Introduction to electrets: Principles, equations, experimental techniques

Gerhard M. Sessler

Darmstadt University of Technology
Institute for Telecommunications
Merckstrasse 25, 64283 Darmstadt, Germany

g.sessler@nt.tu-darmstadt.de
Overview

Principles
Charges
Materials
Electret classes

Equations
Fields
Forces
Currents
Charge transport

Experimental techniques
Charging
Surface potential
Thermally-stimulated discharge
Dielectric measurements
Charge distribution (surface)
Charge distribution (volume)
Electret charges

- Dielectric
- Surface charges
- Space charges
- Metal electrode
- Dipolar (or displaced) charges
- Compensation charges
Energy diagram and density of states for a polymer
Electret materials

Polymers
- Fluoropolymers (PTFE, FEP)
- Polyethylene (HDPE, LDPE, XLPE)
- Polypropylene (PP)
- Polyethylene terephtalate (PET)
- Polyimide (PI)
- Polymethylmethacrylate (PMMA)
- Polyvinylidene fluoride (PVDF)
- Ethylene vinyl acetate (EVA)
- Cellular PP
- Porous PTFE

Anorganic materials
- Silicon oxide (SiO_2)
- Silicon nitride (Si_3N_4)
- Aluminum oxide (Al_2O_3)
- Glas ($\text{SiO}_2 + \text{Na, S, Se, B, ...}$)
- Photorefractive materials
 -
 -

Darmstadt University of Technology • Institute for Telecommunications
Charged or polarized dielectrics

<table>
<thead>
<tr>
<th>Category</th>
<th>Materials</th>
<th>Charge or polarization</th>
<th>Properties</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-charge electrets</td>
<td>FEP, SiO₂</td>
<td></td>
<td>0.1 - 1</td>
<td>External electric field and force</td>
</tr>
<tr>
<td>NLO materials</td>
<td>PMMA / DR₁, glasses</td>
<td></td>
<td>0.1 - 10</td>
<td>Electrooptic and NLO effects</td>
</tr>
<tr>
<td>Ferroelectric materials</td>
<td>PVDF, PZT</td>
<td></td>
<td>10 - 100</td>
<td>Piezo- and pyroelectricity</td>
</tr>
<tr>
<td>Porous or cellular electrets</td>
<td>PP, PTFE</td>
<td></td>
<td>1</td>
<td>strong longitudinal piezoelectric effect</td>
</tr>
</tbody>
</table>

Darmstadt University of Technology • Institute for Telecommunications
Overview

Principles
- Charges
- Materials
- Electret classes

Equations
- Fields
- Forces
- Currents
- Charge transport

Experimental techniques
- Charging
- Surface potential
- Thermally-stimulated discharge
- Charge distribution (surface)
- Charge distribution (volume)
Equations 1:
Fields of an electret

Surface charges only:
\[\sigma = \sigma_r + \Delta P_p \]

Volume charges only:
\[\rho(x) = \rho_r(x) + \rho_p(x) \]

External field \(E_2 \) from Eq. (2) with \(\sigma = \hat{\sigma} \)

\[E_1 = -\frac{\sigma d_2}{\varepsilon_0 (\varepsilon d_2 + d_1)} \]
(1)

\[E_2 = \frac{\sigma d_1}{\varepsilon_0 (\varepsilon d_2 + d_1)} \]
(2)

\[\hat{\sigma} = \frac{1}{d_1} \int_0^{d_1} x\rho(x)dx \]
Equations 2:
Force of an electret on an electrode

\[F = \frac{1}{2} \varepsilon_0 E_2^2 \]
Equations 3: Currents in an electret

\[E(x,t) \quad P_p(x,t) \quad i_c(x,t) \]

Current density

\[i(t) = \frac{\partial (\varepsilon_0 \varepsilon E + P_p)}{\partial t} + i_c \]

\[i_c = (\mu_+ \rho_+ + \mu_- \rho_-) E \]
Equations 4: Charge transport equations

Current Equation:
\[\varepsilon \frac{\partial E(x,t)}{\partial t} + \mu \rho_f(x,t) \cdot E(x,t) + I(x) = I_0 \] (1)

Poisson Equation:
\[\varepsilon \frac{\partial E(x,t)}{\partial t} = \rho_f(x,t) + \rho_t(x,t) \] (2)

Poisson Equation:
\[\frac{\partial \rho_t(x,t)}{\partial t} = \frac{\rho_f(x,t)}{\tau} \cdot \left[1 - \frac{\rho_t(x,t)}{\rho_m} \right] \] (3)

Parameters of Model:
- \(I(x) \): current
- \(\mu \): free-carrier mobility
- \(\tau \): free-carrier lifetime
- \(\rho_m \): trap density

\(e^- \)
Measured and calculated location of charge peak in electron-beam charged FEP (Sessler 2004)
Overview

Principles
Charges
Materials
Electret classes

Equations
Fields
Forces
Currents
Charge transport

Experimental techniques
Charging
Surface potential
Thermally-stimulated discharge
Dielectric measurements
Charge distribution (surface)
Charge distribution (volume)
Charging methods

CORONA

ELECTRON BEAM (Vacuum)

THERMAL

surface charge (and polarization)

volume or surface charges and polarization

surface and volume charges and/or polarization

~10kV

~200V

Darmstadt University of Technology • Institute for Telecommunications
Surface potential measurement

- Determination of charge stability of different electret materials by isothermal discharging at elevated temperatures

Darmstadt University of Technology • Institute for Telecommunications
Thermally-stimulated discharge (TSD)

Heating chamber

Linear temperature increase

Separation of surface and volume traps
Activation energies
Trap densities

Darmstadt University of Technology • Institute for Telecommunications
Measurement of activation energy A: Initial-rise-method

\[
\frac{d(\ln i)}{d\left(\frac{1}{T}\right)} = -\frac{A}{k}
\]
TSD for electron beam charged FEP
(v. Seggern 1981)
Overview

Principles
Charges
Materials
Electret classes

Equations
Fields
Forces
Currents
Charge transport

Experimental techniques
Charging
Surface potential
Thermally stimulated discharge

Charge distribution (surface)
Charge distribution (volume)
Kelvin probe force microscope (KFM)
(Jacobs et al 1997)

Measures lateral potential distribution
KFM images of charge distribution on PMMA
(Jacobs et al 2001)
Thermal pulse method
(Collins 1975)

\[
\frac{\bar{r}}{d} = \frac{V(t_2)}{V(t_1)}
\]

![Diagram of the thermal pulse method](image)

Darmstadt University of Technology • Institute for Telecommunications
Thermal wave method
(Bauer 1996)

Measures charge distribution close to surface

\[
penetration\ depth \quad \frac{1}{k} = \sqrt{\frac{2D}{\omega}}
\]
Laser-Induced Pressure Pulse (LIPP) method

\[I(t) \propto (\gamma + 1) \left(\rho - \frac{dP}{dx} \right) - \frac{de}{dx}, \quad x = ct \]
Charge distribution in e-beam irradiated FEP
(Sessler et al 1983)
Evolution of charge distribution in LDPE measured with Pulsed ElectroAcoustic (PEA) method (Hozumi et al 1998)
CV-method for measuring charge centroid location

- Electrostatic Voltmeter (field compensation principle)
- Capacitance - Voltage measurements

Measures location of charge centroid and total charge

Darmstadt University of Technology • Institute for Telecommunications
Charge drift in double layers of SiO$_2$ (300 nm) and Si$_3$N$_4$ (150 nm) (Zhang et al 2002)

[Graph showing the normalized units of surface potential, mean charge depth, and integrated charge density as a function of annealing time at 400°C.]
Scanning Electron Microscope (SEM) method
SEM pictures of cross section of charged cellular PP
(Hillenbrand et al 2000)
Summary:
New aspects of electret research

Electret materials
- NLO materials
- Cellular polymers
- Tailored polymers
- Silicon materials

Theoretical approaches
- Charge transport models with dispersive transport
- Generation-recombination models
- Radiation effects

Experimental methods
- Pressure pulse and thermal methods
- Atomic force microscopy
- Scanning electron microscopy
- CV-method
- Dielectric method

Better understanding of
- Charging and charge transport in irradiated polymers, cellular polymers, etc.