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Abstract

The ultrasonic attenuation and velocity variations are theoretically investigated near the Curie tempera-
ture of ferromagnetic under an application of magnetic field. The temperature, frequency and magnetic
field dependence of acoustic properties of ferromagnetic near a critical point is given. A parametric
representation is used to describe a crossover from critical to classical region far away from the critical
point. The crossover scaling functions are determined for sound attenuation coefficient and dispersion.
We compare the proposed crossover model with experimental ultrasonic data for manganese phosphide
MnP and find good agreement between theory and experiment.

Theoretical background

We consider Ising-like (n = 1) continuous order parameter on a d -dimensional elastic solid:

H = HOP + Hel + Hint, (1)

where HOP(S) is the Ginzburg-Landau part for the order parameter S(x):

HOP =

∫
ddx

[
1

2
r0S(x)2 +

1

2
(∇S)2 +

u

4
S(x)6 +

v

6
S(x)4 − hS(x)

]
(2)

Hel =
1

2

∫
ddx

{
Buii(x)2 + 2µ

[
uij(x)− 1

d
δijull (x)

]2
}

(3)

is the elastic contribution in the harmonic approximation, with uij(x) denoting the strain tensor.
The interaction Hamiltonian is given by

Hint = g

∫
ddxuii(x)S(x)2, (4)

which describes the volume magnetostriction with the coupling constant g .

• Landau-Ginzburg theory:

Only the relaxational term remains

α(ω, t, h) ∼ g 2ω2M2(t, h)χGL(t, h)2

1 + y 2
GL(ω, t, h)

(5)

h - magnetic field ω - sound frequency t - reduced temperature

χGL = (at + 3uM2 + 5vM4)−1 - susceptibility

The product M2χ2
GL determines the sound attenuation exponent α ∼ |t|−x± in the hydrodynamic

regime where ωτGL � 1. The index + refers to T > TC end − to T > TC . It is clear by a
simple inspection of Eq. (5) that x− = 1 for the mean-field behavior and x− = 3/2 for the tricritical
behavior. So, in the Landau-Ginzburg theory the effective sound attenuation exponent xeff

− in the
low-temperature phase may take an intermediate value between 1 and 3/2 depending on the value
of the ratio Q ≡ v/u and the range of the reduced temperature [1]

•Critical theory:

α(t,ω, h) = ω2|t|−xF±(ω|t|−zν, h|t|−∆)

∆ = γ + β - the gap exponent; x -the sound attenuation exponent ( x = zν ± α for metals

and x = 2α for isolators); z - dynamic critical exponent; F± - scaling functions.

Linear Parametric Representation

As regards the explicit representation of the critical behavior it is frequently more convenient to express
everything in the parametric representation of an asymptotic equation of state. The reason for that is
that many scaling functions are given by various approximations of renormalization group theory and
are sometimes very cumbersome and inconvenient for practical use [2]. Usually the starting point is a
simple linear model originally introduced by Schofield [3]:

h = h0rβδθ(1− θ2) ≡ h0rβδh(θ),

t = r(1− b2θ2) ≡ rk(θ),

M = M0rβθ

The parameter r is non-negative and measures a ”radial” distance from the critical point and θ (pseu-
doangle) specifies the location on the contour of constant r . In this representation all critical singularities
are incorporated as power laws in the variable r , while the dependence on θ is kept analytic. The
great advantage of the linear parametric representation is that it generates a closed form expressions for
all thermodynamic functions. For example the susceptibility is given by

χ =
M0

h0
r−γ

1− (1− 2β)b2θ2

1− 3θ2 + b2θ2(3θ2 − 1 + 2βδ(1− θ2)

β, δ and γ are usual exponents and the linear model constant b2 is sometimes identified by ”minimal-
isation” condition

b2 =
δ − 3

(δ − 1)(2β − 1)
.

proposed in Ref. [4].

Crossover Parametric Representation

The asymptotic parametric models are valid only in the vicinity of the critical point. In order to describe
a crossover from critical to mean-field behavior a simple crossover parametric model is proposed:

h = h0gβδ−3/2r 3/2θ[Y (2βδ−3)/2∆s(1− θ2) + vrθ4],

M = gβ−1/2M0r 1/2Y (β−1/2)/∆sθ

while the dependence of t on r and θ is left unchanged. g is a crossover parameter proportional to
the Ginzburg number and Y is a crossover function given by the relation [2]:

1− (1− u)Y (r) = u(1 +
Λ2

arY (r)(2ν−1)/∆s
)1/2Y (r)ν/∆s .

In the asymptotic critical limit (r → 0) Y → (r/g)∆s the term θ4 is very small and can be neglected so
the linear model equations are recovered whereas far away from criticality (r →∞) Y → 1 and above
equation reduce to Ginzburg-Landau expression for the equation of state. Similar classical expressions
are obtained for susceptibility and other thermodynamic quantities (see Appendix).

Crossover parametric sound attenuation
coefficient

We obtained the crossover parametric attenuation coefficient and dispersion

α(ω, r , θ) = Aωg−αY (r)−α/∆s Im

[
frel (y , θ, r) +

Afluc

Arel
ffluc(y)

]
, (6)

c2(ω)− c2(0) = 2Ac3
0g−αY (r)−α/∆sRe

[
frel (y , θ, r)− frel (0, θ, r) +

Afluc

Arel
(ffluc(y)− ffluc(0))

]
(7)

As an illustration, we show here how the crossover parametric model can be applied to ultrasonic at-
tenuation data obtained by Komatsubara et al. [4] for MnP. We have fitted the experimental data to
Eqs. (6,7) using the critical temperature TC and the attenuation (A), time (τ0), temperature (a) and

magnetic field (h0) scales as well as Afluc
Arel

, v , u and g as adjustable parameters.
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Fig1. Ultrasonic attenuation in MnP. The dashed lines correspond to T < TC and the continuous lines
to T > TC . The data are taken from Ref. [4].
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1 INTRODUCTION

The singular behaviour of the sound attenuation coefficient is connected with
very strong fluctuations of the magnetic order parameter near the critical tem-
perature. In such materials the maximum in the sound attenuation coefficient
occurs in the ordered phase for vanishing magnetic field due to the domination
of the magnetic analogue of the Landau-Khalatnikov sound damping contri-
bution near the superfluid transition of liquid 4He [1]. As was shown recently
[2] away from the critical point a sixth order term in Landau-Ginzburg energy
may be of importance. We show that the crossover parametric model is able to
describe both the asymptotic critical behavior near the Curie temperature as
well as the simple Landau-Ginzburg behaviour of attenuation with sixth-order
term included to properly describe the tricritical limit [2]. We illustrate our
findings with ultrasonic data in manganese phosphide MnP.

2 MODEL

2.1 Statics

H = HOP +Hel +Hint, (1)

HOP =

∫
ddx

[
1

2
r0S(x)2 +

1

2
(∇S)2 +

u

4
S(x)6 +

v

6
S(x)4 − hS(x)

]
(2)

Hel =
1

2

∫
ddx

{
Buii(x)2 + 2µ

[
uij(x)− 1

d
δijull(x)

]2
}

(3)

with uij(x) denoting the strain tensor related to the displacement vector com-
ponents ui(x) by

uij(x) =
1

2
(∇iuj +∇jui).

Hint = g

∫
ddxuii(x)S(x)2, (4)

In the magnetic part r = at is linear in the reduced temperature T−TC
TC

and the
parameters u are v are coupling constants.

2.2 Dynamics

In an isotropic solid, which is considered here for simplicity, the transverse sound
decouple from the order parameter and will be neglected. We consider only the
longitudinal sound and order-parameter modes which are mutually coupled to
each other.

Ṡk = −Γ
δH

δS−k
+ ξk, ük = − δH

δu−k
−Θk2u̇k + ηk, (5)

1



where the index ’longitudinal’ for the elastic mode has been omitted. The
Fourier components of the Gaussian white noises ξ nd η have variances related
to the bare damping terms Γand Θk2 through the usual Einstein relations.
Here, Θk2 is responsible for the noncritical sound dumping and Γ is a relaxation
coefficient of the order parameter.

2.3 Critical attenuation

In the framework of dynamic renormalization group we use here the direct
perturbational method [4, 5] with sharp cutoff Λ = 1 and coupling constants
u = u∗ , v = 0 equal its fixed point values. The one-loop diagrams contributing
to Π are shown in Fig. 1. Exponentiation of logarithms gives the acoustic

aLaL
++

+ +

Figure 1: Fig. 1. One-loops diagrams for the acoustic self-energy. Full lines
represent the spin response function and the dashed lines represent the correla-
tion function. The arrows represent the static magnetization M and the black
points the coupling constant u.

self-energy:
Σac = χα/γf(y, s), (Phi)

where χ(t, h) is the static susceptibility and f is a scaling function of reduced
frequency y = ω/(Γbχ−zν/γ) where s = 2tm−1/β and m2 = 2u∗M2, and
z = 2 + cη is a dynamic exponent for universality class A and ν, γ and η are
usual static critical exponents. For calculating the attenuation scaling function
we used an approximation: f = Arelfrel+ Aflucffluc where Arel and Afluc are
critical amplitudes and the relaxational and fluctuation scaling function are
found to first order in ε:

frel(y, s) = P (s)2β/ν 1− 6u∗Kd π1(y)

1− iy − 9u∗Kd π2(y, s)
, (6)

ffluc(y) =
izν

2αy
Kd

[(
1− iy

2

)1− α
zν

− 1

]
+O(ε2), (7)

where π1(y) = i
y (1− iy

2 ) ln(1− iy
2 ) and π2(y, s) = ( 2

s+3 )[− 1
2 + iy

8 + i
y (1− iy

2 ) ln(1−
iy
2 ) with Kd = 2−d+1π−d/2/Γ(d/2) .
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3 Crossover parametric model

Various improvements of the linear parametric model has been proposed [3].
Many of them concentrate on the critical region with inclusion of the Wegner
correction–to-scaling contributions and the others on the crossover from the
asymptotic critical region to the regular classical (mean-field) behavior far away
from the critical point. According to non-asymptotic renormalization group
procedure and implementing a matching point proposed by Nicol and co-workers
[6] Chen et al. [7] put forward the following crossover expression for the singular
part of Helmholtz free energy in Ising system:

∆As =
1

2
tM2T D+

uu∗Λ

4!
M4D2U − 1

2
t2K, (8)

where u = u/u∗ and T ,D,U and K are rescaling functions defined by

T = Y (2ν−1)/∆s , D = Y −ην/∆s ,U = Y ν/∆s ,K =
ν

αuΛ
(Y −α/∆s − 1). (9)

The parameter Λ is to be interpreted as a dimensionless wave number related
to the actual cutoff wave number [6, 3]. The crossover function Y is given by
the relation [3]:

1− (1− u)Y = u(1 +
Λ2

κ2
)1/2Y ν/∆s , (10)

with κ (a parameter proportional to the inverse of correlation length and is a
measure of the distance to the critical point) defined by: κ2 = tT + 1

2uu
∗ΛM2DU .

In order to built a crossover parametric model able to describe the crossover
from critical to mean-field behavior we relate the distance parameter r to the
inverse of correlation length by equation

κ2(r) = arY (2ν−1)/∆s , (11)

which reflects the observation that the parameter κ2 plays a similar role to
the distance variable r (κ→ 0 near the critical point and κ→∞ far away from
the critical point). It is easy to see from Eq. (11) that κ ∼ rν near the critical
point and κ ∼ r1/2 far away the critical point. The crossover function is again
given in implicit form by

1− (1− u)Y (r) = u(1 +
Λ2

arY (r)(2ν−1)/∆s
)1/2Y (r)ν/∆s . (12)

The crossover function is only a function of r and is independent from the angle
variable θ. It also depends on two parameters u and Λ2/a called also crossover
variables [3] which may be related to the Ginzburg number.

To completely define the crossover parametric model one need to specify the
equations for h, t and M . For this purpose we modify the linear model equation
as

h = h0g
βδ−3/2r3/2θ[Y (2βδ−3)/2∆s(1− θ2) + ṽrθ4], (13)

3



M = gβ−1/2M0r
1/2Y (β−1/2)/∆sθ (14)

while the dependence of t on r and θ is left unchanged. Note that near the
critical point (r → 0, Y → (r/g)∆s) the term ṽrθ4 in the square brackets
in Eq. (13) is very small and can be neglected so the linear model equations
are recovered. The virtue of this parametrization is that in the other (classical)
limit r →∞ these equation reduces to

h = r3/2θ[h̃0(1− θ2) + ṽrθ4], M = M̃0r
1/2θ (15)

which in turn leads to the very simple Ginzburg-Landau expression for the
equation of state:

h = aM [t+
u′

a
M2 +

v′

a
M4]. (16)

Similar classical expressions are obtained for susceptibility and other thermo-
dynamic quantities.

We finally obtain the crossover parametric attenuation coefficient:

α(ω, r, θ) = Aωg−αY (r)−α/∆s Im

[
frel(y, θ, r) +

Afluc

Arel
ffluc(y)

]
, (17)

As an illustration, we show here how the crossover parametric model can be
applied to ultrasonic attenuation data obtained by Komatsubara et al. [8] for
MnP.
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