Magnetic properties of Dy$_3$Pd$_2$ single crystal

M. Klimczak1, E. Talik1, J. Kusz1, A. Winiarski1 and R. Troć2

1Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
2Institute of Low Temperature and Structure Research, Polish Academy of Sciences
Okólna 2, P.O. Box 1410, 50-950 Wroclaw 2, Poland

The R$_5$Pd$_2$ compounds were investigated by Berkowitz et al. [1]. They reported the existence of four new R$_5$Pd$_2$-type (R=Gd, Tb, Dy, Ho) compounds. All these compounds crystallize in the cubic Dy$_5$Pd$_2$ - type of crystal structure which belongs to the space group Fd$ar{3}$m [2]. Recently, the magnetic properties of R$_5$Pd$_2$ (R=Tb, Dy, Ho, Er) intermetallic compounds were carried out [3]. The samples were obtained in polycrystalline form by the induction melting. The electrical resistivity, ac and dc magnetic susceptibility measurements show a complex transport and magnetic behaviour of these compounds mainly due to the frustration effect. The aim of this work was to obtain a good quality single crystal of Dy$_3$Pd$_2$, parameter thermal variation and magnetic measurements. Fig. 1 shows the X-ray Berg-Barrett topography of the Dy$_3$Pd$_2$ single crystal, grown by the Czochralski method from a levitated melt, witch confirms good quality of the obtained crystal. This compound crystallized in the cubic Dy$_3$Pd$_2$ - type of crystal structure. The lattice parameter was a=13.52 Å.

![Fig. 1. Berg–Barrett topography of Dy$_3$Pd$_2$ single crystal.](image)

The temperature dependence of the unit cell volume V of Dy$_3$Pd$_2$ was measurement. The unit cell volume V decrease linearly from 300 down to 50 K. Below this temperature the unit cell volume keeps almost constant values down to 10 K.

Name of the presenting author (poster): Monika Klimczak
e-mail address: talik@us.edu.pl
url’s: http://www.us.edu.pl

48