis loop along the field axis (or higher Hc[12]).

●The exchange coupling at FM/AFM interface acts as 
 additional field (here additional field is positive:+|hb|)
●The exchange bias is inversely proportional to FM 
 film thickness and magnetization [12]

hb=
J exchange

M FM tFM

Exchange anisotropy (exchange bias)

(0,0)
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During the preparation of this, and other lectures in the series “Magnetic 
materials in nanoelectronics – properties and fabrication” I made an extensive 
use of the following software for which I wish to express my gratitude to the 
authors of these very useful tools:

●OpenOffice            www.openoffice.org

●Inkscape                inkscape.org

●POV-Ray                www.povray.org

●Blender                  www.blender.org

●SketchUp               sketchup.com.pl

I also used “Fizyczne metody osadzania cienkich warstw i metody analizy 
powierzchniowej” lectures by Prof. F. Stobiecki which he held at Poznań 
University of Technology in 2011.

Special thanks are due to Google team as I used the search engine extensively.
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