Slow magnetic relaxation in the single-ion magnet $CsNd(MoO_4)_2$

 $\frac{\text{Vladimír Tkáč},^1 \text{ Alžbeta Orendáčová},^1 \text{ Róbert Tarasenko},^1 }{\text{Martin Orendáč},^1 \text{ and Alexander Feher}^1}$

¹Institute of Physics, P. J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovak Republic

The present work is devoted to the study of the magnetic relaxation in CsNd(MoO₄)₂. The absence of a phase transition to the ordered state down to 50 mK predetermines CsNd(MoO₄)₂ as the candidate for novel mononuclear lanthanide-based single-ion magnets. Nd³⁺ ions with the ground state ⁴I_{9/2} are responsible for the magnetic properties. Low-symmetry crystal field splits this state into 5 doublets with large energy separation between the ground and first excited doublet, inducing easy-axis anisotropy. AC susceptibility measurements performed in various magnetic fields (B = 0 - 5 T) and frequencies (f = 1 Hz – 1kHz) revealed rather complex field-induced slow magnetic relaxation. Temperature dependencies of the relaxation times at the different time scale extracted from Cole-Cole diagrams indicate several relaxation channels. Possible origin of the nontrivial observed relaxation phenomenon considering quantum tunnelling and nuclear degrees of freedom is discussed.

This work has been supported by VEGA grant 1/0269/17, ITMS26220120047, APVV-14-0073 and APVV-14-0078.