## Electron Paramagnetic Resonance and Electron Spin Echo Evidence of Molecular Dynamics in Polymers

#### S. K. HOFFMANN

Institute of Molecular Physics Polish Academy of Sciences Poznan **Polymers, glasses and amorphous** solids are similar to the crystalline solids:

- similar mechanical properties
- carry sound waves
- carry heat

But they are **isotropic** with **distribution** of microscopic physical parameters.

It is a consequence of a lack of long range order although a considerable **short range order** exists



Any material vitrifies if its liquid is cooled down sufficiently fast

Most of materials can exist in undercooled liquid state. They are called **glass formers:** 

- with strong covalent bonds (silicate glasses)
- with hydrogen bonds (glycerol, alcohols)
- with non-directed van der Waals and ionic interactions
- polymers
- metals

## What is structure of a glass?

"True" glass→ after a rapid quenching ?

#### **Macroscopic structure:**

- more "phases" or intermediate states than in the simple phase diagram

## a) in thermoplastic (linear) polymers

depending on the temperature (and measured frequency)

## b) in thermosetting polymers (resins)

depending on the temperature and time



# Generalized time-temperature- transfomation (TTT) for the curring of a thermosetting polymer (resin)



# Conversion-temperature-transformation (CTT) diagram for thermosetting polymers (resins)



## **MICROSCOPIC STRUCTURE:**

- short range order vanishes on distance of a few neighbours

- local structure of a glass in the lenght scale 5 - 10 nm
decides on its properties and stability
( E. Courtens...., 2001)

**Dynamics** of polymers and amorphous solids is

- more complex than that in crystalline metarials
- affected by intrinsic disorder

#### and is observed as:

- relaxation phenomena (aperiodic fluctuactions) mainly by dielectric spectroscopy
- harmonic or quasi-harmonic excitations (vibrations)

Central and most important dynamical phenomenon in glassy-forming polymers is

## $\alpha$ - relaxation





At higher temperatures relaxation peaks shift toward higher frequency range

Except the main  $\alpha$ -peak additional relaxation peaks appear:

- $\beta$ -relaxation slow and fast
- - $\gamma$ ,  $\delta$ ,  $\sigma$ .....relaxations
- **boson peak** (harmonic excitations)



 $\alpha$  - relaxation (primery response)

= structural relaxation = dynamic glass transition

-micro-Brownian motion of chain segments

- molecule fluctuates in a cage of its neighbours.(Fluctuactions of the molecules forming the cage cannot be independent from each aother thus α-relaxation is to some extend cooperative)
- forming and decay of the cage

**Characteristic features:** 

1. Non-exponentiality

correlation function  $\Phi(t)$  of fluctuations is not single exponential, but stretched exponential.

A distribution of the relaxation time  $\tau$  exists

$$\Phi(t) = A \exp \left| -\left(\frac{t}{\tau}\right)^{p} \right|$$

 $\beta$  = 0.5 – 1, decreases on cooling

#### 2. Non-Arrhenius behaviour

## Angel plot :

## strong and fragile glass-formers



#### Characteristic temperatures of the dynamic glass transition ( $\alpha$ -relaxation)

- **T**<sub>g</sub> thermal glass transition
- T<sub>0</sub> Vogel temperature = ideal glass transition temperature (τ and η diverge) typically 30 – 50 K below T<sub>α</sub>
- **T<sub>K</sub> Kauzmann temperature** At that temperature **entropy**

of the undercooled liquid extrapolated to temperatures below  $T_{g_{n}}$  reaches" entropy o of a crystal. **Close to T<sub>0</sub>**.  $\label{eq:transform} \begin{array}{l} T_{C} \mbox{-} \mbox{cross-over temperature} \\ \mbox{Cross-over to cooperative relaxation.} \\ \mbox{Structural arrest in the cage.} \\ \mbox{Typically} \approx 1.2 \ T_{g} \end{array}$ 





## Characteristic temperatures for **ortho-terphenyl**





- decoupling of translations and rotations
- deconvolution of translations and rotations

## $\beta$ - relaxation (secondary relaxation)

$$\tau(T) = \tau_{\infty} exp\left(\frac{E}{k_{\rm B}T}\right)$$

-  $\ensuremath{\text{Arrhenius}}\xspace$ -like temperature dependence of the relaxation time  $\tau$  with

 $E_a = 20 - 50 \text{ kJ/mol},$ 

 $\tau_{\infty}$ ~ 10<sup>-13</sup> s  $\leftarrow$  often smaller, indicating a contribution from activation entropy

- **Local relaxation**. Takes place on a local length scale not larger than a monomer unit (1.5 Å jumps, 60-90<sup>o</sup> rotations around the center of mass)
- Fluctuations of localized part of the main chain.
- Rotational fluctuations of side groups or part of them.

## THEORY



Heterogeneity of undercooled liquid close to the glass transition (?) Can explain non-exponentiality near T<sub>g:</sub> There exist islands of mobility with its own dynamical parameters. An average over all islands gives broad distribution and nonexponentiality.

| Slow dynamics                      | Mesoscopic GHz<br>frequency range                               | Fast dynamics |  |
|------------------------------------|-----------------------------------------------------------------|---------------|--|
| 10                                 | 0 10                                                            | 1000 GHz      |  |
| α- relaxation<br>β- relaxation<br> | Tunneling TLS<br>Acoustic phonons<br>Boson peak<br>Fast process | Optical modes |  |
|                                    | Soft localized modes                                            |               |  |

Dynamics in the mesoscopic frequency range drives ( or at least strongly influences) the dynamics of the glass transition (Sokolov, 1997)

## Fast dynamics (visible in IR and Raman spectra) is very similar to that in crystals but also

- forbidden transition can appear
- localized modes (on defects) can exist









- Appears at some "critical" temperature T<sub>x</sub> as decoupling (deconvolution) of rotation and relaxation.

- Above T<sub>x</sub> the mean square displacement of atoms begins to increase more strongly than linear dependence  $\langle u^2 \rangle \propto T$  predicted for harmonic vibrations (Ngai coupling model)

-Vibrations in a potential well with over-barrier rotations (-C – C – torsional rotations ?)

#### Tunneling two-level systems (TLS) – below 1K - asymmetrical double-well potentials, disordered modes

Group od atoms can exist in different configurations with small differences ∆ in energy, i.e. potential energy surface can have many shallow minima and can be considred as a collection of asymmetrical double-wells (TLS):



Thermally activated reorientations between the potential minima can be produced by 1. Phonon assisted tunneling (one-phonon process) - dominates

$$\frac{1}{\tau} = \mathbf{A} \cdot \Delta^2 \varepsilon \operatorname{coth}\left(\frac{\varepsilon}{2kT}\right) \quad \varepsilon = \text{tunneling splitting}$$

#### 2. Over-barrier jumps

$$\frac{1}{\tau} = \frac{1}{\tau_0} \cosh\left(\frac{\Delta}{2kT}\right) \exp\left(-\frac{V}{kT}\right) \quad v = \text{barrier height}$$



Parameters of the TLS  $\epsilon$ ,  $\Delta$ , V are distributed in amorphous systems



Tunneling levels are broad with the width order of 0.1 cm<sup>-1</sup>

$$\varepsilon = \sqrt{\Delta^2 + \Delta_0^2}$$

 $\Delta_0$  = overlap energy = coupling energy in symmetrical state

$$\Delta_0 = \hbar \omega_0 e^{-\lambda},$$
$$\lambda = \sqrt{2mV} \frac{d}{\hbar}$$

#### **Density** $n(\varepsilon)$ of tunneling states:



#### **Nearly constant:**

$$n(\varepsilon) = \varepsilon^{\lambda}$$
,  $\lambda = 0.4 - 2$ 

## Thermal anomalies in amorphous solids

In crystalline materials the Debye model of phonon dynamics gives:

specific heat $c_p \propto T^3$ thermal conductivity $\kappa \propto T^3$ 





1. TLS do not conduct heat  $(T^2)$ 

2. Phonon mean free path tends to zero (**plateau**)

## Acoustic phonons and local oscillators in amorphous solids

Acoustic phonons (plane-waves) exist at low temperatures only and have picosecond lifetime

They are dominated by localized excitations (soft local oscillators) with density of states growing as  $E^4$ .

Number of local oscillators grows rapidly with temperature and phonon scattering on these centers leads to a shortening of the **phonon free path**  $\Lambda$ .

As the results at some frequency, so called **loffe-Regel crossover frequency**  $\omega_d$ :

 $\lambda_{phonon} = \Lambda_{phonon}$ phonon wavelength= phonon free path and concept of phonons has further no sense.

Above the crossover frequency  $\omega_d$  only localized excitations exist





## **Boson peak**

**Boson peak** it is a broad band of low frequency **harmonic excitations** (optical type) centered about **1 THz** frequency (**30 cm<sup>-1</sup>** = 43 K) appearing in **disordered solids**, glasses and polymers.



Inelastic neutron scattering

Its spectrum obeys Bose-Einstein statistics  $I(\omega)=C(\omega)[n(\omega)+1]/\omega$ , where  $n(\omega)$  is the Bose-Einstein occupation factor.

Boson peak is observed in **Iow-frequency Raman** spectra and in **inelastic neutron** scattering experiments



#### Boson peak exists in various amorphous materials,



#### In neutron irradiated quartz single crystal



## persists over broad range of temperature,





### **EPR:**

- at microwave frequencies where the most complex dynamics
- high sensitivity 10<sup>14</sup> spins/gram
- pulsed EPR (electron spin echo = ESE) very sensitive to dynamics

## **Paramagnetic centers:**

- A) Free radicals
  - γ, X, UV-Vis irradiation generated
  - spontaneously occurring:
    - residuals of polymeric or curing reactions
    - aging processes
- B) Spin probes and spin labels (nitroxides) of various shape and size





## **EPR** applications in polymers and amorphous systems

- identification and localization of a paramagnetic center (EPR spectra and ESEEM spectroscopy)
- detection of the glass transition (by spin label EPR)
- detection of various dynamical regions of a material (spin probe EPR)
- determination of slow dynamics
  - (dephasing of the electron spin echo)
- determination of dynamics of reorienting molecular groups like CH<sub>3</sub>, NH<sub>3</sub> (spin-lattice relaxation, phase relaxation)
- -localized modes of paramagnetic defects (spin-lattice relaxation)

### EPR determination of the glass transition In beech seeds to evaluate long-term storage conditions

S. Pukacka, S. K. Hoffmann, J. Goslar, P. M. Pukacki E. Wojkiewicz, Biochim. Biophys. Acta <u>1621</u>, 48 (2003)

> Embryo axes of seeds were labeled with TEMPO spin probes

Water contents and temperature are critical

Beach (Fagus sylvatica L) give seeds every 5-10 years only



#### Dynamics of **SALOL** observed by **spin-probe EPR**

Isotropic jump reorientations with  $\tau$ 

3.2×10<sup>-8</sup> s



2.8×10<sup>-10</sup> s

 $T_m$ = 315 K,  $T_C$  =260 K,  $T_g$ = 220 K

3400

— Exp — Theory

T=212 K

T=251 K

T=279 K

3320

3340

3360

B (gauss)

3380

Detection of different dynamic regions New "phase" II (diffusive)

L. Andreozzi, M. Bagnoli, M. Faetti, M. Giordano J. Non-Cryst. Sol. **303**, 262 (2002)



## **ELECTRON SPIN ECHO SPECTROSCOPY**

Every two pulses of resonance freqency generate electron spin echo signal. In EPR microwave pulses are order of ns



ESE = Electron Spin Echo ESEEM = Electron Spin Echo Envelope Modulations



ESE signal amplitude decays with time after excitation with characteristic time called phase memory time  $T_M$ 



Phase memory time is very sensitive to molecular motions (varies with temperature)

Modulations of the decay =**ESEEM** = Electron Spin Echo Envelope Modulations

(µs)

## Modulations of the Electron Spin Echo decay and Fourier Transfrorm (ESEEEM) spectra



Number of peaks in ESEEM spectrum and modulation depth allow to determine : magnetic nuclei, their number and often a distance from paramagnetic center (up to about 5Å)

#### Identification of free radical and dynamics of oligomeric system poly(4-hydrazo-diphenylene disulfide with N-methyl-2-pyrrolidone chain ends





Strong EPR signal (non-informative single line) exists at g=2.0025 with  $3.8 \times 10^{18}$  radicals /gram

g-factor value suggests the unpaired electron is localization on a carbon atom



Electron spin echo (three pulse) amplitude decay is weakly modulated

Fourier Transform (ESEEM) spectrum indicate:

- 1. Weak peak from distant hydrogens
- 2. Reach quadrupole structure  $v_0, v_+, v_-, v_{dq}$  from closely located **single** <sup>14</sup>**N** (I=1) (about 1.8 Å)
- 3. Weak peak (marked as 2)

from **more distant nitrogen** atom (about 4.5 Å)

On a one of the stages of the reaction a transfer of electron from NaS<sup>-</sup> to N-methyl-2-pyrrolidone appears allowing a reaction with terminal amine group of polymerazing 4-hydrazo-diphenylenedisulfide chain



Our results suggest that about 1% of final product contains free radicals localized on the carbon atom as residuals of the last state of the reaction



However, the molecular structure of the end-chain containing free radical center is proposed as:



Free radical should be sensitive to:

- CH<sub>3</sub> reorientations
- chain-end dynamics

Electron Spin Echo (ESE) dephasing Temperature dependence of the phase memory (dephasing) time T<sub>M</sub> display effects from molecular reorientations



**Merging** effect between spin packets (unresolved hyperfine structure lines) produces resonance-type enhancement of the dephasing rate (maximum in temperature dependence of 1/T<sub>M</sub>)





## **Phenol-formaldehyde resin**



## **Electron spin-lattice relaxation in polymers**



## CONCLUSIONS

- 1. Cw-EPR and ESE spectroscopy can be apply to study free radicals and spin probes or spin labels in polymeric systems
- 2. Cw-EPR and ESEEM spectra allow **identification paramagnetic centers** and determination its localization
- 3. Temperature dependence of EPR spectra allow to determine:
  - glass transition temperature
  - regions of different dynamics of paramagnetic centers
- 4. Electron spin dephasing ( $T_M$  time) is sensitive to **slow motions** (10<sup>6</sup>-10<sup>8</sup> s<sup>-1</sup>) and allows determination **small activation energies** (order of 0.1 kJ/mol)
- 5. Electron spin relaxation can detect reorientations of molecular groups like CH<sub>3</sub>, NH<sub>3</sub> and determines its activation energies
- 6. Spin-lattice relaxation deliver parameters of **local vibration modes**

EPR and pulsed EPR (ESE spectroscopy) can be used as complementary to other techniques in studies of slow motions in polymers and amorphous solids