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What have Hooke’s law, the generalized-Cauchy-relations
and the nanostructured state in common?

Generalized
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Hooke’s law for a triclinic crystal:
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Elastic Tensor
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21 elastic constantsin Voigt notation



Hooke’s law for a cubic crystal:
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Elastic Tensor

Voigt notation

Strain TensorStress Tensor

For cubic symmetry there remain only three independent stiffness
coefficients: { }11 12 44c ,c ,c



Hooke’s law for a isotropic solid  (no single crystal any more):
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Elastic Tensor

Voigt notation

Strain TensorStress Tensor

For isotropic symmetry there remain only two independent stiffness 
coefficients: { }11 44c ,c
But the Isotropy Condition holds: 12 11 442c c c= − ⋅



The Prequesites of a Cauchy Relation

Cauchy relations reduces the number of independent 
elastic constants compared to the number, given by by

point symmetry 

Additional conditions in order to fulfill a Cauchy relation:

1. Every lattice particle is a center of inversion. 

2. There are only central forces between the lattice
particles. 

3. The related equation of motion contains only harmonic
terms. Anharmonicity destroys the Cauchy relations 
Cauchy Relation.



Cauchy relations: Symmetries beyond crystal symmetries

The symmetry of elastic constants is now higher than the 
Voigt symmetry and this leads to in general, six additional 
relations for second order elastic constants, i.e.
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Cauchy condition for crystals with cubic symmetry:
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From the cubic to the isotropic elastic state
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Three Independent elastic constants
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12 11 44c c 2 c= − ⋅

Isotropic state: 
two remaining independent 
elastic constants

isotropy relation

+
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Hooke’s elasticity is only part of the truth: 
nonlinear elasticity and viscoelasticity of solids

harmonic solids 
linear, instanteous
response
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nonlinear response, 
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Simple liquid Viscous liquid glass

The mechanical properties of amorphous material in 
the long wavelengt limit

21 TST c : S : S : c : S .....
t

η ∂
= + + +

∂

v v vv
v

44c G ???=but

1
1 1

1
ijs

ij ij

c
c c

i
∆
ω τ

= +
+ ⋅ ⋅

visco-elastic solids    
(linear), delayed response

( ) ( )
( )

Ln p,q
p,q

Ln
ω

γ
ρ

∂   =
∂

v
v

Anharmonicity seen by
Grüneisen parameters



A simple explanation starts  from the 
relaxing shear viscosity

Why do liquids have at sufficient high probe 
frequencies shear stiffness?  

Hydrodynamic Stress-Strain Relations in Isotropic Matter
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What happens, when even the dynamic viscosity relaxes?
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Let us use a simple Debye Relaxator: 
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The appearance shear stiffness
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How to measure elastic properties at sufficiently high frequencies
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EPOXY illuminated with Laser light:
about the origin of the scattered light 
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The Power-Brillouin spectrum: 
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Did you ever hear about a Cauchy Relation for
Polymers or Liquids at high Frequencies

? 11 44c 3 c= ⋅
Cauchy-relation for the high frequency clamped isotropic
state of a liquid:
Would reduce the number of elastic constants of 
isotropic materials from two to one!

Relations in order to fulfill a Cauchy-relation in the isotropic state:

1. Every particle is a center of inversion; There are only central
forces between the lattice particles. 

2. The related equation of motion contains only harmonic terms. 
Anharmonicity destroys the Cauchy relation.



The amorphous state with
global isotropic symmetry 

The amorphous state with
local order broken symmetry

11 44c 3 c= ⋅

The symmetry changes with the scale 
The global symmetry is isotropic, but not the local one!!
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Zwanzig and Mountain (1965) proposed a generalized
Cauchy-Relation for the high frequency elastic stiffness

coefficients of simple liquids like argon 

( )1 1 4 4c B c A P , T , X= ⋅ +

Decouples the
stiffness constantsGeneralized Cauchy relation:

Depending on pressure
and TemperatureB=3

( )1 1 1 1 4 4c c c= is not be a linear function



A real experimental and theoretical surprise
A reactive = curing material
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The curing of an epoxy as seen by the elastic moduli
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Generalized Cauchy-Relation

( ) ( )11 44c x = A + B×c x

Glass TransitionCuring Transition

Substance         A[GPa]
B

epoxy 100:10 3.12 2.96
epoxy 100:14 I 3.77 2.81
epoxy 100:14 II3.44 2.82
epoxy 100:18 II3.13 2.96

A[GPa] B
DGEBA 2.92 2.98
PA6-3-T 2.94 2.96
I1 2.41 3.06
LiCl-solution 4.66 3.15
____________________________
CeO2 51 3.01 
/7 at-% Yttrium



The generalized Cauchy-Relation is not a proportionality but a
“linear transformation” with the following implications:

( ) ( )11 44c x A B c x∞ ∞= + ⋅11c
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1 3
liquid

glass

( )44 0static
gc T →
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positive semi-definite

Stability limit for a
dynamical shear stiffness
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The glassy state is
obtained by different 

quenching  

Fast quenching violates
the generalized Cauchy-

Relation,

Slow cooling yields a 
glassy reference state!
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The sound frequency of the shear
mode is out of equilibrium!! But 
relaxes to the glassy reference 
state!!!



( ) ( )11 44c x A B c x∞ ∞= + ⋅
What is the significance of the parameters A and B? 

Do these parameters tell us something about the
global and the local symmetry, molecular
packing, metastability, etc ?  

How do the parameters A and B change, if a 
material transforms from the amorphous via the
nanostructured to the macroscopically ordered
state?
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A 3,81124 0,0216
B 0,91652 0,01618
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L (t)=A+B v2

T(t) 

Polyurethane (Diol/Triol 80/20)

6 44 1 0 3 10
0 .9 0 .01

A
B
= ⋅ ± ⋅
= ±

Obviously, the longitudinal stiffness lags 
behind the shear stiffness during polymerization B=0.9

This Polyurethane has voids which are ten times as large 
as found in EPOXies

These voids can be interpreted as „nanoparticles“ within
the polymeric matrix.

It should be remembered that to first order shear
deformation does not change the volume! 

large voids affects rather the longitudinal then the
shear stiffness

Curing of a polymer network with large loops resp. voids
which violate the generalized CR



How to get a dense nanocrystalline state: Nanocrystallization
by suczessive annealing of the amorphous state

Substrate

amorphous 
sample

sample
target

Hf-heating

Oven +∆Q
Annealing
crystallisation

Substrate

sample

T=300 K

TP B6, Krüger,Schmitt, Rieger



Ca doped Lead Calcium Titanate (PTC) Thin-Film Samples

Characteristic of the samples
Thin-films of amorphous PTC were 
rf-sputtered. 
Thickness of the films was 1 µm.

Perovskite structure
Tc=530 K

TP B6, Krüger,Schmitt, Rieger



• How does the cross-over from
the amorphous to the
crystalline state takes place?

• An amorphous shows a glass
transition!!

• A crystal shows melting!!

Krüger et al. PRL, 78 (1997)

Origin of the discontinuity?

Origin of the softening in the sub-
nanometer regime?



Consolidated nanocrystals with little porosity

Single crystal

Global symmetry:
isotropic

Local symmetry:
cubic

The randomly oriented and 
consolidated single crystals
form globally an isotropic state 



Consolidated CeO2 with little porosity: 
One of few samples in the world

we deal with consolidated nanocrystals of 
cubic structure with macroscopic isotropic 
symmetry by statistic crystal orientation 

Does a Cauchy
relation hold??

According to 
Warren Averbach

d=26 nm
c>>99%

Birringer, Tschöpe UdS
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A 50.99626 11.11569
B 3.03275 0.13639

nc-CeO2 with 7 at-% Yttrium 

Lerusl Krüger, Birringer, Alnot

Warren Averbach
d~26nm
c>99%
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Reactive nanocomposite with restricted dimension and 
selective surface interactions

nanoparticles

polymer network

chemiesorption

restricted
dimensions

admit
d=10 nm
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nc-Al2O3 reinforces
significantly the
epoxy matrix
but maintains the
Cauchy relation

Reinforcement of an epoxy with Al2O3 nanocrystallites
Superelasticity by enhanced network formation

curing
process

LERUSL Krüger,Wetzel,Possart,Alnot
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About the influence selective  of selective surface interactions and  
clusters

clusters
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DETA
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About the morphology of an EPOXY nano-composite



Conclusion

It is interesting to note that in classical physics one can
still find quasi universal relations like the 

generalized CR

It seems that the parameter B is sensitive to the global 
symmetry but that the parameter A is sensitive to the

local symmetry breaking
The generalized CR tells us, that even in nonequilibrium

system we can predict the shear properties from the
longitudinal one, provided we know one data pair!

Even more, their exist a strict proportionality between
the derivatives:

11 44
n n
x xc B c∂ = ⋅∂ ( )1n ≥


