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1. Introduction

Introduction

Motivation of this lecture:

1. new materials:

• clay-based "nano"composites, other materials 
containing "nanofillers",

• nano-structured materials, e.g. alignment layers, 
nano-porous materials

2. ongoing miniaturization of devices and structures, 
lithographic structurizing below 100 nm !

3. new insights in physics of macromolecules and the 
glass transition 
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2. Phenomenology of the glass transition
The glass transition:

2nd route from liquid to solid state by avoiding crystallization

Example:
Crystallization of a supercooled liquid (sodiumacetate/water)

V

TTgTK Tm

glass

crystal

liquidsupercooled 
liquid

Tg < T < Tm:

Viscosity and structural 
relaxation time τ obey Vogel-
Fulcher-Tammann (VFT) law:

( ) exp
( )

V

V

E
T

k T T
τ τ∞

 
= − − 

Phenomenology of the glass transition
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Rationalization of VFT law:
Temperature dependent length scale ξ=ξ(T) of cooperatively 
rearranging regions (CRR) (Adam and Gibbs, 1965)

ξ

CRR's in confined 
geometry:
deviations of ξ(T) from bulk 
behaviour likely

àà finite size effects
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Phenomenology of the glass transition
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In polymers:

Additional contribution of chain connectivity expected

cooperative motions of a few monomer units 
(polymer segments) at T>Tg

t=t0 t=t0+τ

Dynamic glass transition

Phenomenology of the glass transition
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more or less pronounced curvature of η(1/T) dependence

classification into fragile and strong glass formers

Dynamic glass transition

Phenomenology of the glass transition

fragility: nothing to do with 
mechanical "fragile" behaviour

strong

fragile

fragility or steepness index:

linked to VFT parameters
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( )vv fexp1 ∝τ1. Free volume approach

• assumption of an activation volume (∝ free volume) which 
links dynamics to specific volume/density

• Lowering the temperature results in progressive slow-down 
in relaxation rate due to faster decrease in the free volume 
vf à effective barrier changes with T

Free volume concept:
- rationalises the VFT behaviour, works reasonably well for many 

polymers  
- fails to predict the pressure dependence τ(p) and Tg(p) 

Dynamic glass transition – theoretical concepts 

Phenomenology of the glass transition
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TTS
C

As
C

AG ⋅
+=

)(
)/log(τ

2. Adams-Gibbs theory

• assumption of cooperatively rearranging regions (CRR) 

• links transition probability W ∝ τ-1 to temperature 
dependent configurational entropy Sc(T):

Sc(T) =  Smelt – Scrystal

• AG theory introduces cooperativity

• Unfortunately no predictions about length 
scale of CRRs

Phenomenology of the glass transition

Dynamic glass transition – theoretical concepts 
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- allows determination of length scale of cooperativity ξ(T) 
from Cp(T) steps at Tg

nmT
TT

T g 32)(,
)(

1
)(

32
0

−≈
−

∝ ξξ

3. Fluctuation approach (Donth)

How does CRR look like ?

n(z,
L)

α(z,
L)

L

classical picture                           string-like CRR from simulations

Phenomenology of the glass transition

Dynamic glass transition – theoretical concepts 
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Homologue series of alcoholes

Dynamic glass transition – simple liquids
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Phenomenology of the glass transition
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Phenomenology of the glass transition
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Fragility classification

Phenomenology of the glass transition

m

112.1sorbitol

97.2xylitol
79.9threitol 

55.5glycerol

Interpretation of fragility/steepness index:

intermolecular

intramolecula  

 

r

cooperativity
cooperati

m
vity

∝

alcoholes: H-bonding glass formers
number of OH-groups/molecule varies from 3 à 6
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First: simple glass formers (low molecular mass)

Phenomenology of the glass transition

Dynamic glass transition – effect of confinement

1st example:
Confining ethylene glycol (EG) in zeolites 

[Huwe et al., PRL 1999]
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Dynamic glass transition – effect of confinement

Study of glass transition of ethylene glycol (EG) in different 
confinement

Confined geometry provided by various zeolites having 
channels or cages of different shape and size
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Dynamic glass transition – effect of confinement

Phenomenology of the glass transition
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Interpretation of results from ethylene glycol/zeolite systems:

Dynamic glass transition – effect of confinement

Phenomenology of the glass transition

àà Minimum number of nearest neighbors of 6 required to 
establish VFT-type dynamics



18

formation of nm-sized droplets of EG due to physical network formation 
between EG/starch

à 3-dim. Confinement
J. Phys. Chem B, Smits et al., 2001

freshly mixed annealed sample

α-relaxation of ethylene glycol (EG) in Amylopectine/ethyleneglycol  
(AP/EG) mixtures:

2nd example:

Dynamic glass transition – effect of confinement

Phenomenology of the glass transition
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2 separate glass transitions of EG 
and AP/EG phase

α (AP+EG)

α (EG)

"
derivε
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Phenomenology of the glass transition

Dynamic glass transition – effect of confinement 
αα-relaxation of amylopectine/ethyleneglycol mixtures:
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Clear transition from VFT behaviour àà Arrhenius law

α-process of EG senses size 
reduction from "bulk" droplets to 
nm-sized EG clusters

evolution of structure 

à time-dependent confinement
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Phenomenology of the glass transition

Dynamic glass transition – effect of confinement 
αα-relaxation of amylopectine/ethyleneglycol mixtures:
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Mesogenic nitrostilbene diols of various methylene spacer lengths 
(LC monomers):

Phase behaviour

n

SB phase

8a (n=2)

8b (n=4)

8c (n=6) 

8d (n=11)

isotropic

(nematic)

SA

SE (SX)

T

Dynamic glass transition – effect of confinement

Phenomenology of the glass transition

3rd example:
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Dielectric spectrum of C6-compound:
Relaxation map

λ2
λ1

SAà SX

α

• 2 mesogenic relaxations (in SA state)
• 2 phase transitions 
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Dynamic glass transition – effect of confinement

Phenomenology of the glass transition
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Coexistence of glass forming (liquid) phase and crystalline 
mesogenic order

• Analogy to H-bonded liquids ?

 

OH 

smectic 
layer 
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Phenomenology of the glass transition
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High frequency relaxation rate: single molecule behaviour

rotational degrees of 
freedom:

difference in high frequency relaxation rate by < 1 decade plausible

1,3-
propanediol

1,3-PD with attached 
alkoxy-spacer 

Dynamic glass transition – effect of confinement

Phenomenology of the glass transition
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Low frequency relaxation behaviour

Splitting of αα-process for short spacers lengths (n ≤≤ 6)

α
SAà SX transition

λ2
λ1

α
SAà SX transition

8c (C6-spacer) 8d (C11-spacer) 

Dynamic glass transition – effect of confinement

Phenomenology of the glass transition
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a) C2-spacer b) C4-spacer
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Phenomenology of the glass transition

Fit-results: peak relaxation time τταα – details
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Dynamic glass transition – effect of confinement

Fit-results: peak relaxation time τταα – details

Phenomenology of the glass transition
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Lliq(n) ~ ξξ

ξξ(fct) ~ Lliq(n)

ξ(Τ) ξΤ(Τ)
ξΝ

Physical meaning of crossover 
frequency:

Lliq(n) [nm]:

2.5

1.5

Phenomenology of the glass transition
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• ultra-thin polymer films

• clay-based nano-
composites

• semicrystalline polymers

• liquid-crystalline 
polymers

• nano-structured 
materials

porous silica

MCM-41

Interference between intrinsic length scales of molecular 
dynamics and geometric dimensions expected

Polymer chains in nm-scale geometry

3. Polymer chains in nm-scale geometry
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chain relaxation
(Rouse, Reptation)

segmental motions
(dynamic glass transition)

local motions, e.g. 
simple bond rotations

increasing relaxation time, characteristic length scale

< 1 nm 2 < ξ < 10 nm 10 < ξ < 200 nm

Length scales of motions in polymers 

Polymer chains in nm-scale geometry



31Polymer chains in nm-scale geometry

Length scales of motions in polymers 

There are more length scales:

§ reptation model: tube dimensions and there related 

relaxation times τd, τe, τr (lecture Prof. Kimmich)

§ mean distance between entanglements (dependent on 

Mc and degree of chain coiling



32Polymer chains in nm-scale geometry

Study of dynamics in confinement:

Successively break-down of molecular motions related to intrinsic length 
scales > L = imposed length of confined geometry

Length scales of motions in polymers 

Ideally: Reduction of L only affects the larger processes 

REE

ξα

Rentanglement

ξβ
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4. Glass transitions effects in ultra-thin 
polymer films

• Ultrathin polymer films: basic geometries and preparation

• 10 years study of Tg-effects on ultrathin polymer films: typical 
results

• What remains to be answered? 

• How can Dielectric Relaxation Spectroscopy (DRS) contribute 
to solve the remaining questions?

Tg-effects on ultra-thin polymer films

In this section:
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Ultrathin polymer films: thickness L < 100nm

supported films (polymer on substrate):

capping layer

freely-standing films:

2 basic configurations

Tg-effects on ultra-thin polymer films
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Ultrathin polymer films – how to prepare them ?

Tg-effects on ultra-thin polymer films

• Spin coating
• Physical vapour deposition 
• Electro spraying 
• Water transfer technique

Four key stages: 
1. fluid dispense 
2. spin-up
3. stable fluid outflow
4. evaporation dominated drying.
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Ultrathin polymer films – preparation (2)

Tg-effects on ultra-thin polymer films

2. spin-up

1. fluid dispense

3. stable fluid outflow

4. evaporation dominated drying. ( )0 2
0

3

2 1f

e
h c

c
η

ρω

 
=   − 

final thickness

vitrification
thickness reduction
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Electro-spraying:

(semi)dilute polymer solution

substrate
+

+
+

+

charged molecule
in droplet 

nozzle

polymer 
molecules

+
+

+

+

electrical field

drying

à deposition of unentangled single polymer molecules possible

Ultrathin polymer films – preparation (3)

Tg-effects on ultra-thin polymer films
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Tg-effects on ultra-thin polymer films

First results:

Tg-effects on ultra-thin polymer films
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Tg-effects on ultra-thin polymer films

Tg-effects on ultra-thin polymer films

Different techniques:
• Ellipsometry (refraction index, thickness)
• x-ray reflectivity (volume expansivity)
• PALS (free volume expansivity)
• Brillouin spectroscopy

In the following: Tg-effects on
• different polymers: PS, PMMA
• different geometries: supported, freely-standing films
• different molecular mass
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Supported PS films

PS supported on silicon

From Lecture R. Jones

No Mw dependence 
between 120k and 2M

Different techniques:
• Ellipsometry
• Micro-DSC
• Dielectric Spectroscopy
• PALS

Substrates & conditions:
• HF-etched Si, vacuum
• HF etched Si, air
• SiOx
• Hexamethyl disilazane layer on 

silicon
pretty universal behaviour

Tg-effects on ultra-thin polymer films
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Forrest & Mattsson, 
PRE 61, R53 (2000)]

PS freely-standing, Mw < 347k

strong Mw dependence, but simple 
scaling:

Tg-effects on ultra-thin polymer films

Supported PS films vs. freely-standing films

freely-standing films behave like 
supported films with half the 
thickness  à 2 free surfaces

high Mw (> 347k)
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Three possible scenarios of changed segmental 
mobility in freely-standing or supported/capped 
polymer films:

enhanced segmental 
mobility due to finite 
size-effect

bulk dynamics

Surface regions of 
reduced mobility
e.g. due to specific 
interactions  

bulk dynamics

additional increase of the 
mobility over the entire 
thickness due to chain 
confinement for L < REE

L ~ REEL > REE

REE L

L << REE

or

L ~ REEL > REE

REE L

L << REE

or

L << REE

or

Tg-effects on ultra-thin polymer films
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Some models that describe the Tg-depression in 
low-Mw PS films

Tg

bulk

Tg

surf

Tg

surf

ξ( )T

ξ( )T

• near-surface cooperative motion
[Forrest & Mattson, PRE 61, R53 (2000)]

segregation of chain ends to free surfaces
[Mayes, Macro. 27, 3114 (1994)]
[Tanaka et al., Macro. 29, 3040 (1996)]

coupling to capillary modes
[Herminghaus et al., EPJE 5, 531 (2001)]
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Implications from 2-layer model

Tg

bulk

Tg

surf

Tg

surf

ξ( )T

ξ( )T

liquid like surface layer

• broadening of glass transition 
expected - confirmed

• Expansivity experiments 
average over mobility profile à
film with 2 free surfaces has 
larger Tg-reduction - confirmed

bulk-like layer

Question 1: what is actual mobility profile?
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Supported PMMA films

PMMA supported on Si and Au

Tg-effects on ultra-thin polymer films

• specific interactions (H-bonding) 
of PMMA with substrate

• also influence of tacticity on Tg-
up/down shift !
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Substrate effects important 
for PMMA
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Comparison freely-standing PMMA – PS films

nearly equivalent 
molecular weights

Tg-effects on ultra-thin polymer films
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Question 2:

Why do PS and PMMA behave so differently?
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Why is Tg of PS more sensitive to thickness 
reduction than in PMMA ?

§ similar Tg

§ similar fragility index

Both PS and PMMA have

what else controls thickness sensitivity of Tg?

bulk PS & PMMA
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fragility index ∝ Ea,local(T=Tg)
= measure for curvature of 
VFT curve
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One possible answer:
In thin films, fragility might change differently for of PMMA 
and PS

Tg-effects on ultra-thin polymer films

1/T

-logτ
thin PMMA film

thin PS film Is there any 
evidence for this 
scenario?

broadband dynamic studies required  àà DRS

bulk PS, PMMA
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5. Dielectric relaxations in ultra-thin 
polymer films – basic issues

DRS :  introduction

+

+

+
_

+ _

No 
field

-
E

molecular polarisability α

orientational atomic electronic

αaαo αe

LENP α0=
N0: concentration of dipoles

EL: local electric field

Loae ENP )(0 ααα ++=
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Relaxation phenomena             IR      VIS/UV

αaαe

αo

polar molecules: 
orientational polarisability

§ αo depends on T und E
§ valid for weak fields
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Langevin function

Dielectric relaxation spectroscopy – introduction

DRS :  introduction
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Dielectric relaxation spectroscopy – introduction

From microscopic to macroscopic quantities:
Clausius-Mosotti relation









++=

+
−=

kT
NM

P ae
AW

M 332
1 2

0

µ
αα

ερε
ε

MW: molecular weight
ρ: density
NA: Avogadro’s number
ε: dielectric constant

For polymers and other complex dielectrics:
Relation by Onsager and Fröhlich

kT
gNM

n
nn Aw
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22
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9)2(
)2)((

ε
µ

ρε
εε =

+
+−

new: 
g: dipole-dipole 

correlation factor

∞= ε2n
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Dielectric relaxation spectroscopy – introduction

DRS :  introduction

Dielectric relaxation:
Characteristic time to attain thermal equilibrium =  τ

0 1 2 3 4 5 6 7 8

time
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

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 −=

τ
t

PtP exp)( 0

τ=1

thermal agitation ac field, frequency ω: 

complex dielectric “constant”

)(")()( ' ωεωεωε i−=∗

Real part Imaginary part

storage term loss term

à actually 2 spectra
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Dielectric relaxation spectroscopy – introduction

DRS :  introduction

Relaxation functions:

Single relaxation time process
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Distribution in relaxation times 
à Havriliak-Negami (HN) function:
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à 2 independent shape parameters

• relaxation strength ∆ε
• mean relaxation time τ
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m= a n= -ab



55

drawbacks:
freely standing geometry hard to 

achieve
DRS restricted to polar polymers 

Fukao, first studies
Hartmann, Kremers group 
Wübbenhorst (coop. with Dutcher)

PS, PVAC, 

PMMA, PI...

Sharp, Forrest 2002

?

Al

Al

polymer 2 air gaps

1 air gap

DRS on ultrathin films

advantages:
+ sensitivity (C*) increases 

with 1/L
+ very wide dynamic range 
+ robust sample preparation

DRS on ultra-thin films



56

à well defined DRS samples with a 
thickness as low as 4nm without 
shorts !

optical microscopy & AFM image

4nm àà 10-15 atomic layers !

 

Top electrode 

Polymer film 

Lower electrode 

Substrate 

 

b 

d 

a 

c 

Preparation of ultrathin film "capacitors"

1. spincoating of very dilute solutions on Al-coated glass 
substrates. 

2. evaporation of patterned 
top electrode 

DRS on ultra-thin films
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Why does it work?

1. excellent film forming
behaviour of polymers 
à smooth and close 
polymer films

2. "self-healing" in case of 
local shorts

Sometimes: It does not work
permanently shorted samples
samples with high parasitary losses

20 nm

1000 nm

Al coated glass substrate

smooth surface of 
PMMA on Al, height-
range 10nm

V

DRS on ultra-thin films
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T [°C]T [°C]f [Hz] f [Hz]

loss ε"loss ε"

Origin of parasitary losses: tunnel junctions

‘proper’ spectrum of i-PMMA i-PMMA spectra with weakly T-
dependend low-frequency loss

possible tunnel junctions

unusual loss

DRS on ultra-thin films
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findings and models

5. Dielectric relaxations in ultra-thin polymer films – basic 

issues

6. DRS results on ultra-thin PMMA films

7. Liquid-like surface mobility in supported PS-films

8. Summary and Future work
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6. DRS results on ultra-thin PMMA films
Poly(methyl methacrylate), PMMA

dielectric ββ-process
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DRS on ultra-thin PMMA films
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"Bulk" PMMA – large  influence of stereoregularity

DRS on ultra-thin PMMA films
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Determination of the glass transition temperature by local 
activation energy analysis: 
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ε ω
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"Bulk" dynamics of stereoregular PMMA

DRS on ultra-thin PMMA films

Maximum in Eapp at T where VFT-law breaks down
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α
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DRS on ultra-thin PMMA films



64

-1 0 1 2 3 4 5
log(frequency [Hz])

0.1

1.0

2.0

ε"

6.4 nm
7.8 nm
14.2 nm
36.7 nm
48.1 nm
58.5 nm

i-PMMA, loss spectrum
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Thickness effects on the αα-relaxation

DRS on ultra-thin PMMA films

§ Broadening in α-
process

§ Reduction in relaxation 
strength

§ Shift of relaxation 
spectrum
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DRS on ultra-thin PMMA films

Clear broadening of α-
process at low & high 
temperature (frequency)

general broadening 
favours existence of 
mobility profile ττ(L)

Thickness effects on the αα-relaxation
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àà Shift of αα-peak both at low and high frequencies
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DRS on ultra-thin PMMA films
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Thickness effects on the αα-relaxation



67

Determination of Tg from VFT-fit of αα-process
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entire speed-up of glass transition dynamics

Tg(L):

DRS on ultra-thin PMMA films

àSame thickness 
dependence of T(αα) at 
very different 
frequencies:
0.01, 10, 104 Hz
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Determination of Tg from peak in local activation 
energy Ea(T):
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DRS on ultra-thin PMMA films
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2-stage behaviour in 
relaxation strength of 
cooperative dynamics

à 2 characteristic length 
scales involved
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L = 30 - 40nm close to REE

àà effect of chain 
confinement

DRS on ultra-thin PMMA films

αα-process of i-PMMA: relaxation strength ∆ε∆εαα(L)
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αα-process of i-PMMA: relaxation strength ∆ε∆εαα(L)

2-stage behaviour in 
relaxation strength of 
cooperative dynamics

à 2 characteristic length 
scales involved
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finite size effect

Extrapolation of ∆ε∆εαα to zero    àà ξξ ~ 5nm

DRS on ultra-thin PMMA films
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More evidence for critical length of αα-process from 
syndiotactic PMMA

L = 4 nm

L = 9 nmL = 79 nm

DRS on ultra-thin PMMA films

L = 4 nm

αα- peak vanishes 
for L = 4 nm !
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PS-PMMA-PS Tri-layer samples

• So far, DRS experiments are potentially sensitive to (specific) 
surface interactions between aluminium (oxide) and polymer chains

• Better: freely standing film geometry

i-PMMA

• Alternatively, replacement of metal-polymer interface by polymer-
polymer interface  à 3-layer film PS | PMMA | PS

PMMA/PS - interfacespreparation:

PS-layer

spin-coating

i-PMMA

à floating PMMA

PS-layer

à floating PS-2 à Al-deposition

DRS on ultra-thin PMMA films
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Dielectric response dominated by 
PMMA (PS almost apolar)

PS-PMMA-PS Tri-layer samples (2)

expected mobility profile:

PMMA/PS - interfaces

x

Tg(x)

PMMA/PS - interfaces

56°C

95°C

DRS on ultra-thin PMMA films
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PS-PMMA-PS Tri-layer samples
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Shifts in the relaxation time τταα – Tg-effects

- slight up-shift in Tg in tri-layer 
films instead of Tg-depressions

- higher Tg of interdiffusion layer
PS/PMMA likely dominates the 
average glass transition 
dynamics for ultra-thin films

DRS on ultra-thin PMMA films
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Now discussion of ββ-process in PMMA
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2 diff. molecular weights:
• 145×103 g/mol
• 880×103 g/mol

§ Below critical thickness 
Lc ~ 1 – 1.5 REE:

àMaximum of β-peak 
shifts to lower T 

§ Continuous decrease of 
peak intensity toward 
lower L

DRS on ultra-thin PMMA films
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Again, isotactic PMMA, ββ-process

§ Below critical thickness 
Lc ~ 1 – 1.5 REE:

§ Continuous decrease of 
∆εβ toward lower L

DRS on ultra-thin PMMA films
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ββ-process, relaxation time at 35°°C

DRS on ultra-thin PMMA films

àspeed-up of local 
dynamics in very thin films

àscaling with reduced 
thickness L/REE

h > REE

REE h

h ~ REE
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Correlation between relaxation strength and 
relaxation rate
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bulk behaviour

simultaneous changes of ∆ε∆εββ

and log(ττββ):

Reduction of amplitude (mean 
jump angle) of molecular 
fluctuation à speed-up of 
dynamics

Reason:

changes in the conformation 
statistics induced by chain 
confinement

DRS on ultra-thin PMMA films
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ββ-process, activation parameters

DRS on ultra-thin PMMA films
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Starkweather analysis: activation entropy
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activation entropy

à dominant role of the activation entropy in thickness effects on 
the β-process. 

à Separation of activation 
entropy from Ea as a measure for 
degree of cooperativity

ββ-process, quantifying cooperativity

DRS on ultra-thin PMMA films
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A refined analysis of the dielectric ββ-process
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• curved τβ(T) dependence for ultra-thin films 
• superposition of two close relaxation modes likely which cross at T ~ 

30°C
• in line with TSD experiments suggesting two distinct  β-modes in PMMA 

ββ2: cooperative 
process 
involving the 
backbone

ββ1: noncooperative 
process

Chain confinement (L< REE):

Suppression of (large scale) cooperative component of 
dielectric ββ-process

DRS on ultra-thin PMMA films
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- DRS study on PMMA reveales two mechanisms that affect the glass 
transition temperature in supported PMMA-films:

- chain confinement which speeds-up the β-process together 
with the α-process

- a "true" finite size effect which is related to the cooperativity 
length of the glass transition

Summary dielectric results on PMMA

- DRS results revealed three characteristic length scales:

L< REE ~ 25 nm: τβ, ∆εβ, Tg

4nm < ξα < 5 nm: α-process vanishes

ξβ < 4 nm: β-process persists

DRS on ultra-thin PMMA films
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ββ-process of PMMA: further considerations

changes in ββ-process ßàßà changes in conformational statistics

What does the ββ-process senses?

Polymer theory: 

hardly any change in conformational and orientational statistics
expected as long L > Lp (persistence length)

However, hold only for thermal equilibrium!

DRS on ultra-thin PMMA films

stretching of polymer chains ààincrease of trans conformations

coiling of chains  àà increase of gauche conformations



84

ββ-process of PMMA: further considerations

àà additional experiments required to establish relation between 
dielectric β-relaxation and conformational statistics

chain confinement

variation of 
solvent quality

macroscopic 
stretching

?

Very recent experiments on i-PMMA/cloisite nanocomposites

DRS on ultra-thin PMMA films

trans/gauche ratio
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i-PMMA/clay nanocomposites

• Solutions of i-PMMA and cloisite in chloroform

• varying content of clay: 0 – 35wt%

• spin-coating of solutions, envisaged film thickness ~ 250 nm

c(clay) in %

L

viscosity increase

expected behaviour

DRS on ultra-thin PMMA films
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i-PMMA/clay nanocomposites

DRS results:

• slow down of β-process at thinnest films
• transition in activation energy

activation energy Eβ vs. clay content
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conformational transition ?

conformational transition
induced by shear induced 
alignment of clay platelets

DRS on ultra-thin PMMA films
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i-PMMA/clay nanocomposites

Activation entropy:

β-process makes transition from increasingly cooperative
relaxation to non-cooperative relaxation

zero-entropy activation energy vs. clay content
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DRS on ultra-thin PMMA films
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i-PMMA/clay nanocomposites

Conclusions:
• chain stretching causes increase of ∆Sβ (gauche à trans)
• thin film confinement decreases ∆Sβ (trans à gauche)

activation entropy vs. clay content
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DRS on ultra-thin PMMA films
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i-PMMA/clay nanocomposites

What do we really see?

stretching of polymer chains increase of trans conf.

coiling of chains increase of gauche conf.

Reason: 

drying of spin-coated polymer films in vitrified state 
causes chain collapse

DRS on ultra-thin PMMA films
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Q1: mobility profile in thin PMMA films
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DRS results on ultrathin PMMA films 
(6.4 < L < 100 nm):

• continuous α-peak broadening 
implies gradual enhancement of 
mobility towards film surface

• no hint for sharp 2-layer scenario  

Tg

bulk
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surf

Tg
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ξ( )T
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Back to initial questions

DRS on ultra-thin PMMA films
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Back to initial questions

Our initial assumption:

1/T

-logτ

PMMA
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 α-peak in T-domain

DRS results on ultrathin PMMA films 
(>6.4nm)

Q2: "fragility" hypothesis:

For PMMA, no substantial change in fragility found

DRS on ultra-thin PS films
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What happens with PS?

1/T

log(f)

Fukao, 2000

Results from Fukao apparently 
confirm decrease in fragility for 
ultra-thin PS films

Problem:
relaxation data originate from 
two different techniques

thermal expansion spectroscopy

dielectric spectroscopy

Equivalence of dielectric relaxation data and 
volume expansion assumed !

DRS on ultra-thin PS films
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Dielectric measurements on PS thin films:
2 experiments in one:

0 50 100 150
T [°C]
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Tg,dil Kink in εε'(T) marks 
change from liquid 
expansivity to expansivity 
of the glass à Tg, dil

PS, bulk 
sample

Step in εε'(T) at T>Tg due 
to dielectric α-relaxation 

à frequency dependentLupascu, 
Wübbenhorst, 2004

• Capacitive dilatometry àà ααv(T)
• Dielectric spectroscopy àà τταα(f,T)

DRS on ultra-thin PS films
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Capacitive dilatometry on ultra-thin PS films
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• Systematic reduction of 
Tg,dil with lower film thickness

• Broadening of volumetric 
glass transition at lowest film 
thicknesses

Lupascu, 
Wübbenhorst, 2004

DRS on ultra-thin PS films
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Capacitive dilatometry on ultra-thin PS films

Tg reductions from capacitive 
dilatometry in good agreement 
with typical literature data (blue 
line)

àAl/polymer/Al sandwich 
samples behaves like films
having 1 free surface.
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Fukao's results (PRE 2000)

Asymmetric electrode system – interface between top electrode and 
polymer film mimics free surface

DRS on ultra-thin PS films
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Capacitive dilatometry on ultra-thin PS films

Larger Tg- reductions 
found for same film 
thickness than Fukao

à Tg-reductions partially 
close to values known for 
freely standing PS films

Possible reason:
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Comparison of recent own data with Fukao's results

Our Al-polymer-Al sandwich films mimics freely standing geometry to 
some extent (reduced surface roughness of lower Al-layer) 

DRS on ultra-thin PS films
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Glass transition temperature from αα-process 

Tg determination from 
relaxation time of structural 
relaxation:
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§ dielectric α-process found in PS 
films as thin as 8.7 nm

§ systematic speed-up of α-process 
towards lower L

DRS on ultra-thin PS films

no substantial changes in 
fragility !
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Glass transition temperature from αα-process 
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Increasing discrepancy between Tg(dil) and Tg(α) for thin PS films
àà decoupling of volume expansivity from structural relaxation 
as seen by DRS?

Comparison of volumetric Tg with Tg(αα)

dilatom. Tg = 61°C

Tg from α-process: 

77.3°C

PS-film 8.7 nm:

DRS on ultra-thin PS films
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PS film L=8nm: 

2nd dielectric 
process
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An additional relaxation process in PS-films with L<15 nm

Recent DRS results from ultra-thin PS films

DRS on ultra-thin PS films
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- thermally activated 
process, Ea = 71 
kJ/mol

- non-cooperative (τ∞ ~ 
10-12s
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VFT-fit, log(τ∞) = -12

direct evidence for 2-layer model (?)
ααs process most likely related to dynamics in surface layer

αs

α  

2nd dielectric process: αs

Recent DRS results from ultra-thin PS films

DRS on ultra-thin PS films
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Recent DRS results from ultra-thin PS films

New series of PS films: thickness as low as 3.7 nm

DRS on ultra-thin PS films
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Dielectric spectroscopy on ultra-thin films of PMMA and PS 
revealed

- Tg reductions due to finite size effect 

- disapperance of the α-relaxation at films below 5nm 

- Tg effects and changes in local β-relaxation due to chain 
confinement

- PMMA films: changes in the β-relaxation proof existence of 
"undersized" polymer coils in ultra-thin films

Conclusions 

DRS on ultra-thin PS films
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Conclusions (2)

There are clear differences in thin film dynamics between PS and 
PMMA:

- Apparent Tg-reductions are much larger for PS than for PMMA

- Finite size effect manifests in different way: 

- PMMA: deviation from bulk-VFT behaviour

- PS: separate relaxations related to core and surface dynamics 
à layer-like mobility profile confirmed
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