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Today's plan

● Magnetic domains
● Domain walls 
● Single domain particles, superparamagnetism
● Magnetic domains in bulk systems
● Magnetic domains in thin films
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Magnetic domains – early views

original image taken from:
B. D. Cullity

Introduction to magnetic materials
Addison-Wesley, Reading,

Massachusetts 1972



  

Magnetic domains - preliminaries
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●Real ferromagnets at zero applied field are usually divided into domains which are 
magnetized in different directions [1,2,3]

Magnetic domains in a single grain (outlined with a black 
line) of non-oriented electrical steel. The photo shows an 
area 0.1 mm wide. The sample was polished and 
photographed under Kerr-effect microscope. The 
polishing was not perfect - there is an angled scratch 
through the whole width of image (top half of the photo). 
The area outside of the grain has different crystallographic 
orientation, so the domain structure is much more complex. 
The arrows show the direction of magnetisation in each 
domain - all white domains are magnetised "up", all dark 
domains are magnetised "down".im
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Visualization of meandering domains (image taken 
with CMOS-MagView).
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Typically the magnetic domains are of 
10-100μm size 
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●Real ferromagnets at zero applied field are divided into domains which are magnetized in 
different directions [1,2,3]
●Barkhausen noise was the first confirmation of the domain concept [3].

●Usually it can be safely assumed that magnetic moment direction within a given domain is 
 constant in areas distant from the boundaries with other domains (domain walls)



  

Magnetic domains - preliminaries
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●Magnetic domains are of magnetostatic origin and their shapes and sizes can be calcu-     
                                                                       lated within the classical electrodynamics*:
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*quantum mechanics enters through exchange, anisotropy etc. constants
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Magnetic domains - preliminaries
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●Magnetic domains visualized in bulk materials (propagation of volume magnetization)
●Neutron refraction at domain walls allows the visualization of the domain structure.
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Origin of magnetic domains
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●Consider a infinite cylinder, with 2R diameter, magnetized uniformly:

●The discontinuity of magnetization at 
outer boundaries creates magnetic 
charges at the surface of the cylinder 
(see L.2)

ρ magn=−∇⋅M⃗

ϕm( r⃗ )=∮
S

M⃗⋅d⃗s
∣⃗r∣

−∫
V

∇⋅M⃗
∣⃗r∣

d 3 r '

E demag=
1
2
V μ0(N⋅M⃗ )⋅M⃗ ,

V−volume of the sample

●Using the expression for the shape anisotropy energy (from L.5):
we obtain for the energy per unit length along z: 

E demag=
1
2
μ 0

1
2
M S

2π R2=μ0
π
4
R2M S

2

demag factor for cylinder N x+N y+N z=1



  

Origin of magnetic domains
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●Consider now a infinite cylinder magnetized as shown below (i.e., divided into two 
antiparallel domains):

●It is assumed that both domains are of 
 equal sizes
●The division into the domains    
 changes the distribution of magnetic 
 surface charges over the surface of 
 the cylinder

ρ magn=−∇⋅M⃗

●We outline now the derivation of the demagnetization energy of the two-domain cylinder 
(that part is taken from A. Aharoni [2]).
●The magnetization is:

x

y

M y=M z=0, M x=M s×(+1 if y>0, i.e. , 0≤φ≤π

−1 if y ,0 , i.e. , π ≤φ≤2π )



  

Origin of magnetic domains
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●The step function can be expressed as a Fourier expansion:

●The normal component of magnetization (i.e., the one creating magnetic charges) is then:

M n=M ρ=M xcos(ϕ)=2
π M S∑

n=0

∞ sin [(2n+2)ϕ ]+sin [2nϕ ]
2n+1

M x=
4
π M S∑

n=0

∞ sin [(2n+1)ϕ ]
2n+1

for nmax=1000

cosα sin β=1
2
(sin (α+β )+sin (α−β ))

●The sum can be broken down into two sums [2]:

M n=
2
π M S∑

n=1

∞

[ 1
2n−1

+ 1
2n+1 ]sin [2nϕ ]

the second term is null for n=0 and in the first term 
n is replaced by (n-1) so that the sum starts effectively from n=0

Mx

φ[Rad]

sin [(2n+2)ϕ ]=sin [(2n+1)ϕ+ϕ ]=
2sin [(2n+1)ϕ ]cos(ϕ )−sin (2nϕ )

sin [(2n+1)ϕ ]cos(ϕ )=1
2 [ sin [(2n+2)ϕ ]+sin (2nϕ )]

2

4

3

3
1

n→n−1: sin[(2n+2)ϕ ]
2n+1

→
sin (2nϕ )

2 n−1



  

Origin of magnetic domains
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●The boundary condition, at cylinder surface, for magnetic scalar potential U is [2]:

(∂∂ρ U inside−
∂
∂ ρ

U outside)ρ=Radius=M n=
8
π M S∑

n=1

∞ nsin (2nϕ)
(2n+1)(2n−1)

1
2n−1

+
1

2n+1
=

4n
(2n+1)(2n−1)

●We seek a solution of the form (guessing):

U=∑
n=1

∞

un(ρ )sin(2nϕ )

●Since magnetization is constant throughout the domains we have               and:∇ 2U=0

∇ 2U=∑
n=1

∞

sin (2nϕ)(∂2

∂ ρ 2+
1
ρ
∂
∂ ρ
−

4n2

ρ 2 )un(ρ )
∇ 2 f =1

r
∂
∂ r (r∂∂r f )+ 1

r2
∂2

∂ϕ 2 f +
∂2

∂ z2 f

Laplacian in cylindrical coordinates:

●Because we are calculating demagnetization energy we need only magnetic field within 
the cylinder. The solutions to differential equation in the Laplacian of U are*:

un(ρ)=cn×((ρ /R)
2n if ρ≤R

(ρ /R)−2n if ρ≥R)
*negative powers are introduced to have vanishing potential at infinity;
constant R is introduced to comply with magnetostatic problem - ρn is 

a solution too.
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●The boundary condition, at cylinder surface, for magnetic scalar potential U is [2]:

(∂∂ρ U inside−
∂
∂ ρ

U outside)ρ=Radius=M n=
8
π M S∑

n=0

∞ n sin(2nϕ)
(2n+1)(2n−1)

1
2n−1

+
1

2n+1
=

4n
(2n+1)(2n−1)

●We seek a solution of the form (guessing):

U=∑
n=1

∞

un(ρ )sin(2nϕ )

●Since magnetization is constant throughout the domains we have               and:∇ 2U=0

∇ 2U=∑
n=1

∞

sin (2nϕ)(∂2

∂ ρ 2+
1
ρ
∂
∂ ρ
−

4n2

ρ 2 )un(ρ )
∇ 2 f =1

r
∂
∂ r (r∂∂r f )+ 1

r2
∂2

∂ϕ 2 f +
∂2

∂ z2 f
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●Because we are calculating demagnetization energy we need only magnetic field within 
the cylinder. The solutions to differential equation in the Laplacian of U are*:

un(ρ)=cn×((ρ /R)
2n if ρ≤R

(ρ /R)−2n if ρ≥R)
*negative powers are introduced to have vanishing potential at infinity;
constant R is introduced to comply with magnetostatic problem - ρn is 

a solution too.
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●After substitution of Uinside and Uoutside we have:

∑
n=1

n

cn(2nR +2n
R )sin (2nϕ )=8

π M S∑
n=1

∞ n sin(2nϕ)
(2n+1)(2n−1)

⇒ cn=
2M S R

π (2n+1)(2n−1)

●And the potential inside the cylinder is:

U inside=
2
π RM S∑

n=1

∞ sin(2nϕ)
(2n+1)(2n−1)(ρR )

2n

U=∑
n=1

∞

un(ρ )sin(2nϕ )

●The field inside the cylinder is obtained from gradient of U [2]:

U inside=
2
π RM S∑

n=1

∞ sin(2nϕ)
(2n+1)(2n−1)(ρR )

2n

H x
inside=−

∂
∂ x

U inside=−(cosϕ ∂
∂ρ
−

sinϕ
ρ
∂
∂ϕ )U inside

●The demagnetizing energy is given by:

E demag=−
1
2 ∫ρ≤R

M⃗⋅B⃗ dV=−1
2
μ 0 ∫

ρ≤R
M xH x

insidedV

M y=M z=0

●We leave out the integration [see 2] and have for the demagnetizing energy per unit 
length of the cylinder:

We need only Hx since:

E demag=
1
π μ 0R

2M s
2



  

Origin of magnetic domains
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E demag
twodomains=μ0

1
π R

2M s
2E demag

one domain=μ0
π
4
R2M S

2

●The demagnetization energy of the cylinder with one domain is higher that that with two 
domains:

E demag
onedomain

E demag
twodomains=

π 2

4
>1 ≈2.5

●The result does not depend on the radius or the 
 saturation magnetization of cylinder.
●It may be surmised that for any ferromagnetic 
 material the magnetostatic energy may be 
 reduced by subdividing the crystal into at least 
 two domains.

Magnetostatic interactions favor 
the subdivision of the crystal into 
magnetic domains



  

Potential energy of magnetic charge - digression
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In many cases instead of calculating energy of a magnetic body in the external field from 
the formula:
Emagn=−∫ M⃗⋅B⃗ dV=−∫ J⃗⋅H⃗ dV
one can use magnetic charge method and the magnetic scalar potential (lecture 2): H⃗=−∇ϕ

A. Hubert, W. Rave, S.L. Tomlinson, phys. stat. sol. (b) 204, 817 (1997)

Emagn=−μ 0∫ M⃗⋅H⃗ dV=μ 0∫ M⃗⋅∇ϕ dV=μ 0∫( x̂ M x+ ŷ M y+ ẑ M z)⋅( x̂
∂
∂ x
ϕ+ ŷ ∂

∂ y
ϕ+ ẑ ∂

∂ z
ϕ )dV=

μ 0∫(M x
∂
∂ x
ϕ+M y

∂
∂ y
ϕ+M z

∂
∂ z
ϕ )dV=

μ 0∫ [( ∂∂ x M xϕ−ϕ
∂
∂ x

M x)+(
∂
∂ y

M yϕ−ϕ
∂
∂ y

M y)+(
∂
∂ z

M zϕ−ϕ
∂
∂ z

M z)]dV=

μ 0∫( ∂∂ x M xϕ+
∂
∂ y M yϕ+

∂
∂ z M zϕ )dV−μ0∫(ϕ ∂

∂ x M x+ϕ
∂
∂ y M y+ϕ

∂
∂ z M z)dV=

μ 0∫∇⋅(ϕ M⃗ )dV−μ 0∫ϕ ∇⋅M⃗ dV=μ 0 ∫
surface

ϕ M⃗ dS+μ0∫ϕ ρ magndV

from Gauss divergence theorem ρ magn=−∇⋅M⃗

Magnetic charge (L.2):

Emagn=μ 0 ∫
surface

ϕ M⃗ dS+μ0∫ϕ ρ magndV



  

Potential energy of magnetic charge - digression
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In many cases instead of calculating energy of a magnetic body in the external field from 
the formula:
Emagn=−∫ M⃗⋅B⃗ dV=−∫ J⃗⋅H⃗ dV
one can use magnetic charge method and the magnetic scalar potential (lecture 2): H⃗=−∇ϕ

A. Hubert, W. Rave, S.L. Tomlinson, phys. stat. sol. (b) 204, 817 (1997)

Emagn=μ 0 ∫
surface

ϕ M⃗ dS+μ0∫ϕ ρ magndV

If body is magnetized uniformly (no volume magnetic charges) to obtain its magnetostatic 
energy in external field it is enough to evaluate surface integral of surface charges times 
the scalar magnetic potential on the surface:

Emagn=μ 0 ∫
surface

ϕ M⃗ dS M⃗⋅d⃗S - surface magnetic charge



  

Origin of magnetic domains
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●The calculations performed for other geometries* lead to the same conclusions.
●It can be shown that further subdivision can reduce further the magnetostatic self energy 
[2].

* A. Aharoni obtained the similar expressions for a sphere J. Appl. Phys. 51, 5906 (1980)

The division into domains increases magnetic induction B  within the magnetic film and 
decreases magnetostatic energy – stripe domain structure appears.

Emagn=−B⃗⋅M⃗ 9 domains

1 domain
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Domain walls
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●The exchange energy of a pair of spins, making an angle φ, located on neighboring atoms 
can be expressed as [1]:
Eex=−2 J S2 cosϕ i j
●For small angles the variable part of energy can be written as:

cosϕ=1−ϕ 2/2+ϕ 4/24−...

Eex=J S
2ϕ i j

2 The lower the interspin angle the lower the exchange energy

●Consider a line of uniformly spaced spins (atoms) gradually changing uniformly their 
orientation from down to up through N atomic layers.
For that case we have:
ϕ i j=π /N

●For a simple cubic structure with lattice spacing a
there is 1/a2 spin pairs per unit area of (100) surfaces.
The exchange energy stored per square meter is then:

Eex=N ( 1
a2 )

2

×J S 2( πN )
2

= J S
2π 2

a2N
∝ 1
N

The larger the width of transition region in 180o wall the lower the exchange 
energy stored in transition region 



  

Domain walls
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●The deviation of spin directions within the transition region from easy directions of 
magnetocrystalline anisotropy results in a increase of anisotropy energy.
●That increase in energy, per unit area, can be approximated, very roughly by [1]:

E total=E ex+E A=
J S 2π 2

a2N
+KNa

EA=K × thickness of transition region=K×N a
●The total (magnetocrystalline and exchange) energy of transition region is thus:

●The energy is minimum with respect to N for:

N=√ J S2π 2

K a3

●And the corresponding transition region thickness, i.e., the thickness of domain wall is:

δ=Na=√ J S2π 2

K a
⇒ δ ∝√ JK

●For iron the above expressions predict domain wall thickness of approx. 42 nm which 
corresponds roughly to 150 lattice constants a [1].



  

Domain walls
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●The preliminary assumption of the uniform rotation of spins within the domain wall must be 
 determined/confirmed from the equilibrium condition [1].
●We assume that at z= the spin angle is -π/2 and at z=+ the spin angle is π/2.
●In continuum approximation the angle between the neighboring spins is given by [1]:

Δϕ=(∂ϕ∂ z )a
●And the exchange energy per spin pair is:

Eex=J S
2a2(∂ϕ∂ z )

2

●And the exchange energy per spin pair is:●And the exchange energy per spin pair is:

●The exchange energy per unit area of the wall can be thus expressed as:

Eex=J S
2ϕ i j

2

γ ex=
1
a2 J S

2 a2∫
−∞

+∞

(∂ϕ∂ z )
2 1
a
dz= J S

2

a ∫−∞
+∞

(∂ϕ∂ z )
2

dz
number of spins per unit area of the wall

number of spins per unit length

●Similarly the magntocrystalline energy (with one anisotropy constant) is given by:

γ A=∫
−∞

+∞

K cos2ϕ dz



  

Domain walls
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●The sum of the magnetocrystalline and exchange energy is then [1,3]:

●The φ(x) function that minimizes the energy can 
be found with variational calculus [3]. The Euler-
Lagrange differential equation that minimizes the
integral of the form*:

                                 is

●The expression            is called a 
exchange stiffness constant and is 
usually denoted by A. For ferro-
magnetic metals A is of the order of 
10-11 J/m.

γ=γ ex+γ A=∫
−∞

+∞ [ J S2

a (∂ϕ∂ z )
2

+K cos2ϕ ]dz J S2/a

∫ f (x , y ,dydx )dx
∂ f
∂ y−

d
dx ( ∂ f∂ y x)=0

*Weisstein, Eric W. "Euler-Lagrange Differential Equation." From MathWorld--A Wolfram Web Resource. 
http://mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html 

●Substituting the integrand of the above energy integral into E-L equation we get:

y x≡
dy
dx

2A(∂2ϕ
∂ z2 )−2K sinϕ cosϕ=0

●Multiplying left/both sides by φ' and integrating transforms it to [3]:

∫(2 A(∂2ϕ
∂ z2 )−2 K sinϕ cosϕ)d ϕd z dz=−1

2
K cos(2ϕ )+A(∂ϕ∂ z )

2

+C=−K cos2ϕ+A(∂ϕ∂ z )
2

+(C−1)=0

cos(2α )=2cos2α−1

∂
∂ z (A(∂ϕ∂ z )

2)=2 A ∂ϕ
∂ z

∂2ϕ
∂ z2



  

Domain walls
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●For an isolated domain wall in an infinite medium the derivative φ' at infinity must vanish 
[3]. We have then, with φ=π/2:

−K cos2(π2 )+A(∂ϕ∂ z )
2

+C '=0 ⇒ C '=0 ⇒ K cos2ϕ=A(∂ϕ∂ z )
2

●Substituting this into the expression for the total energy we get:

γ=2∫
−∞

+∞

K cos2ϕ dz=2 ∫
−π /2

+π /2

K cosϕ √A /K d ϕ=4√AK

⇒ dz=±√A/K d ϕ /cosϕ

●The energy of the 180o Bloch wall is thus: γ=4√AK

●The dependence of spin deflection as a function of z is obtained from the dz expression:

z=√A /K ∫
−π /2

+π /2 1
cosϕ

d ϕ=2√A /K tanh−1(tan (ϕ /2))

*

* at every point within the wall anisotropy energy density equals exchange energy density
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Domain walls
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●The z-dependence of the deflection angle of spins:

●For high values of z (far from the 
center of the domain wall the angle 
asymptotically approaches  /2 
●The Bloch wall has an infinite extent 
but for                      it can be assumed 
to be practically saturated [3]
●That is the reason why the solution  
obtained for the infinite medium can be 
used in many practical applications
●To note is that the divergence of 
magnetization in Bloch domain wall is 
zero – it does not create magnetic 
charges within the crystal

●The charges exist on outer 
boundaries of the crystal and become 
important in the analysis of thin 
magnetic films or small magnetic 
particles.

√A /K

z≥5√A /K

∇⋅M⃗=
∂M x

∂ x
+
∂M y

∂ y
+
∂M z

∂ z
=0



  

Domain walls - width
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●There are several definitions of the domain wall width [3].

●Since the rotation of spins within 
Bloch wall extends to infinity there is 
no unique definition of its width 

●Some most popular definitions:

1. Based on the slope of the φ(x)           
    dependence for x=0 (Lilley):

2.  Based on the slope of the sin(φ(x))   
     dependence for x=0:

3. Integral definition:

- better reliability in experimental           
  practice than the above definitions      
  based on a single point in a profile

√A /K
-4 -2 0 2 4

-1

0

1

 

 

φ 
[R

ad
]

z[             ]

ϕ

sin (ϕ )
cos (ϕ )

W L=π √A /K

W m=2√A/K

W F=∫
−∞

+∞

cosϕ (x)dx

*

*most commonly used [3]

W L=π √A /K



  

Domain walls - width
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●Taking into account anisotropy constants of higher order changes the expression for 
 domain width [4]:

●Domain width for exemplary ferromagnetic materials [4]:

W L=π √A/(K1+K 2)

WL [nm]  [10-2 Jm-2]
Co 22.3 1.49

SmCo5 2.64 5.71
Sm2Co17 5.74 3.07
Nd2Fe14B 3.82 2.24
Ni80Fe20 2000* 0.01

*J. L. Tsai, S. F. Lee, Y. D. Yao, C. Yu, and S. H. Liou, J. Appl. Phys. 91, 7983 (2002)

high anisotropy material

low anisotropy material



  

Domain walls
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●The minimization of magnetostatic and exchange energies favors planar Bloch walls in 
infinite or bulk samples [1]. 

● Meandering domain wall is a source 
of magnetic charges
●The charges appear where the local 
magnetization is not parallel to domain 
wall
●The surface density of the charge 
created on the wall is:

or

ρ magn=−∇⋅M⃗ dx=ΔM
dx

dx=−(−2M S

dx
dx)

x

ρ magn=M⃗⋅n̂=M S+M S=2M s

magnetic charge



  

Domain walls
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●The minimization of magnetostatic and exchange energies favors planar Bloch walls in 
infinite or bulk samples [1] 

● When the wall winds in a plane 
perpendicular to the magnetization 
(see left) no magnetic charges appear

●The increased length of the wall is the 
source of additional exchange and 
anisotropy energy, though.
●The wall tends to decrease the area of 
its surface unless there is some reason 
to sustain the non-planar shape [1].

●Some of possible mechanisms are:
-presence of inclusions, voids
-internal stress
-orientation dependence of wall energy



  

●The tendency of the domain walls to minimize its length results in pinning at notches 
made in magnetic wires.
● NiFe(20 nm)/Cu(10 nm)/NiFe(5 nm)

T. Ono et al., Appl. Phys. Lett.,  72, 1116  (1998)

Urbaniak  Magnetization reversal in thin films and...

Domain walls – pinning on narrows 

●The domain wall positioned at narrows minimizes its length and thus the energy

●To minimize magnetostatic energy the magnetic moments align along the axis of magnetic 
 wire

●Note the presence of head-to-head domain wall 



  

●The tendency of the domain walls to minimize its length results in pinning at notches 
made in magnetic wires.
● NiFe(20 nm)/Cu(10 nm)/NiFe(5 nm)

T. Ono et al., Appl. Phys. Lett.,  72, 1116  (1998)

Urbaniak  Magnetization reversal in thin films and...

Domain walls – pinning on narrows 



  

Quality factor
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●It is usual in analysis of magnetic structures to define quality factor Q [3, p.120] which is a 
quotient of relevant anisotropy energy density (for example uniaxial anisotropy) and the 
maximum possible energy density which may be connected to stray fields:

Q=
K A

K demag
K demag=

1
2
μ 0M S

2

●There are rare cases when stray field energy exceeds the value given by the expression 
for Kdemag but even then the energy is proportional to Kdemag.
●For Q1 the magnetization will be aligned along one of the easy directions
●The sample of infinite length and uniform cross-section easy axis (shape anisotropy) 
states are energetically favorable even for small Q – no domain structure is expected



  

Single domain particles
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●There exists a critical diameter below which it is energetically more favorable for a particle 
to have a monodomain state [3,4].
●The gain in energy through the division into domains is less then than the energy of the 
domain wall between domains.

●Equating the energies of single domain cylinder with a 
 cylinder subdivided into two domains (see 15 slides 
 back) but with domain wall energy included we get* 
 per unit length (assuming that the wall is placed in the 
 middle of the cylinder):

μ0
π
4
r2M S

2=γ 2 r+μ 0
1
π
r2M S

2

*exact calculations must include size dependence of wall energy [3]

energy of the single 
domain cylinder

energy of the cylinder 
with two domains

wall energy per unit area

●We have                        so it follows that the critical radius is:γ=4√AK

rc=
8⋅4
π2−4

√AK
μ 0M s

2≈17 √AK
μ 0M s

2



  

Single domain particles
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●The infinite cylinder divides into domains if its radius exceeds*: 

*exact calculations must include size dependence of wall energy [3]

rc≈17 √AK
μ 0M s

2

●Calculations (still without including size dependence of DWs energy) show that for 
spherical particles the critical radius is [3]:

rc≈35 √AK
μ0M s

2

●The critical size is shape dependent so that the analytical expressions give only the 
 approximate values. For cubic particles the critical size is given by [3]:

l c≈12.3 √AK
μ 0M s

2

●The transition from two-domain to three domain configuration takes place at approximately:

l c≈38 √AK
μ0M s

2

●Needle-like particles are characterized by a large critical diameter – application in recording 
industry [4].
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●Sm2Fe17N3 particles (2 wt%) were mixed with and 
distributed homogeneously in a Zn metal powder matrix, 
and the mixture was compressed at about 20 MPa into 
spherical pellets about 1 mm thick.
 
●The 2 wt% of Sm2Fe17N3 particles in the Zn matrix 
corresponds  to an average distance of 5 times the particle 
diameter  when the distribution is homogeneous.
 
●Dome-shaped particles with a critical single-domain 
 diameter of 2 μm.
 
●The sample magnetization can be reversed by the 5T 
field (compare panels b and c)

KURIMA KOBAYASHI, AKIKO SAITO, and M. NAKAMURA, Electrical Engineering in Japan 154,  1 (2006)
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●Magnetic states of small cubic particles with uniaxial anisotropy 
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●High uniaxial anisotropy (high Q)  hinders creation of 
magnetic domains

●All two and multi-domain configurations are not unique 



  

Single domain particles
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●Critical sizes of spherical particles [4] according to expression: rc≈36 √AK
μ 0M s

2

rc[nm]  [10-3 Jm-2]
α-Fe 5.8 2.1
Co 27.8 7.84
Ni 11.3 0.39

Fe3O4 6.2 2.0
CrO2 90 2.0

SmCo5 585 57 high anisotropy material

low anisotropy material

●Critical radii of spherical magnetic particles are typically of the order of 10 -100 nm. For 
iron single-domain particle may contain up to about 35103 atoms and for SmCo5 over 
11010 atoms.
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σ ≡
R1

R2
τ ≡ t

2R2

M. Beleggia et al., Journal of Magnetism and Magnetic Materials 301, 131 (2006)

●Shape of the particles has great influence 
 on their magnetic properties.
●For cubic or spherical particles one can 
 define the size limit by single number but 
 for complex shapes more parameters are 
 needed.
●The treatment is limited  to single domain 
 size, uniaxial anisotropy, and only three 
 particular magnetization states are 
 considered: uniform in-plane, uniform 
 axial, and vortex.

uniform  axial, (M parallel to z axis)

vortexσ =
R1

R2

τ = t
2R2

ε=−
K u

K d

γ=
2√A/K d

R2
2
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M. Beleggia et al., Journal of Magnetism and Magnetic Materials 301, 131 (2006)

●Permalloy nanoring:

●Electron holography 
 confirms vortex state in    
 nanoring

●The magnetization in vortex 
 state is “single domain” as 
 there are no abrupt changes 
 of magnetic moment direction 
 within the ring

Domain configuration in nanorings

R1=(58±5) nm
R2=(104±5) nm
t=(4.7±0.8) nm
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●The uniaxial anisotropy particle of volume V has the anisotropy energy given by:
EA=V K sin2θ

●To change the direction to the opposite one along easy axis 
(from red to yellow arrow, to the right) the magnetic moment has 
to overcome the energy barrier equal to the maximum 
anisotropy energy:
ΔE=V K

 P
ol

ar
Pl

ot
[{

0.
5+

Si
n[

t]^
2}

,{t
,0

,2
 P

i}]

energy barrier

●The energy can be provided by the external field but 
 if the particle is small enough the thermal fluctuation 
 energy may be enough to overcome the barrier [5].
●If K=0 then the moment can point in any direction 
with equal probability and the classical theory of 
paramagnetism applies (see lecture 3).
●The essential difference though is that the magnetic 
moment of the particle may be much higher than that 
of typical paramagnetic atom or ion which is usually 
few μB [5].
●5 nm iron sphere (much smaller than single-domain 
critical diameter!) has moment of about 
55602.2=12,000 μB.

For spherical particles of cubic structure 
the energy barrier between neighboring 
stable directions is kV/4 if easy 
directions are <100> and KV/12 if easy 
directions are <111>.
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●As a result of high moments the assembly of superparamagnetic particles saturates in 
relatively weak external fields:

0 20 40 60 80 100
0,0

0,2

0,4

0,6

0,8

1,0

M
/M

s

B[T]

 4.2K
 10K
 100K
 293K

〈S z〉
S =BS(g μ BS Bk BT )

BS (x )=
2S+1

2 S
coth(2S+1

2S
x)−1

2S
coth( x2S )

Brillouin for S=5
(m=5μ B)

●Very high moments S of 
 superparamagnetic particles 
 results in saturation in much 
 weaker fields
●Technical saturation can be 
 reached even at room 
 temperature

C. P. Bean and I.S. Jacobs, J. Appl. Phys. 27, 1448 (1956)

this curve is not
“superparamagnetic”
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●As seen on previous slide the superparamagnetism disappears below critical blocking 
temperature  TB.
●We assume that the external field magnetized the sample to initial magnetization Mi and 
 was turned off at t=0 [5]. The magnetization will start do decrease with a rate depending 
 on  temperature and Mi. The time dependence may be approximated by:  
dM
dt
= f 0M e−KV / kBT≡M

τ
with 1

τ = f 0e
−KV / k BT , f ≈109Hz

●Integrating we get:

M R=M i e
−t /τ

- frequency factor

●The relaxation time is very strongly dependent on V and T:

Spherical Co particle
6.8 nm diameter 9 nm diameter

=0.1 s =3.3109 s (100 yers)

●The assembly of 9 nm particles is essentially stable with respect to magnetization at RT 
[5]



  

Superparamagnetic particles
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●The dependence of the relaxation time  on V/T quotient is used for the arbitrary definition 
of superparamagnetic limit, i.e., the size of the particle below which the resultant magnetic 
moment the assembly of them is unstable:
The critical value of relaxation time is arbitrarily taken to be 100 s [5]. 

●It follows from                        that for  =100 s:1
τ = f 0e

−KV / kBT

●For spherical Co particle the critical diameter is 7.6nm at RT.

●It should be noted that the superparamagnetic character of the assembly of particles 
depends on the time scale of the experiment used for its investigation.

KV /k BT=25

●The transition from “stable” to “unstable” behavior for uniaxial particles takes place at 
roughly:

V sp=
25k BT
K

this value has only accessory character



  

Superparamagnetic particles – blocking temperature
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●The assembly of small particles of a constant size will have a stable magnetization 
(=100 s). For uniaxial particles and the same as above criterion of stability we have [5]:

T b=
K V
25k B

●Schematic representation of the behavior of single domain particles versus temperature:

*graphics based on Fig.8.30 from [6]: J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press 2009
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●The energy of the uniaxial anisotropy particle in field B parallel to z axis (easy axis) is [5]:

●The effect of the external magnetic field on the assembly of single-domain particles is to 
change energy barrier:

E=V (K sin2θ−BM cosθ )

0 1 2 3

0

1

B=0

E
[Θ

]

Θ  [Rad]

B=0.5sin(x)^2+cos(x)*0.5

energy barrier

−V B⃗ M⃗

+V B⃗ M⃗

Emax∂E
∂θ

=V (2K sinθ cosθ+B M sinθ )

∂E
∂θ

=0 → cosθ max=−
M

2K
B

E (θ max)=VK [1−( M2K B)
2]+B2M 2V

2K

ΔE=E (θ max)−V B M

ΔE=K V (1−B M2K )
2
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●The effect of the external magnetic field on the assembly of single-domain particles is to 
change energy barrier:

E=V (K sin2θ+BM cosθ )

ΔE=K V (1−BM2K )
2

●The particle of a given size which was stable in zero 
field can become unstable in external field. As 
previously, for =100 s, we get:

ΔE=K V (1−BM2K )
2

=25k BT

●The solution is [5]:

HC=
1
μ 0

2K
M [1−(25 k BT

K V )
1/2] - field for which energy barrier diminishes to 25kbT

sin(x)^2+cos(x)*0.5

energy barrier

−V B⃗ M⃗

+V B⃗ M⃗

Emax

0 1 2 3

0

1

B=0

E
[Θ

]

Θ  [Rad]

B=0.5

●The energy of the uniaxial anisotropy particle in field B parallel to z axis (easy axis) is [5]:
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●For low temperature or high volume of the particle the expression gives the coercivity 
(saturation field) equal to the value when the field is unaided by thermal energy (compare 
Stoner-Wohlfarth model):

HC=
1
μ 0

2K
M

⇐ HC=
1
μ 0

2K
M [1−(25k BT

K V )
1/2]

V sp=
25k BT
K

HC=H C.0[1−(V sp

V )
1/2]=HC.0[1−(Dsp

D )
3/2]

●The coercivity of the assembly of superparamagnetic particles increases as the 
temperature is increased.
●Similar expression can be obtained for temperature dependence of coercive field. In 
general however the variations of Hc are due to thermal variations of anisotropy and 
saturation magnetization.
●In real systems there is a dispersion of particle sizes and random orientation of easy-axes.



  

Superparamagnetic particles – coercive field
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●Coercive field of Ni powder:

HC=H C.0[1−( TT B)
1 /2]
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●Hysteresis of granular CuCo alloy:
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Domain wall displacement
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●When magnetic field is applied to 
ferromagnetic substances the domain 
structure changes as to minimize the energy: 
the torque/force acts on individual atomic 
moments as long as the reach the state in 
which the resultant torque is zero:

●When the field is applied parallelly to the 
magnetization of one of the domains the 
moments within that domain and the domains 
with opposite magnetization experience no 
torque as they are parallel to B.
●Only magnetic moments located within the 
domain wall make an angle with B:

N⃗=m⃗×B⃗total=0

where         is the effective field due to 
external field, demagnetizing field, 
magnetocrystalline anisotropy etc.

B⃗total

graphics is a derivative work from Fig. 6.17 of [1]: S. Chikazumi, Physics of Magnetism, John Wiley & Sons, Inc., 1964 fo
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Domain wall polarization
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●Depending on the sense of rotation of the 
 magnetic moments within the domain wall 
 most of domain walls can occur in two 
 equivalent forms [3,5].
●A Bloch line is a dividing line between wall 
 segments of different sense of rotation.
●Similarly in systems with Néel-type walls (see 
 next lecture) one may use the term Néel line.
●Bloch lines can influence wall motion in a 
 drastic way [5].
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Hysteresis – general classification of magnetization mechanisms
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●The initial magnetization curve and the demagnetization curve can be schematically 
sketched as [1,5,6]:

●It is not always possible to attribute 
 precisely the field ranges  to different 
 reversal mechanisms
 
●Especially in magnetically hard 
 materials wall displacement and rotation 
 magnetization can coexist [1]
 
●At higher frequencies domain wall 
 movement is more easily damped than 
 the magnetization reversal [1].
 
●The region corresponding to 
 0.9<M/MS<1 is called the approach to 
 saturation [1,6]



  

Domain walls and hysteresis
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●Consider a uniaxial anisotropy substance which has an isotropic distribution of easy axes 
(polycrystalline materials) [1].
●The field dependence of the angular dependence of magnetization directions of magnetic 
domains can be schematically sketched as:

●In demagnetized state all accessible domain 
orientations are equally occupied
 
●On increasing the field the energetically 
favored domains (with magnetization roughly 
parallel to the applied field) spread over the 
volume of the sample.
 
●At technical saturation there is a limited 
number of domains and all moments are 
nearly parallel to field direction.
 
●The domain distributions at points 1 and 2 
different although both correspond to the 
absence of macroscopic magnetization.

H[a.u]

12



  

Hindrances to domain wall motion
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●In real materials a nonzero applied field is necessary to move the domain wall [5].
●Crystal imperfections may hinder the motion of the wall.
●Some of imperfections result in regions of different, than the rest of the material, 
 spontaneous magnetization – these are called inclusions.
●Inclusions may take many forms [5]: impurities, oxides, sulphides etc., holes, cracks...
●The most straightforward mechanism of domain pinning by the inclusion is the 
 minimization of the wall energy by decreasing its area:

●When the wall bisects the spherical inclusion of radius r its surface diminishes and the 
wall energy related to its surface decreases by:

Δ E=π r 2γ



  

Hindrances to domain wall motion
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●Néel pointed out that the appearance of surface charges on the inclusion can be lead to 
 much greater decrease of magnetostatic energy than the change of energy related to 
 surface change [5]: 

●The magnetostatic energy of the uniformly 
 magnetized sphere is [compare p. 14]:

ΔE charges /ΔE area=
8
9
π M s

2

γ
r ∝ r

E demag
one domain=

1
2
N dM sM sV sphere=

8
9
π 2M s

2 r3

●The magnetostatic energy of sphere bisected 
 by the wall is approximately half of the above 
 value [5].

●The quotient of the energy gain by the virtue of magnetic charges and the gain by the 
decrease of the wall area is:

For 1 μm diameter inclusion in iron 
the quotient is 140!

The wall-area effect in hindering wall motion is negligible for large inclusions 
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●Often the energy of the inclusion can be further reduced by the creation of additional spike 
domains protruding from it [5]:

●If the domain walls of spike domains were all 
 exactly at 45o to the magnetization of the 
 surrounding domain there would be no 
 magnetic charges
●To achieve this the wall would have to extend 
 to infinity increasing wall surface energy
●The observed length of spikes is a 
 compromise between this two energy 
 contributions. 
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●The spikes, predicted by Néel, were first  
 observed by H.J. Williams* in single crystal  
 silicon-iron [on electrolitically polished (100) 
surface]:

*H.J. Williams, Phys.Rev. 71, 646 (1947)
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●Often the energy of the inclusion can be further reduced by the creation of additional spike 
domains protruding from it [5]:
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●The spikes, predicted by Néel, were first  
 observed by H.J. Williams* in single crystal  
 silicon-iron [on electrolitically polished (100) 
surface]:

*H.J. Williams, Phys.Rev. 71, 646 (1947)
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● Grain oriented electrical steel sheet: {110}<001>  or
  {100}<001> crystallographic texture
 
● Highly anisotropic with one or two magnetic easy 
  axes lying in the sheet plane since the easy axes in 
  Fe–Si lie along the <100> directions.

Zentaro Akase et al., Materials Transactions 46, 974 (2005)

Fig. 4 Lorentz microscope images of a non-
oriented  electrical steel sheet with external 
magnetic field. The arrow indicates a precipitate in 
the specimen, and the arrowheads indicate a 
domain wall which seems to be pinned at the 
precipitate.

wall
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●Residual stress (the stress existing in a body after all external forces have been removed 
[5]) influences magnetization reversal through stress anisotropy (magnetostriction).
●The stress can be caused by various kinds of crystal imperfections.
●When ferromagnetic material is cooled down below Curie temperature the spontaneous 
magnetization within each domain distorts the lattice within the domain. As the domains 
are not free to expand independently the stress field is set up [5].

●90o domain wall sweeps from left to right 
 under the influence of external field H
●The movement of the wall effectively 
 corresponds to the reversal of magnetic  
 moments within the area swept by the wall
●Due to stress the energy depends on the 
 orientation of magnetic moments. Let the 
 stress be directed along y-axis*. Then the 
 magnetoelastic energy is  given by (see 
 lecture 5):

E=−3
2
λ100σ cos2θ

●For positive magnetostriction it follows that 
 the stress favors the magnetization along y 
 direction.

*it is assumed that the magnetocrystalline anisotropy predominates stress anisotropy so that 
magnetization in the left domain can be assumed to be parallel to x-axis. 



  

Hindrances to domain wall motion - stress
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●When the wall moves a distance dx the energy of the system changes by [5]*:

dE=3
2
λ100σ dx−μ0M sH dx it is the energy per unit area of the 

wall (neglecting cos(45o) factor)

●The stress often depends on the position. Assuming σ=gx (σ>0 – tensile stress) we get:

x=2
3
μ0M s

λ100 g
H

●From equilibrium condition (dE/dx=0) we have as the equilibrium position of domain wall:

dE=3
2
λ100 g xdx−μ0M sH dx

●In case of 180o walls in stressed sample the magnetoelastic energy does not depend 
 directly on  the position of the wall as the magnetostrictive strain does not depend on the 
 sense of the magnetization [1].
●The stress influences the domain wall energy of 180o walls so in the stress field it 
introduces position dependence of energy.

It is not generally true that equilibrium 
position of 90o wall in zero external 
field corresponds to zero stress [5].

*dependence of 90o wall energy on stress is neglected.
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●In case of 180o walls in stressed sample the magnetoelastic energy does not depend 
 directly on  the position of the wall as the magnetostrictive strain does not depend on the 
 sense of the magnetization [1].
●The stress influences the domain wall energy of 180o walls so in the stress field it 
introduces position dependence of energy.

It is not generally true that equilibrium 
position of 90o wall in zero external 
field corresponds to zero stress [5].

*dependence of 90o wall energy on stress is neglected.
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Domain walls and hysteresis
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●The reversal of magnetization can involve several processes [6].

*graphics based on Fig.7.9 from [6]: J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press 2009

●The wall can nucleate at defect, thermal fluctuation, surface asperity
●The movement of wall can be hindered by pinning centers

blue 
arrows 
show the 
movement 
direction of 
domain 
wall (red)
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●In thin films with perpendicular magnetic anisotropy it is possible to observe stripe 
magnetic domains (see p. 4) magnetized perpendicular to the surface of the film:

●If perpendicular anisotropy is weak 
 closure domains are observed

●If perpendicular anisotropy is high 
 closure domains cost to much 
 anisotropy energy and the stripe 
 structure is observed



  

Stripe domains
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●Stripe domains in Co/Au multilayer (MFM images):

Stripe domains in Si(100)/[Ni80Fe20(2 nm)/Au(tAu)/Co(1.0nm)/Au(tAu)]10

              tAu=1.5nm                                                    tAu=3nm



  

Stripe domains
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●Period p of the stripe domain structure depends on the thickness of the layer [3]:

Z. Málek, V. Kamberský, Czech. J. Phys. 8, 416 (1958)

For very small thicknesses of the magnetic layers stripe domain period can be in 
macroscopic range
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