HIGH PRESSURE STUDIES ON Yb BASED STRONGLY CORRELATED ELECTRON SYSTEMS

T. Mito^a, S. Wada^b, B. Idzikowski^c, M. Reiffers^d, H. Kotegawa^e, T. C. Kobarashi^e, and J. L. Sarrao^f

^aGraduate School of Material Science, University of Hyogo, Hyogo 678-1297, Japan
^bDepartment of Physics, Kobe University, Kobe 657-8501, Japan

^cInstitute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland

^dInstitute of Exp. Physics, Slovak Academy of Sciences, 043 53 Košice, Slovakia

^eGraduate School of Natural Science and Technology, Okayama University,

Okayama 700-8530, Japan

^fLos Alamos National Laboratory, New Mexico 87545, USA

Ytterbium based compounds display a rich variety of physical properties. We have studied the pressure effect on YbXCu₄ (X = In and Cu). YbInCu₄ undergoes first-order valence transitions as functions of temperature and pressure: the valence transition at 42K from the well localized (Yb³⁺) high-temperature state to the mixed-valence phase, and the magnetic transition around 2.4 GPa from the mixed-valence to the ferromagnetic ordered ground states. On the other hand, YbCu₅ shows substantially large electronic specific heat coefficient $\gamma \sim 550$ mJ/mol K² at ambient pressure, and it approaches the localized-delocalized phase boundary with increasing pressure. We present the detailed studies of the pressure dependence on these materials by NMR/NQR (nuclear magnetic/quadrupole resonance), resistivity and magnetic susceptibility measurements.