Magnetic structure and properties of a Sr_3CuIrO_6 spin chain <u>C. Schaeffler</u>,¹ A. Bauer,² C. Castleton,¹ G. Hix,¹ A. Senyshyn,³ and R. Eccleston⁴

¹Nottingham Trent University,School of Science and Technology, Nottingham, UK ²Technische Universität München, Physik-Department, Garching, Germany ³Technische Universität München, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM-II),Garching, Germany ⁴Sheffield Hallam University, Faculty of Arts, Computing, Engineering and Sciences, Sheffield, UK

We have studied the magnetic structure and properties of Sr_3CuIrO_6 as a function of temperature and field, using susceptibility (χ_{ac}), magnetisation (M), and neutron powder diffraction. Three characteristic temperatures $T_2=17$ K and $T_1=5.5$ K and $T_f \sim 5$ K were observed in the χ_{ac} data. T_1 is only detectable in the presence of an applied field perpendicular to $\langle 101 \rangle$. T_2 and T_f are present both with and without applied field but are field dependent. T_f shows strong frequency dependence indicating spin glass behavior, which is supported by magnetization data, in both M(T) and M(H). T_2 data also shows evidence of frequency-dependence indicating a glassy phase. We believe the phases above and below T_f are distinct and of different origin. No evidence of long range magnetic order was found using neutron powder diffraction.