Introduction to electrets: Principles, equations, experimental techniques

Gerhard M. Sessler

Darmstadt University of Technology Institute for Telecommunications Merckstrasse 25, 64283 Darmstadt, Germany

<u>g.sessler@nt.tu-darmstadt.de</u>

Overview

Principles

Charges Materials Electret classes

Equations

Fields Forces Currents Charge transport

Experimental techniques

Charging Surface potential Thermally-stimulated discharge Dielectric measurements Charge distribution (surface) Charge distribution (volume)

Electret charges

Energy diagram and density of states for a polymer

Electret materials

Polymers

Fluoropolymers (PTFE, FEP) Polyethylene (HDPE, LDPE, XLPE) Polypropylene (PP) Polyethylene terephtalate (PET) Polyimid (PI) Polymethylmethacrylate (PMMA) Polyvinylidenefluoride (PVDF) Ethylene vinyl acetate (EVA)

Anorganic materials

Silicon oxide (SiO_2) Silicon nitride (Si_3N_4) Aluminum oxide (Al_2O_3) Glas $(SiO_2 + Na, S, Se, B, ...)$ Photorefractive materials

- - •

•

•

Cellular and porous polymers Cellular PP

Porous PTFE

Charged or polarized dielectrics

Category	Materials	Charge or polarization		Properties	Applications
		Geometry	Density [mC/m²]		
Real-charge electrets	FEP, SiO ₂		0.1 - 1	External electric field and force	Electret microphones, head- phones, air filters, dosimeters, advanced engineering material.
NLO materials	PMMA / DR1, glasses		0.1 - 10	Electrooptic and NLO effects	EO switch, modulator, polarization converter, SHG - devices.
Ferroelectric materials	PVDF, PZT		10 - 100	Piezo- and pyroelectricity	Microphones, Hydrophones, accelerometers, infrared detectors, pyroelectric sensors, night-vision devices, actuators.
porous or cellular electrets	PP, PTFE	000	1	strong Iongitudinal piezoelectric effect	Loudspeakers, ultrasonic transducers, electromechanical transducers, hydrophones.

Overview

Principles

Charges Materials Electret classes

Equations

Fields Forces Currents Charge transport

Experimental techniques

Charging Surface potential Thermally-stimulated discharge Charge distribution (surface) Charge distribution (volume)

Equations 1: Fields of an electret

Surface charges only:

$$\sigma = \sigma_{\rm r} + \Delta P_{\rm P}$$

$$\rho(x) = \rho_{\rm r}(x) + \rho_{\rm P}(x)$$

$$\hat{\sigma} = \frac{1}{d_1} \int_{0}^{d_1} x \rho(x) dx$$

External field E_2 from Eq. (2) with $\sigma = \hat{\sigma}$

$$E_1 = \frac{\varepsilon_0 (\varepsilon d_2 + d_1)}{\varepsilon_0 (\varepsilon d_2 + d_1)} \quad (1)$$

$$E_2 = \frac{\sigma d_1}{\varepsilon_0 (\varepsilon d_2 + d_1)} \quad (2)$$

 σd_2

(1)

 \boldsymbol{F}

Equations 2: Force of an electret on an electrode

$$E_2$$
 E_1

$$F = \frac{1}{2}\varepsilon_0 E_2^2$$

Equations 3: Currents in an electret

$$E(x,t)$$
 $P_{\rm p}(x,t)$ $i_{\rm c}(x,t)$

Current density

$$i(t) = \frac{\partial (\varepsilon_0 \varepsilon E + P_p)}{\partial t} + i_c$$
$$i_c = (\mu_+ \rho_+ + \mu_- \rho_-)E$$

Equations 4: Charge transport equations

e

CB

Trap level

 $ho_{
m f}/ au$

 I_0

I(x)

 $ho_{
m f}$

 $\rho_{\rm t}$

Current Equation:

$$\varepsilon \frac{\partial E(x,t)}{\partial t} + \mu \rho_{\rm f}(x,t) \cdot E(x,t) + I(x) = I_0 \quad (1)$$

Poisson Equation:

$$\varepsilon \frac{\partial E(x,t)}{\partial t} = \rho_{\rm f}(x,t) + \rho_{\rm t}(x,t) \tag{2}$$

Poisson Equation:

$$\frac{\partial \rho_{t}(x,t)}{\partial t} = \frac{\rho_{f}(x,t)}{\tau} \cdot \left[1 - \frac{\rho_{t}(x,t)}{\rho_{m}}\right]$$

Parameters of Model:

I(x) : current	μ : free-carrier mobility
au: free-carrier lifetime	$ ho_{\rm m}$: trap density

Darmstadt University of Technology • Institute for Telecommunications

(3)

Measured and calculated location of charge peak in electron-beam charged FEP (Sessler 2004)

Overview

Principles

Charges Materials Electret classes

Equations

Fields Forces Currents Charge transport

Experimental techniques

Charging Surface potential Thermally-stimulated discharge Dielectric measurements

Charge distribution (surface) Charge distribution (volume)

Charging methods

Surface potential measurement

Thermally-stimulated discharge (TSD)

Heating chamber

Linear temperature increase

Separation of surface and volume traps Activation energies Trap densities

Measurement of activation energy A: Initial-rise-method

TSD for electron beam charged FEP (v. Seggern 1981)

Overview

Principles

Charges Materials Electret classes

Equations

Fields Forces Currents Charge transport

Experimental techniques

Charging Surface potential Thermally stimulated discharge Charge distribution (surface) Charge distribution (volume)

Kelvin probe force microscope (KFM) (Jacobs et al 1997)

Measures lateral potential distribution

KFM images of charge distribution on PMMA (Jacobs et al 2001)

Thermal pulse method (Collins 1975)

Thermal wave method (Bauer 1996)

penetration depth $1/k = \sqrt{2D/\omega}$

Measures charge distribution close to surface

Laser-Induced Pressure Pulse (LIPP) method

$$I(t) \propto (\gamma + 1) \left(\rho - \frac{dP}{dx}\right) - \frac{de}{dx}, \quad x = Ct$$

Charge distribution in e-beam irradiated FEP (Sessler et al 1983)

Evolution of charge distribution in LDPE measured with Pulsed ElectroAcoustic (PEA) method (Hozumi et al 1998)

CV-method for measuring charge centroid location

Electrostatic Voltmeter (field compensation principle) Capacitance - Voltage measurements

Measures location of charge centroid and total charge

Charge drift in double layers of SiO₂ (300 nm) and Si₃N₄ (150 nm) (Zhang et al 2002)

Scanning Electron Microscope (SEM) method

SEM pictures of cross section of charged cellular PP (Hillenbrand et al 2000)

Summary: New aspects of electret research

Electret materials

NLO materials Cellular polymers Tailored polymers Silicon materials

Theoretical approaches

Charge transport models with dispersive transport generation-recombination models radiation effects

Experimental methods

Pressure pulse and thermal methods Atomic force microscopy Scanning electron microscopy CV-method Dielectric method

Better understanding of

Charging and charge transport in irradiated polymers, cellular polymers, etc.

