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EFFECTIVE DIELECTRIC RESPONSE IN INHOMOGENEOUS DIELECTRICS
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Introduction: inhomogeneous media, quasistatic approximation

Maxwell — Garnett and Bruggeman model, effective medium
approximation (EMA);

Upper and lower bound, Hashin — Shtrikman model
Brick-wall model, equivalent circuits approach;
Bergman approach

Generalised brick-wall model

AC response, effective dielectric function

Examples: SrTiO, ceramics and films, PbZrO, ceramics, BaTiO,
ceramics, nano-ceramics and films.



Dielectrically inhomogeneous media - examples:

Composites (0-3 connectivity: dielectric — ferroelectric, dielectric — metal
(cermet), ferroelectric — metal, 1-3 connectivity: fiber composites, 2-2
connectivity: lamellar composites, multilayers, heterostructures and
superlattices);

Ceramics and thin films (isotropic (cubic) grains — grain boundaries
(passive, dead layers with reduced permittivity or boundaries with
different conductivity or losses), dielectrically anisotropic grains;

Polydomain ferroelectric and other (twinned) ferroic crystals;

Relaxor ferroelectrics and dipolar glasses (polar nano-clusters embedded
into non-polar matrix) - specific feature: clusters are dynamic at higher
temperatures and contribute strongly to the dielectric response by their
reorientation and/or volume fluctuations (breathing);

Quasistatic (electrostatic) approximation:

Sharp boundaries among the components and homogeneous electric field
E within individual components = magnetic field effects in non-magnetic
media (4 = 1) can be neglected.



Maxwell — Garnett model:
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) ) _ lL.e. X, << X,
E,., is homogeneous in spherical (generally
ellipsoidal) particles
Effective dielectric response:
Average macroscopic field: E = xE, + x,E,
Average dielectric displacement: D=x,6E, +X, &E,= 6«E
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Relative volume V, < x, of the =~ Non-percolated part V., of

percolated part of the matrix ~ both particles and the matrix Generalised
(not influenced by E ) with a changed response depolarization factor
influenced by E,, 0<N<1)

There is no percolated cluster of particles. It can be easily
generalised to ellipsoidal particles with different N.



Bruggeman theory — effective medium approximation
(EMA) (1935)

The same approach as Maxwell - Garnett, but the spherical particles are
embedded into a matrix with & instead of ¢, = in principle can be used for
arbitrary concentration x.:
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&1+ 288]7 Ey + deﬂ

X2

This implicit quadratic formula for ¢ is symmetrical in both indices / and
displays percolation threshold for the /-th component properties for x;, = 1/3.

It can be also generalised to n components and to ellipsoidal particles (with
different depolarization factor and percolation threshold along the three
principal axes of the ellipsoid).



Coated spheres model (Hashin-Shtrikman 1962)
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The whole volume of composite is filled up by coated spheres of all sizes from
some maximal size down to zero. This model is exactly analytically solvable for
any x,. Again, E,. is homogeneous. It can be again re-written into the form:
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Both formulas have the same form as for Maxwell - Garnett model, but the role of

g and &, is interchanged. There is no percolation of particles even for x, close to 1
(small x,). For this case the model is also equivalent to another model when
coated spherical particles are embedded into the effective medium (analogy to
EMA) and to so called brick - wall model (with cubic bricks).
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Brick - wall model
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Equivalent circuit of series
capacitors with a geometrical
& factor0 < g <1

&y

For cubic bricks g = 1/3, for
columnar bricks g = 1/2

Edep

The model is approximate, cannot be calculated rigorously, but is
frequently used for ceramics to consider different properties of
grain bulk and boundaries .

Is inhomogeneous



Upper and lower bound:

It can be shown that the dielectric response of each composite with
sharp boundaries among the components must lay between two limiting
values:

Upper bound — maximum response: equivalent circuit of parallel
capacities, layers parallel to E:
6'8]" = X1€1 T X2&9 E

dep

=0,N=0,

Lower bound - minimum response: equivalent circuit of series
capacities, layers perpendicular to E:

1 + ngz—l E,, maximal, N =1 - x,

—~1 _
gef = X1&1
These formulas are independent on the thickness and number of
individual layers (capacitors), only on the total relative volume of both
components x, and X..

It can be shown that coated spheres model represent the upper and
lower bound for an isotropic composite.



Bergman representation (1978)

Any two component composite with sharp boundaries can be written in
the form (Hudak et al., 1998, Rychetsky 2004):
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0

Vi(x;) < Xx; is the percolated volume of the i —th component, i =1,2

This part of the response is not influenced by E,, — weighted sum of bulk
responses

X2

Vip(N,x5) = G(N,x,) is the non-percolated volume of both

1-N components, which depends on particle
shape as well as on their concentration

spectral density function

1
Normalisation condition:  J; + 7, +J‘V12dN =1
0



All known mixing formulas can be obtained by an appropriate choice of
V,, V, and the G(N,x,) function.

If one could assume that G(N,xy)=0(N'-N)G{(N)
and one component is not percolated at all (V;= 0 for /=1 or 2),

the formula simplifies to (generalised brick-wall model):

_ €162
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with V1=O,V2=1—1 )]C\?',Vl2=1 )]C\?',O<N'<XZ

Only 2 free parameters x,and N’ can be fitted from the experiment. This
formula is valid for any form of particles with a single N’ with arbitrary
size as long as E is homogeneous in individual particles. Brick - wall and
coated spheres models are recovered for small x..



High-frequency phenomena, AC response

All the formulas can be applied even for discussion of the effective
dynamics, i.e. calculation of the effective dielectric function, as long as the
E homogeneity condition is fulfilled. This in real cases goes up to the IR
range including polar phonon absorption.

Let us assume the dielectric function of component in 1 the product form
of generalised damped harmonic oscillators:
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If o, =0, it reduces to a sum of classical damped harmonic oscillators.

Let us assume that in the frequency range of our interest the component 2
has small dispersionless permittivity ¢,. Then
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The renormalised effective transverse mode parameters to the first
approximation assuming x, << x, and ¢, << g, are
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while the longitudinal mode parameters (eigenfrequencies and dampings)
remain unchanged.

~2
The shift up of @70; with respect to 60%0 increases linearly with x,
and N’ and the dielectric strength A& / but it always remains

below the next longitudinal-mode frequency. The effective mode strengths

are reduced: ( A Ag, /
O V20T A Eg &2
Ag;=Agj|1-N'—=-N') ——

2
. &2 k=il = OT0; | OTOk )

Similar formulas and conclusions are valid also for dielectric relaxations:

the effective relaxation frequencies are increased and dielectric strengths
reduced.




If we release the assumption of zero percolation of component 1, all
these renormalised modes appear in addition to un-renormalised
(weaker) modes due to percolated clusters of component 1. The
renormalised modes are usually called “geometrical resonances’
(Frohlich modes or surface modes in case of isolated particles).

If also the component 2 has a dielectric function with poles (polar
modes), additional modes un-shifted (corresponding to percolated
clusters) and shifted-up (corresponding to non-percolated clusters)
appear in the effective dielectric function. Also the longitudinal-mode
frequencies are modified. So generally the dielectric function of a 2-
component composite consists of twice the number of modes in both
components.

If also the assumption of single N' is released, instead of each single
geometrical resonance we obtain an absorption continuum — smearing
of the shifted-up transverse modes. This can be easily seen from the
general Bergman formulation.



Examples: Simple perovskites ABO, ceramics
and films — SrTiO; , PbZrO; and BaTiO,
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Figure 4.1 The cubic ABOs structure (a) unit cell and (b) octahedra framework.



Srli0; (STO)

Incipient ferroelectric, at 105 K antiferrodistortive transition from simple cubic
Pm3m structure to tetragonal phase 14/mcm in the R-point of the Brillouin zone
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Anisotropy of permittivity and 30— 7T
splitting of the ferroelectric soft- x10%[

mode in SrTiO; below the
antiferrodistortive transition
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Factor-group analysis of the lattice vibrations and
observed modes in the STO ceramics:

Ferroelectric SM

Structural SM (doublet)

Mode frequencies
on STO ceramics

(Petzelt et al., PRB
64, 184111 (2001))
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Permittivity of STO ceramics at different frequencies and
Curie-Weiss fit
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IR Reflectivity of
STO ceramics:

Thin full lines — FTIR
data

Thick full lines — BWO
data

Full squares —
calculated from BWO
transmission

Dotted and dashed
lines — different fits
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Reduced Raman Intensity (a.u.)
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Unpolarized Raman spectra of STO ceramics
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FIG. 9. Temperature dependences of the Raman strengths of the
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Interpretation:

Assume existence of frozen grain-boundary dipole moment. This interface
polarization Py penetrates inside the thin slabs with the penetration

(correlation) length ¢ proportional to &£'? or wg,, ' (theory by Rychetsky and
Hudak, 1997). In the case of dimensionality d of the polarization

penetration, the average polarization is B
Poc Ppe?

Raman strength of IR modes (assuming incoherent scattering of individual
grains) is

Ip ocl_jocPf.fdocl/a)gM

Our experiment yields ¢ ~ 1.6 in a good qualitative agreement with
expectations.



Correlation between the Raman strength of forbidden IR modes
with the SM frequency: I o« wgy,"°
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Quasi-epitaxial MOCVD STO film on (0001) sapphire substrate
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Coupled mode fit of the SM frequencies in STO1 film.
w,, W4, W,— bare frequencies, full symbols - measured coupled frequencies

a, — real coupling constant between the ferroelectric SM and A,-component of
the structural SM

a, — real coupling constant between the ferroelectric SM and E-component of
the structural SM

No dielectric strength assumed for the bare structural SM doublet.
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STO1 - forbidden IR modes STO3 - polycrystalline CVD film:
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Micro-Raman spectra of STO1 and STOS films at selected temperatures.
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Figure 3.15. Real and imaginary part
of the dielectric permittivity of a STO3
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from the fit of the transmittance
spectra.
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SEM picture of STO3 film
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FIG. 13. Optical microscope (a) and AFM (b) views of a STO3
film surface, indicating the presence of cracks.



Brick-wall model of the effective dielectric response in a film with
columnar grains and possible nano-cracks along some of the grain
boundaries
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Upper and lower bound for considering the grain
boundaries and porosity (cracks):

Parallel and series capacitors:

Eeff=XpEp T X gbEgb T X 3ir€ air - (1)

—l_ - w1 1 -
Eoff #Lb&’.h +Tgb5 +TE[1I"E’311'" {2}

Grain-boundary effect neglected, only porosity p considered:

Brick-wall model:
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€ off €p € air €airf p




Coated spheres :
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Influence of the air porosity on
the effective optic mode
frequencies in SrTiO, calculated -
according to the brick-wall model
(and coated spheres model with
almost identical results) in
effective medium approximation.
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polycrystalline films can 10000,

be explained assuming
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air cracks (dominating ~ w" 1000}
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independent of
temperature. These
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TABLE II. Structural and FE soft-mode charactenistics of STO films.

Stress-  Residual Soft-mode
No. Deposition Substrate Thickness Sr/Ti  free m-plane  Cracks Grain frequency (cm™!) Ref
method (nm)  ratio lattice stress structure (in-plane component)
param. (GPa)
ap (nm) JO0K 100K 10K
1 CsD (1102)AL,0, 160 1.00 - tensile no 100 nm random 93 60 65 31
. 1.5 onentation
2 CsD (1102)Al,04 180 083 039066 tensile - (110} texture 05 71 72 28
. 09+0.1
3 PLD (1102)AlL,0, 275 - - - - (110) texture 95 63 64 17
4 MOCVD (0001)AlL Oy 290 097 039057 tensile no ~100 nm, {111} 83 45+78 22+54+91 STO1
0.7+0.1 highly onented
5 PLD (0001)AL Oy 330 - - - - - o8 - 50+100 27
6 CsD (0001)AL O, 360 1.05 039045 tensile no ~—100 nm, weak 100 63 61 STO2
. 0.40+0.05 (100} texture
7 CsD (1102)Al,04 440 0.94 - - yes ~~100 nm, 111 76 75 31
(100) texture
8 CsD (0001)AL 0, 680 096 039031 tensile yes —~—100 nm, weak 113 82 75 STO3
0.15+0.03 (100} texture
0 CsD 510, glass 70-800 - - - yes - 110 - - 29
10 PLD (001) MgO 90-1070 - - - - - 102 - - 67
11 PLD StRuO,+5:T10, 2000 - - - - - 99 68 62 25
Ceramics - - 1.00 0.39058 - no 1-2 pm 04 46 ~15 19
Crystal - - - 039059 no no no 8791 42 78+165 7.15-

~11 17,20




Conclusions about SrTiO; ceramics and films:

STO ceramics and polycrystalline films have polar grain boundaries
whose effect is revealed both in IR as well as Raman spectra as an
appearance of cubic-symmetry forbidden modes (never detected by
structural analysis) and in reduced permittivity (compared with crystals)
at low temperatures.

(Petzelt et al., PRB 64, 184111 (2001))

STO epitaxial films ((111) oriented on the (0001) sapphire substrate)
display a macroscopic ferroelectric transition probably triggered by the
structural order parameter near 120 K with the polarization in the film
plane.

Effective dielectric response of polycrystalline STO films is strongly
reduced by grain boundaries and particularly by possible nano-cracks.

(Ostapchuk et al., PRB 66, 235406 (2002))



PbZrO, (PZ)

First known
antiferroelectric with a
single 1st order phase
transition at 508 K from
RT orthorhombic
structure Pbam, Z=8, into
simple cubic Pm3m , Z=1
phase with a strong C-W
type dielectric anomaly.
Factor-group analysis (40
atoms in the unit cell, i.e.
120 vibrational degrees
of freedom):

16 Ay(R) + 12A, +
16B,4(R) + 12B,(IR) +
14B,,(R) + 18B,,(IR) +
14B;,(R) + 18 B,,(IR)

i.e. 60 Raman and 45 IR
modes are expected,
which should change to O
Raman and 3 IR modes
in the para-phase.
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The 4™ IR mode at 290 cm-'(forbidden silent F,, mode) and the strong central
mode bring evidence for the (probably polar) clusters in the para-phase.



Central mode and phonon contribution to the dielectric
response of PbZrO,
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Two dense (98% theor.
density) PZ ceramics
with different grain
structure and completely
different dielectric
response — effect of

nano-cracks PbzrO,, T=510K~T
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Anisotropic grains: BaTiO,

Phase transitions and factor-group analysis of long-wavelength phonons
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Order-disorder model for

High Temperature Tetragonal Phase

BaTiO; phase transitions
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Strong dielectric anisotropy in the
tetragonal phase of BaTiO, single-
domain single crystal (from Camlibel
et al. J. Phys. Chem. Sol. 31,1419
(1970)).
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Fig. 1. Temperature dependence of the dielectric constant

of melt-grown single-domain BaTiO; along a and ¢ axes

in the tetragonal phase. ¢, and ¢, refer to the a and ¢

axis unclamped values at 100kHz, and €, and ¢/, refer to

the a and ¢ axis clamped values at 250 MHz. The Curie
pointis T, = 133+ 2°C.



Ferroelectric soft-mode behaviour in BaTiO, crystals
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Temperature dependence of the overdamped soft-mode
component in BaTiO; .

Plotted is the equivalent Debye-relaxation frequency w,%/y which corresponds
approximately to the maxima in £"(w) spectra.
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Reflectivity
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Example of the fitted transmission spectrum of the BTO
film + sapphire substrate
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Smoothed relative transmission (with respect to the substrate) and dielectric loss
spectra of BTO3 film calculated from the fit to film transmission.
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Static permittivity of BTO films from the fit to IR transmission
(polar mode contribution to the permittivity)
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Unpolarized Raman spectra 203

of BaTiO; crystals (after Perry
and Hall 1965)

258
Rhombohedral N 177 108
Orthorhombic
Rhombohedral

150 200 250 300 350 Wavenumber (cm-1)

'__




Reduced Raman spectra of a polycrystalline BaTiO; film BTO3 and bulk
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Conclusions

e Dielectric inhomogeneities can substantially influence (mostly reduce)
the effective dielectric response, particularly in the case when the high-
permittivity component is not percolated. Physically, this is caused by the
depolarization field effects on each boundary between different dielectric
components.

e The decrease in the static dielectric response has its dynamic
counterpart in effective stiffening of the strongest modes in the ac
response (soft modes, central modes, critical dielectric relaxations).

e Ceramics can be treated as a special type of composites bulk — grain
boundary with non-percolated bulk properties.

e Ceramics with anisotropic grains can be treated as composites with
isotropic components of dielectric properties equal to those of principal
dielectric responses of anisotropic grains.

e We have not discussed the phenomena connected with non-zero
conductivity, which can produce a large variety of non-trivial and
pronounced phenomena (like giant permittivity).



