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While new functional doped magnetic materials are developed and used in modern
nanotechnology the physics of these complex systems is object of active discussions.
The multi-scale lattice and electronic complexity from nanoscale to mesoscale in these
systems [1,2] pushes the fundamental physics of these systems beyond the solid state
physics of XX century using simple models based on single band and rigid band ap-
proximations.

Here we show that the physics of all known doped magnetic systems showing high
temperature superconductivity is characterized by a dome of Tc controlled by tuning
the chemical potential near Lifshitz transitions in strongly correlated multi orbitals
systems by adding dopants, pressure, strain, and charge density [3-6]. A major step in
the field has been the development of the theory of superconductivity of two compo-
nents scenarios [7] and in particular of the scenario with coexisting a narrow band and
a wide band near a Lifshitz transition [8,9]. The physics is getting very complex be-
cause of frustrated phase separation occurring at the Lifshitz transitions in strongly
correlated magnetic systems [10]. This very complex lattice scenario has been ob-
served by using scanning micro x-ray diffraction [2] and using the EXAFS method
[11] in cuprates single crystals [12], and iron chacogenides [13]. Finally we discuss the
emerging role of Fano resonances in p-terphenyl [9] and the complex hyperbolic space
for the percolation pathways promoting the emergence of quantum coherence at high
temperature [2].
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