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Introduction

Normal metal resistance
intrinsic resistivity – due solely to 
phonons in a perfect lattice [5]

Bloch-Grüneisen formula [5]:

θ – Debye temperature, M – atomic 
mass

● the formula was derived for 
monovalent metal with spherical 
Fermi surface and phonon spectrum 
from Debye model

● despite this the formula is useful for 
initial analysis of experimental results

image from: R.A. Matula, J.Phys.Chem.Ref.Data 8, 1147 (1979)
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maximal frequency of acoustic 
phonons in isotropic Debye model of 
specific heat (determined by lattice 
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Bloch-Grüneisen equation for limiting 
temperatures [5]:

image from: R.A. Matula, J.Phys.Chem.Ref.Data 8, 1147 (1979)

T→0: ρ i (T )→124.431( Tθ )
5

T→∞: ρ i(T )→
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4M θ (
T
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θ at 298 K 
[K] [5,11 ]

Au 1788

Ag 221

Cu 320

Fe 467 [11]

Co 445 [11]

Ni 450 [11]
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Mathiessen rule (empirical) – the total resistivity of a specimen is a sum of resistivities due 

to phonons, impurities, defects, etc. (approx. valid if scattering events are independent)

ρ=ρ phonons+ρ impurities+...

image from: R. Wawryk, J. Rafalowicz, Cz. Marucha, K. Balcerek, International Journal of Thermophysics 15, 379 (1994)

● tin + lead, T28 K

● the resistivity of the 
Sn+Pb mixture increases 
with Pb concentration

● the dependence of a 
residual resistivity on Pb 
concentration is not linear

*

*99.9999% purity; see “Why do we need high purity metals?” at https://www.ameslab.gov/mpc/purityFAQ 
for absolute and metals basis purity

(retrieved on 2014.03.11)

low Pb concentration

high Pb concentration
“lots” of defects

https://www.ameslab.gov/mpc/purityFAQ
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Size effect in resistivity

In thin films* the resistivity depends additionally on the thickness t of the layer
● in bulk samples only small fraction of electrons experiences the scattering at the outer 

boundaries (red fragments on the trajectories in the image)
● in thin films the contribution from surface scattering becomes important and the 

resistivity increases

*a film is said to be thin if the mean free path of current carriers is comparable with its thickness 
  (compare the definition of magnetic thin film)

The theoretical determination of the ρ(t) 
dependence is very difficult. The approximate 
Fuchs- Sondheimer theory predicts the 
following ρ(t) dependence [6,34]:

λ – mean free path (mfp), p – fraction of 
electrons that are specularly** reflected at the 
outer boundaries, σ0 – bulk conductivity

substrate

substrate

σ 0
σ =1+

3
8
λ
t
(1− p) (

t
λ
≫1)

σ 0

σ =
4λ

3t (1+2 p)ln (λ / t)
(
t
λ
≪1)

**speculum – Latin. mirror
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Size effect in resistivity

In thin films* the resistivity depends additionally on the thickness t of the layer
● in bulk samples only small fraction of electrons experiences the scattering at the outer 

boundaries
● in thin films the contribution from surface scattering becomes important and the 

resistivity increases

image (fragment) from:
H.-D. Liu, Y.-P. Zhao, G. Ramanath, S.P. Murarka,

G.-C. Wang, Thin Solid Films 384, 151 (2001)

thermal evaporation onto 500-nm thick SiO2 on
Si(100) substrates in an ultra high vacuum UHV

● Note that the crystalline structure 
of the films changes with 
thickness too.
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Dependence of resistivity on temperature in magnetic metals:

image from:  I.A. Campbell, A. Fert, in “Ferromagnetic Materials” 1982 

● below Curie temperature T
c
 

resistivity of a magnetic metals 
increases with temperature faster 
than above it

● below T
c
 temperature increase 

leads to increased magnetic 
disorder

● resistivity and magnetic order 
correlate

TCurie:

Fe 1044 K 

Co 1388 K

Ni    627 K 
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Dependence of resistivity on temperature in magnetic metals:

image from:  I.A. Campbell, A. Fert, in “Ferromagnetic Materials” 1982 

below Curie temperature magnetic 
moments are ordered



Pauli principle – fermions, bosons

In the system composed of indistinguishable particles the exchange of the particles does 
not change the wave function 

H ψ(r1, r2)=E ψ(r1, r2) H ψ(r2, r1)=E ψ(r 2, r1)

Since the observables do not change when particles are exchanged we must have* 

<ψ(r1, r 2) |some operator|ψ(r1, r 2)>=a<ψ(r1, r 2) |some operator|ψ(r1, r 2)>

*argument, leading to identical conclusions, is different if energy levels are degenerate

or

ψ(r1, r2)=aψ(r1, r2)

But exchanging the particles twice brings us back to the initial state

ψ(r1, r2) → aψ(r1, r 2) → a2
ψ(r1, r 2)

It follows a=±1

● a=1 – symmetric wave functions – bosons

● a=-1 – antisymmetric wave functions – fermions (electrons, protons, neutrons)

H ψ(r1, r2)=E ψ(r1, r2) H ψ(r2, r1)=E ψ(r 2, r1)

Introduction



ψ(x)=√2
a

sin (n
π
a

x ) , n=±1,±2,. . .

x

a

n=2

n=1

Depending on whether the particles are distinguishable 
(classical case) or not and on whether they are bosons or 
fermions the wave function of two non-interacting particles 
can be written in one of three ways*:

● distinguishable particles

● bosons (symmetric wave function)

● fermions (antisymmetric function)

*see the video lectures 7.1-7.5 of Ron Reifenberger () [26]

ψ(r1 , r 2)=ψn1(r1) ψn2(r2)
which means that particle no.1 is in 
state n1 at position r1 and particle 
no.2 is in state n2 at position r2

ψ(r1 , r 2)=
1

√2
[ψn1(r1)ψn2(r 2)+ψn1(r2)ψn2 (r1) ]

ψ(r1 , r 2)=
1

√2
[ψn1(r1)ψn2(r 2)−ψn1(r 2)ψn 2(r1)]

Assume that two identical particles are confined to a potential well of the infinite depth and 
width a. The normalized 1-D solutions to Schrödinger equation are of the form [9]:

Pauli principle – fermions, bosonsIntroduction



Assume that two identical particles are confined to a potential well of the infinite depth and 
width a. The normalized 1-D solutions to Schrödinger equation are of the form [9]:

ψ(x)=√2
a

sin (n
π
a

x ) , n=±1,±2,. . .

Depending on whether the particles are distinguishable 
(classical case) or not and on whether they are bosons or 
fermions the wave function of two non-interacting particles 
can be written in one of three ways*:

● distinguishable particles

● bosons (symmetric wave function)

ψ(r1 , r 2)=
1

√2
[ψn1(r1)ψn2(r 2)+ψn1(r2)ψn2 (r1) ]

Both particles in the same quantum state [26]
probability density

P(r1 , r 2)=( 1

√2
[2ψn(r1)ψn(r 2)])( 1

√2
[2ψn(r1)ψn (r 2) ])

*

= 2ψn(r1)ψn(r 2)ψn(r1)
*
ψn (r 2)

*

Bosons have enhanced probability of being in the same quantum state

ψ(r1 , r 2)=ψn1(r1) ψn2(r2) P(r1 , r 2)=ψn(r1)ψn(r 2)ψn(r1)
*
ψn(r 2)

*

Pauli principle – fermions, bosonsIntroduction



We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Distinguishable particles – classical description

x1

x2

x1 and x2 denote the positions of particles along x-axis 

x1

a

n=2
n=1

w
e
ll

x2

x1
P( x1 , x2)=[√2

a
sin (1

π
a

x1)√2
a

sin (2
π
a

x 2)]
2
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P( x1 , x2)=[√2
a

sin (1
π
a

x1)√2
a

sin (2
π
a

x 2) + √2
a

sin (1
π
a

x2)√2
a

sin (2
π
a

x1)]
2

We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Indistinguishable boson particles

Pauli principle – fermions, bosonsIntroduction

Probability maxima correspond to 
both particles being at the same 
location
x2=x1

x1

x2



P( x1 , x2)=[√2
a

sin (1
π
a

x1)√2
a

sin (2
π
a

x 2) - √2
a

sin (1
π
a

x2)√2
a

sin (2
π
a

x1)]
2

We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Indistinguishable fermions (with the same spin- see next slides)

Introduction

x1

x2

Probability of finding both particles in 
the same location is zero

P( x1 , x2=x1)=0



Exchange coupling 

Consider a system composed of two particles with spin ½. For one spin we have a set of 
matrices 

S x=
1
2
ℏ (0 1

1 0) S y=
1
2
ℏ(0−i

i 0) S z=
1
2
ℏ(1 0

0−1)
Pauli matrices

σ1 , σ2 , σ 3

with eigenvalues           and corresponding eigenvectors             and              for

With 2 spins we should work in 4-dimensional representation*. Each spin has two 
eigenvectors so there are 4 possibilities:

±
1
2
ℏ α=(10) β=(01)

spin1/spin2 ↑↑ ↑↓ ↓↑ ↓↓

α(1)α(2) α(1)β(2) β(1)α(2) β(1)α(2)

meaning first spin down,
second spin up

α and β traditionally mean 
up and down, respectively

tr
ad
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 n
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n

S z=
1
2
ℏ(1 0

0 −1)
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From single spin vectors we can construct symmetric and antisymmetric functions (with 
respect to spin exchange) [B. Średniawa, 39 p..233]:

α(1)α(2) , β(1)β(2) ,
1

√2
[α(1)β(2)+β(1)α(2) ] ,

1

√2
[α(1)β(2)−β(1)α(2)] =−[ 1

√2
[α(2)β(1)−β(2)α(1)]]

2→1

1→2

antisymmetric combination

note the minus sign

Combining Pauli matrices into vector we get:

σ⃗= x̂ σ x+ ŷσ y+ ẑσ z= x̂ (0 1
1 0)+ ŷ (

0−i
i 0)+ ẑ (

1 0
0−1)=(

ẑ x̂−i ŷ
x̂+i ŷ − ẑ )

and for a resultant spin momentum

J⃗=
ℏ

2
( σ⃗ (1)+σ⃗ (2)) each operator acts on its “own “ spin

For a square of the momentum we have

J 2
=
ℏ

2

4 [ (σ x (1)+σ x (2))
2
+(σ y(1)+σ y (2))

2
+(σ z(1)+σ z(2))

2 ]=
ℏ

2

2
[3+σ⃗(1)⋅σ⃗(2)]

We act now with the operator                  on constructed spin functions (using explicit forms 
of Pauli matrices):

[σ⃗ (1)⋅σ⃗(2)]α(1)α(2)=[σ x (1)σ x (2)+σ y (1)σ y (2)+σ z(1)σz (2)]α(1)α(2)
=β(1)β(2)+ iβ(1) iβ(2)+α(1)α(2)=1⋅α(1)α(2)

σ⃗ (1)⋅σ⃗ (2)

Exchange coupling Introduction



[σ⃗ (1)⋅σ⃗(2)]α(1)α(2)=1⋅α(1)α(2)

Which means that eigenvalue of                  for                  function is 1:σ⃗ (1)⋅σ⃗ (2) α(1)α(2)

Inserting this “1” into the expression for the square of the momentum yields:

J 2
=
ℏ2

2
[3+σ⃗ (1)⋅σ⃗ (2)]=

ℏ2

2
4 → J=ℏ √2

From the expression of the momentum corresponding to a spin (                         ) we see 
that:
● this value of momentum (        ) corresponds to resultant spin 1

● and consequently the function                corresponds to spin 1

LS=√S (S+1)ℏ

ℏ √2

α(1)α(2)

α (1)α(2) ,
1

√2
[α(1)β(2)+β(1)α(2) ] , β(1)β(2)

1

√2
[α(1)β(2)−β(1)α(2) ]

Analogous calculations show that all three symmetric two spin functions correspond to 
spin 1 (each of them corresponds to different component of momentum along z-axis)

resultant spin S=1                                   triplet resultant spin S=0                  singlet

S z : +ℏ 0 −ℏ

S=1:
LS=√1(1+1)ℏ=ℏ √2

Exchange coupling Introduction



When we are dealing with fermions the total wave function must be asymmetric.
If Hamiltonian has no terms dependent on spin we can write the total wave function as a a 
product of spatial and spin wave functions. We can have thus two cases [Enge..]:

● spatial function is asymmetric, spin function is symmetric (triplet)

 

● spatial function is symmetric, spin function is asymmetric (singlet)

1

√2
[ψn1(r1)ψn 2(r2)−ψn1(r2)ψn2 (r1) ] × α(1)α(2)

1

√2
[ψn1(r1)ψn2(r 2)−ψn1(r2) ψn2(r1)] ×

1

√2
[α(1)β(2)+β(1)α(2) ]

1

√2
[ψn1(r1) ψn2(r2)−ψn1(r 2)ψn 2(r1)] × β(1)β(2)

1

√2
[ψn1(r1)ψn2(r 2)−ψn1(r2) ψn2(r1)] ×

1

√2
[α(1)β(2)−β(1)α(2)]

spin functions

Exchange coupling Introduction



Assume now that the two particles (electrons with a spin) interact via Coulomb electrostatic 
interactions.
If the interaction is weak we can us a non-degenerate perturbation method for which we 
have

Em
(1)=V mm=∫ψm

(0)* V̂ ψm
(0)dV

The correction to the eigenvalues in the first order approximation is the equal to the 
average energy of the perturbation in the unperturbed state

Depending on the spin state (triplet, singlet) the spatial wave function is either symmetric 
or antisymmetric, and because the spin function is not acted upon by a the perturbation we 
get [39]

Em=Em
(0)+λV mm Em=E0+<0 m| H (1) |0 m>

V̂=
1

4πε0

e2

r1,2

E(1)=∫ 1

√2
[ψn1(r1)ψn 2(r2)±ψn1(r2)ψn2 (r1) ]

* e2

r1,2

1

√2
[ψn1(r1) ψn 2(r2)±ψn1(r 2)ψn 2(r1)]dV

which yields [39]

E (1)= ∫ |ψn1(r1) |
2 e2

r1,2

|ψn2(r2) |
2 dV ± ∫ψn1(r1)

*
ψn2 (r 2)

* e2

r1,2

ψn1(r 2)ψn 2(r1)dV

Coulomb integral exchange integral

Exchange coupling Introduction



E (1)= ∫ |ψn1(r1) |
2 e2

r1,2

|ψn2(r2) |
2 dV ± ∫ψn1(r1)

*
ψn2 (r 2)

* e2

r1,2

ψn1(r 2)ψn 2(r1)dV

Coulomb integral exchange integral

For the description of the image see 6 slides back

If spatial function is symmetric the particles tend 
to be closer to each other than in a classical case 
(due to statistical forces*) and the electrostatic 
interactions increase energy of the system

If spatial function is antisymmetric (triplet) the 
particles are repelled by statistical forces and the 
electrostatic interaction energy is lower than in 
the classical case [39, p. 301]

The exchange interactions favor parallel  
orientations of spins

Two particles in an infinite potential well – 
symmetric function

*see the lecture of prof. T. Dietl: Physics of Exchange Interactions in Solids, Osaka/Japan, 2010.05.30 (youtube)

Exchange coupling Introduction
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Magnons
● at very low temperatures all spins point in almost exactly one direction* determined by 

the effective magnetic anisotropy

*we assume the bulk sample (negligible fraction of surface spins) and lack of domain walls
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Magnons
● at higher temperatures the thermal energy coming from spin-phonon coupling must be 

accommodated by rearrangement of spins* 

*the spins may be excited directly by magnetic field too.

It is energetically costly to 
reverse single spins S [9]:

...and a state with single 
flipped spin is not an 
eigenstate of Hamiltonian

Δ E=N nn Jij S⃗ i⋅S⃗ j

N nn

Jij

- number of nearest
  neighbors
 

- exchange integral



  

Introduction

Magnons
● at higher temperatures the thermal energy coming from spin-phonon coupling must be 

accommodated by rearrangement of spins* 

*the spins may be excited directly by magnetic field too.

It is energetically costly to 
reverse single spins S [9]:

Correlated movement/ 
precession of spins 
(pictured here as classical 
moments) reduces the 
energy of a spin system by 
[9]:

Δ E=N nn Jij S⃗ i⋅S⃗ j

N nn

Jij

- number of nearest
  neighbors
 

- exchange integral

ΔE=( h
2π )ωq≈2S Jq 2a 2
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Magnons
● at higher temperatures the thermal energy coming from spin-phonon coupling must be 

accommodated by rearrangement of spins* 

*the spins may be excited directly by magnetic field too.

Correlated movement/ 
precession of spins 
(pictured here as classical 
moments) reduces the 
energy of a spin system by 
[9]:

Each elementary excitation 
reduces the total spin NS 
of the system by one unit. 

ΔE=( h
2π )ωq≈2S Jq 2a 2
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Magnon contribution to resistivity
● measurement in pulsed magnetic fields

● almost linear and non-saturating decrease 
of resistivity in fields above technical 
saturation (paraprocess)

● spin-flip and non-spin-flip (on phonons, 
other electrons [8]) scattering events are 
responsible for resistance

● spin-flip scattering on magnons (s-d 
interband transitions) is responsible for 
magnetoresistance

● “effect results from a reduction of electron-
magnon scattering processes due to a 
damping of the spin waves at high fields” 
[8]

● magnon magnetoresistance is estimated to 
saturate at 80T at 50K and 2000 T [sic] at 
450 K 

image from: B. Raquet, M. Viret, E. Sondergard, O. Cespedes, R. Mamy, Phys. Rev. B 66, 024433 (2002)
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Magnon contribution to resistivity

● In spin-flip scattering electron spin 
is transferred to quantized 
excitation of lattice spins – 
magnon. For electron Δs= .1

electron with up spin
interacts with a spin wave

total spin of a spin-chain is increased – 
magnon is destroyed

the amplitude of a spin wave is decreased

electron is scattered
 with spin down

spin-chain prior to 
the scattering
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Band splitting in ferromagnetic materials

In ferromagnetic metals band splitting of d-
electrons leads to different densities of 
available states at Fermi energy for 
electrons with opposite spins

Fermi level
Fermi level

normal metal (Cu, Au, etc.) ferromagnetic metal (Fe, Co, etc.)

majority spins (those 
which are parallel to 
magnetization) have lower 
density of states (DOS) at 
Fermi level than down 
spins



  

Band splitting in ferromagnetic materials

Introduction

graphics from: Perspectives of Giant 
Magnetoresistance, E. Y. Tsymbal, D. G. Pettifor, 
published in Solid State Physics, ed. by      H. 
Ehrenreich and F. Spaepen, Vol. 56 (Academic 
Press, 2001) pp.113-237

● in some ferromagnetic materials 
the density of states of up-spins 
may be close to zero

● in Co the d-band DOS for spin-up 
electrons is about 10 times lower 
than that of down-spin electrons 
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Mott – two current model, 1936.
● mobile sp-electrons are responsible for electronic 

conductivity [3]
● s- electrons can be scattered to free states near 

Fermi level
● density of states of d-electrons in ferromagnetic 

metal is different for spin-up and spin-down electrons
● the conductivity of given type of carriers depends on 

the number of free states available as final states of 
scattering events

● probability of spin-flip scattering is much lower than 
the probability of scattering without the change of 
spin
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Mott – two current model, 1936.
● the conductivity of a metal is a sum of independent conductivities of up and down-spins 

channels [3]

● the relaxation time  is given by Fermi golden rule (mean free path:            ,     - Fermi 
velocity, of the order of 0.5´106m/s) [3,9]:

● the scattering potential needs not to be spin-dependent for resistivities of spin channels to 
be different – different DOS-es for opposite spins are enough

σ =σ ↑+σ ↓

λ= vF vF

−1∝ 〈V scatt
2 〉D(EF)

average value of scattering potential

If spin-flip events are negligible current 
can be considered as carried in-parallel 
by two spin channels with spins parallel 
and antiparallel to quantization axis [12]
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Mott – two current model, 1936.

image from: A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968)

α=ρ↓
0
/ρ↑

0

● Ni with impurities at low 
temperatures

● the spin-down channel resistivity 
can be many times lower than the 
resistivity of the up-spin channel

● the maximum for Cr impurity is 
associated with the bound state 
crossing the spin-up Fermi level 
[10] 

αCo=30 αMn=16

R
es

is
tiv

ity
R

es
is

tiv
ity

spin-down channel

not typical

Energy
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Giant Magnetoresistance (GMR) – Nobel Prize 2007 (A. Fert, P. Grünberg)Nobel Prize 2007 (A. Fert, P. Grünberg)

image from M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, 
G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

In conclusion, we have found a giant magnetoresistance in (001)Fe/(001)/Cr superlattices when, 
for thin Cr layers (9, 12, and 18 Å), there is an antiparallel coupling of the neighbor Fe layers 
at zero field.
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Giant Magnetoresistance (GMR) – Nobel Prize 2007 (A. Fert, P. Grünberg)Nobel Prize 2007 (A. Fert, P. Grünberg)

image from G. Binasch, P. Grünberg, F. Saurenbach,  W. Zinn, Phys. Rev. B 39, 4828 (1989)

The experimental results reported here show that the antiparallel alignment of the magnetizations 
in our double layers produces an appreciable increase of the electrical resistivity. We propose 
that this is caused by spin-flip scattering. Electrons in one...

the first interpretation was not correct – see later
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Giant Magnetoresistance (GMR) – Nobel Prize 2007 (A. Fert, P. Grünberg)Nobel Prize 2007 (A. Fert, P. Grünberg)
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Kinds of magnetoresistance (incomplete list)

Type of 
magnetoresistance

Systems Values Note

ordinary (OMR) all conducting materials approx. 10-2 % in metals in 
RT in up to 2T

in high fields (30T) 47% in 
Cu (at 78K) and 380% in 
Bi [13]

Lorentz force changes 
orbits of carriers

De Haas-Shubnikov effect 
– high field oscillations of 
resistance

anisotropic (AMR) ferromagnetic materials several percent at RT 
(NiCo alloys [14]) in small 
fields

depends on orientation of 
current relative to 
magnetization; high field 
sensitivity (NiFe)

giant (GMR) ferromagnetic materials several dozens percent in 
small fields [3]

depends on relative 
orientation of magnetic 
moments

tunneling (TMR) ferromagnetic materials several hundred percent 
in small fields 

depends on the 
orientation of magnetic 
moments of electrodes 
separated by insulating 
film

colossal (CMR) transition metal oxides several hundred percent 
in several Tesla

phase transition 
paramagnet-ferromagnet
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GMR  - the simplistic explanation with two-spin channels  

image based on Fig.2 from [17]

antiparallel – high resistance parallel – low resistance

note no spin-flip scattering
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GMR  - resistor network model [17]

● Mott two spin-channels – two 
conducting channels do not mix

● resistance of parallel configuration 
is lower 

Resistance of parallel configuration Resistance of antiparallel configuration 

1
R P

=
1

R ↑+R↑
+

1
R ↓+R ↓

R P=
2R ↑R ↓

R ↑+R ↓

1
R AP

=
1

R ↑+R ↓

+
1

R↑+R ↓

R AP=
R↑+R↓

2

R↓=(1+a
2)R ↑ →

R AP

R P

−1=
a4

4+4a2≥0 → R AP≥R PR↓>R↑ :
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Boltzmann transport equation [9,15,16]
The classical theory of transport is based on a statistical distribution function f that 
specifies the probability of finding a particle with its position and momentum within a small 
range [15] or, which is equivalent*, concentration of carriers with a given momentum  in the 
neighborhood of the given point in space [9].

*after introducing normalizing factor

n(rx , rx+dx , ry , ry+dy , rz , rz+dz , v x , v x+dv x , v y , v y+dv y , v z , v z+dvz)=f ( r⃗ , v⃗ )dx dy dz dvx dv y dv z

number of particles in dr×dv 
volume at r,v position in six-
dimensional space

in the 2-D example to the right 
four particles in the dx×dy 

volume have v
y
 velocities in the 

range from -dv
y
  to +dv

y
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Boltzmann transport equation [9,15,16]
The classical theory of transport is based on a statistical distribution function f that 
specifies the probability of finding a particle with its position and momentum within a small 
range [15] or, which is equivalent*, concentration of carriers with a given momentum  in the 
neighborhood of the given point in space [9].

*after introducing normalizing factor

n(rx , rx+dx , ry , ry+dy , rz , rz+dz , v x , v x+dv x , v y , v y+dv y , v z , v z+dvz)=f ( r⃗ , v⃗ )dx dy dz dvx dv y dv z

● In equilibrium the transition rates between any two states exactly balance [15]

● In the presence of external fields the equilibrium state is disturbed and the scattering 
tends to return the system to equilibrium

● Some steady state is attained in which the effect of external fields is balanced by 
scattering events

● Scattering “has the important effect of limiting the extent of the response” - A.C. Smith et 
al. [15]
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*not that the function depends on t now.

Rate of change of the distribution function f (r,k,t)* [from A.C. Smith et al., 15]:
● the density described by f may change because of scattering of phase points into or out 

of the volume cell dr×dv
● the phase points may flow in or out of the cell due to their spatial velocity and because 

the velocity changes under the influence of external field (streaming or drift terms)

The carrier (electron) is scattered out of 
the dxdy volume and it may change its 
momentum

view in real space

The carrier (electron) is about to enter 
dxdy volume but his momentum is 
different than that of carriers in cell; it 
will not be in the same dx dy dv

x
dv

y
 

volume as neighboring (in real space) 
electrons
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*note that the function depends on t now.

δ n(x)=∫ f (x , k )dk ẋ dy dz= f ( x) ẋ dy dz

The net flow into the region between x and 
x+dx is given by:

Which for dx®0 is:

In 3-D (change of the number of phase points 
in dx dy dz volume) we have:

Rate of change of the distribution function f (r,k,t)* [from A.C. Smith et al., 15]:
● the density described by f may change because of scattering of phase points into or out 

of the volume cell dr×dv
● the phase points may flow in or out of the cell due to their spatial velocity and because 

the velocity changes under the influence of external field (streaming or drift terms)
Consider the 1-D movement of a phase points along x-direction. The number of points 
crossing a dy dz area normal to x is given by: 

δ n=[δ n(x)−δ n(x+dx )] dy dz
=[ f (x) ẋ (x)− f (x+dx ) ẋ(x+dx)] dy dz

δ n=−[ ∂∂ x ( f (x) ẋ )]
x0

dx dy dz

δ n=[ ∂∂x ( f (x) ẋ ) ]
x0

dx dy dz+[ ∂∂ y ( f ( y) ẏ ) ]
y0

dy dx dz+ .. .

note the dot

k disappears from here because 
we integrate over all velocities

vx·1s

x
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*note that the function depends on t now.

δ n(x)=∫ f (x , k )dk ẋ dy dz= f ( x) ẋ dy dz

The net flow into the region between x and 
x+dx is given by:

Which for dx®0 is:

In 3-D (change of the number of phase points 
in dx dy dz volume) we have:

Rate of change of the distribution function f (r,k,t)* [from A.C. Smith et al., 15]:
● the density described by f may change because of scattering of phase points into or out 

of the volume cell dr×dv
● the phase points may flow in or out of the cell due to their spatial velocity and because 

the velocity changes under the influence of external field (streaming or drift terms)
Consider the 1-D movement of a phase points along x-direction. The number of points 
crossing a dy dz area normal to x is given by: 

δ n=[δ n(x)−δ n(x+dx )] dy dz
=[ f (x) ẋ (x)− f (x+dx ) ẋ(x+dx)] dy dz

δ n=−[ ∂∂ x ( f (x) ẋ )]
x0
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δn=[ ∂∂x ( f ( x) ẋ ) ]
x0
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y0
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note the dot

k disappears from here because 
we integrate over all velocities
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*note that the function depends on t now.

δ n(x )=∫ f (x , k )dk ẋ dy dz=f (x ) ẋ dy dz

The net flow into the region between x and 
x+dx is given by:

Which for dx®0 is:

In 3-D (change of the number of phase points 
in dx dy dz volume) we have:

Rate of change of the distribution function f (r,k,t)* [from A.C. Smith et al., 15]:
● the density described by f may change because of scattering of phase points into or out 

of the volume cell dr×dv
● the phase points may flow in or out of the cell due to their spatial velocity and because 

the velocity changes under the influence of external field (streaming or drift terms)
Consider the 1-D movement of a phase points along x-direction. The number of points 
crossing a dy dz area normal to x is given by: 

δ n=[δn (x )−δn (x+dx )] dy dz
=[f (x ) ẋ (x )−f (x+dx ) ẋ (x+dx )] dy dz

δn=−[ ∂∂x ( f (x) ẋ ) ]
x0

dx dy dz

δn=[ ∂∂x ( f ( x) ẋ ) ]
x0

dx dy dz+[ ∂∂y ( f ( y) ẏ ) ]
y0

dy dx dz+ ...

note the dot

k disappears from here because 
we integrate over all velocities
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Further we have:

...and for the change of n:

 

To get the complete expression (drift of position and momentum/velocity points into 6-
dimensional phase space volume d3r d3k) we add together six terms [15]:

δ n=−∇⋅( f ( r⃗) v⃗ ) d 3r

∇⋅( f v⃗)=(i ∂
∂x
+ j ∂
∂ y
+k ∂
∂z
)⋅(i f v x+ j f v y+k f v z)=

∂
∂ x

f v x+
∂
∂y

f v y+
∂
∂z

f v z

δ f ( r⃗ , v⃗ , t)=−[∇ r⋅( f ( r⃗ , k⃗ , t) v⃗ )+∇ k⋅( f ( r⃗ , k⃗ , t) ˙⃗k ) ]d 3rd 3k

The continuity equation for f* reads ( we cancel                everywhere and work with density 
of phase points instead of their numbers):

∂ f
∂ t
=(∂ f∂ t )scatt−∇ r⋅( f v⃗ )−∇ k⋅( f

˙⃗k )

*we do not write further the explicit dependence of f on r, v, and t.

d 3rd 3k

∇⋅(ab⃗)= b⃗⋅∇ a+a∇⋅⃗b v⃗=ℏ−1
∇ k En(k )

∇ r⋅( f v⃗ )+∇k ⋅( f
˙⃗k )= v⃗⋅∇ r f +f ∇ r⋅⃗v+

˙⃗k⋅∇k f +f ∇k ⋅
˙⃗k

∇ r⋅⃗v=ℏ
−1∇ r⋅[∇k En(k)]=0

∇k⋅
˙⃗k=∇k⋅

q
ℏ
( E⃗+ v⃗×B⃗ )=∇k⋅(qℏ v⃗× B⃗)=

q
ℏ
∇k⋅( î (B z v y−B y v z)+ ĵ (−Bz v x+Bz v x+Bx v z)+ k̂ (By v x−Bx v y ))=

q

ℏ
2 ( î ∂∂ k x

+ ĵ ∂
∂ k y

+ k̂ ∂
∂ k z )⋅

( î (Bz

∂En(k )
∂ k y

−B y

∂En(k )
∂ k z

)+ ĵ (−Bz

∂En(k)
∂ k x

+B x

∂En (k )
∂ k z

)+ k̂ (B y

∂En(k )
∂ k x

−Bx

∂En(k)
∂ k y

))=
q
ℏ2 (Bz

∂
2 En(k)
∂ k y ∂k x

−B y

∂
2En(k )
∂ k z∂ k x

−Bz

∂
2En(k)
∂k x ∂k y

+Bx

∂
2En(k )
∂ k z∂ k y

+By

∂
2 En(k )
∂ k x ∂ k z

−Bx

∂
2 En(k)
∂ k y∂ k z

)=0

since energy E
n
 does not depend on position r

0
0

0

electric field E does not depend on position r

∂ f
∂ t
=(∂ f∂ t )scatt−v⃗⋅∇ r f −

˙⃗k⋅∇ k f

fragment of the last expression 
of the previous page:

δ n=[ ∂∂x ( f ( x) ẋ ) ]
x 0

dx dydz+[ ∂∂ y ( f ( y) ẏ ) ]
y0

dy dx dz+.. .
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The scattering term is due to: lattice vibrations, impurities, electron-electron scattering, 
electron-magnon scattering, vacancies, grain boundaries dislocations etc.

In steady state f is constant and we have: 

∂ f
∂ t
=(∂ f∂ t )scatt−v⃗⋅∇ r f −

˙⃗k⋅∇ k f
Boltzmann transport equation
 

● “derived under the condition that the fictitious particle representing electron 
executes a classical motion” [15]

● not valid for large external fields and when band-to-band transitions occur

(∂ f∂ t )scatt− v⃗⋅∇ r f −
˙⃗k⋅∇ k f =0 effect of fields

diffusion

The relaxation time approximation:
In general it is not possible to calculate scattering contribution to 
the change of f. In many applications it is useful to assume that 
disturbed system returns to equilibrium exponentially in time* [9]:  

(∂ f∂ t )scatt=−
f k−f k

0

k
f k (t)=f k

0
+Δ f k exp(−t / k )

relaxation time (in general 
different for each Bloch state)

*this approximation is valid for pure metals for temperatures exceeding Debye temperature and for contaminated metals (or those with 
defects) for all temperatures [9]
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Linearized Boltzmann equation
The distribution function can in general be expanded in powers of the driving field [18]: 

f=f 0
+(∂ f∂E )E⃗+( ∂

2 f

∂E 2 ) ⃗E 2
+...

, with f 0 given for electrons by Fermi-Dirac statistics [9]: 

f k
0
=

1
exp(Ek−EF)/k bT+1

“When the electric field is small, only a small amount of current flows. The system is only 
slightly out of equilibrium.” [19]. The distribution function can be written as: 

f=f 0
+f 1 f 1

is a small change
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Giant magnetoresistance from Boltzmann equation*
Investigating electron transport in thin films one can assume that the system is infinitely 
extended in xy-plane so that the distribution function depends only on z-coordinate 
(perpendicular to the film plane).
Using two-channel model of Mott the distribution function is decomposed into two parts:
-equilibrium distribution function f

0
(z,v) – in zero electric field

-small change g, induced by external field, that depends on electrons spin

*theory developed by J. Barnaś and coworkers [20]

f ↑(↓)(z , v⃗ )=f 0( v⃗ )+g
↑(↓)
(z , v⃗ )

Substituting the above distribution function into linearized Boltzmann equation in relaxation 
time approximation we obtain the expression for g [20]:

∂g↑(↓)(z , v⃗ )
∂ z

+
g↑(↓)(z , v⃗ )


↑(↓) v z

=
e E⃗
m v z

∂ f o( v⃗ )

∂ v x

Note that magnetoresistance results from the 
presence of external magnetic field through 
the orientation of magnetic moments of layers. 
Magnetic field does not explicitly occurs in the 
model.

p=m v=ℏ k

∂ f
∂ k
=
∂ v
∂ k

∂ f
∂ v
=
ℏ

m
∂ f
∂ v

∇ k →
ℏ

m
∇ v

Note that previously we had Boltzmann 
equation in r,k-space

● relaxation times are spin dependent (spin 
channels)

● g is divided into two parts depending on the sign 
of v

z
 component of velocity

m, e – electron effective mass and charge

ferromagnetic layers
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Giant magnetoresistance from Boltzmann equation*
Investigating electron transport in thin films one can assume that the system is infinitely 
extended in xy-plane so that the distribution function depends only on z-coordinate 
(perpendicular to the film plane).
Using two-channel model of Mott the distribution function is decomposed into two parts:
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● relaxation times are spin dependent (spin 
channels)

● g is divided into two parts depending on the 
sign of v

z
 component of velocity

m, e – electron effective mass and charge
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The general solution can be written as [20]:

g↑(↓)(z , v⃗ )=
e E⃗ ↑(↓)

m

∂ f o( v⃗ )

∂ v x

× [1+F↑(↓)(v ) exp(
z

↑(↓)∣v z∣)] 

 4 arbitrary functions to be 
determined from boundary 
conditions

Boundary conditions (BCs) – in steady state the 
current flowing in the conductor is continuous
At the interface at z=-a between the ferromagnetic 
film and the spacer BC can be written in the form:

 

where T and R are coefficients of a non-diffusive 
transmission and a reflection (conserving 
momentum, specular) of electrons. 
● the above condition states that in the vicinity of 

interface the current of electrons flowing in -z 
direction consists of electrons that came from 
region B and those which were heading in +z 
direction and were reflected back to region B

● fraction (1-T) of electrons is scattered diffusely

gA−
↑(↓)
(z , v⃗ )=T ↑(↓)gB−

↑(↓)
(z , v⃗ )+R ↑(↓)gA +

↑(↓)
(z , v⃗ ),
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The general solution can be written as [20]:

g↑(↓)(z , v⃗ )=
e E⃗ ↑(↓)

m

∂ f o( v⃗ )

∂ v x

× [1+F↑(↓)(v ) exp(
z

↑(↓)∣v z∣)] 

 4 arbitrary functions to be 
determined from boundary 
conditions

Similar Fuchs* BCs are introduced for outer 
interfaces with specularity factors depending 
generally on spin:

● the condition states that in the vicinity of the 
outer interface electrons traveling into the 
multilayer are those reflected from the interface 

● the electrons which are diffusely reflected do not 
contribute to conductivity along the film (their net 
contribution is zero)

● any angle dependence of the specularity is 
neglected for simplicity [20]

 

gA +
↑(↓)
(z , v⃗ )=pA

↑(↓)gA−
↑(↓)
(z , v⃗ ) z=−b

*remember Fuchs-Sondheimer theory of the resistivity of thin films
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At the fictitious interface at z=0 one can write [20]:

gC+
↑(↓)(z , v⃗ )=cos2(θ/2)gB+

↑(↓)(z , v⃗ )+sin2(θ /2)gB+
↓(↑)(z , v⃗ )

gB−
↑(↓)
(z , v⃗ )=cos2

(θ/2)gC−
↑(↓)
(z , v⃗ )+sin2

(θ /2)gC∓
↓(↑)
(z , v⃗ ),

which assures an agreement with observed resistance changes versus θ.
The total current (per unit length along the y axis; electric field is along x axis) is given by:

I=e∫dz∫d 3v [g ↑( v⃗ , z )+g ↓( v⃗ , z ) ] a sum of two spin-channels currents

2cos2(θ/2)−1=cos (θ)
1−2sin2

(θ/2)=cos (θ)

Note that all terms are 
proportional to cos(θ)

The equations were solved numerically
● the amplitude of magnetoresistance is given by

GMR=
ρ↑ ↓−ρ↑ ↑

ρ↑ ↑

To better analyze the results additional parameters are introduced 
to describe:
● the spin asymmetry of the diffusive scattering of electrons at 

interfaces

● spin asymmetry of the bulk scattering rate in the ferromagnetic 
material

N b=λ
↑/λ ↓ λ - electron mean free paths

N s=(1−T ↑)/(1−T ↓)
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The main results of the analysis of Barnaś et al. 
[20] can be summarized as follows [21]:

● GMR increases monotonically with mean free 
path λ if the interface scattering dominates

● GMR displays clear maximum versus λ if the 
bulk scattering dominates

Assumptions:

●

●                   conductivities of all layers are equal

●                                 - no scattering at                 
                                  interfaces

image from: J. Barnaś, A. Fuss, R.E. Camley, P. Grunberg, W. Zinn, Phys. Rev. B 42, 8110 (1990)
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pA
↑= pA

↓= pD
↑= pA

↓= p

r=s=t=1

D ↑(↓)=(1−T ↑(↓) )=0
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The main results of the analysis of Barnaś et al. 
[20] can be summarized as follows [21]:

● GMR decreases monotonically with the 
thickness of ferromagnetic layer if the 
interface scattering dominates

● GMR shows a distinct maximum versus 
thickness of the ferromagnetic layers if the 
bulk scattering dominates (if the thickness of 
the ferromagnetic layer exceeds λ part of it 
becomes inactive in GMR but still contributes 
to conductivity [21]) 

image from: J. Barnaś, A. Fuss, R.E. Camley, P. Grunberg, W. Zinn, Phys. Rev. B 42, 8110 (1990)
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The main results of the analysis of Barnaś et al. [20] can be summarized as follows [21]:

● GMR increases monotonically with mean free path λ if the interface scattering dominates

● GMR displays clear maximum versus λ if the bulk scattering dominates

● GMR decreases monotonically with the thickness of ferromagnetic layer if the interface 
scattering dominates

● GMR shows a distinct maximum versus thickness of the ferromagnetic layers if the bulk 
scattering dominates (if the thickness of the ferromagnetic layer exceeds λ part of it 
becomes inactive in GMR but still contributes to conductivity [21])

●  GMR increases with the increase of repetition number of basic bilayers 
(ferromagnet/nonmagnetic spacer) – number of GMR active interfaces within λ increases 
(additionally in thick multilayers the influence of outer surfaces of the system decreases)  
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Angular dependence of GMR

image from B. Dieny, V.S. Speriosu, S.S.P. Parkin,
B.A. Gurney, D.R. Wilhoit, D. Mauri, Phys. Rev. B 43, 1297 (1991)

ΔR∝cos(θ)
● in the limit of quantum transport (QT) 

deviations from the dependence occur due to 
interference of electron waves reflected from 
interfaces and/or surfaces [23]

● in QT limit the dependence is proportional to 
cosine if the structure is symmetrical and the 
crystal potential is independent of spin

● in the case of current perpendicular to plane 
geometry (CPP) the significant deviations 
were observed too [23]

CPP geometry
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Angular dependence of GMR
● knowing field dependence of magnetic moments configuration one can approximately 

predict the shape (not the amplitude!) of R(H) dependence

example: GMR of spin valve with two layers of different switching fields

soft layer switches

hard layer switches
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Angular dependence of GMR
● knowing field dependence of magnetic moments configuration one can approximately 

predict the shape (not the amplitude!) of R(H) dependence

example: GMR of spin valve with two layers of different switching fields

soft layer switches

hard layer switches

● Co(10nm)/Au(6nm)/Co(10nm)

● note the increase of GMR amplitude with 
decreasing temperature (increase of mean free 
path and a decreased phononic contribution) from 
1.2 to1.7%

● magnetic layers have different magnetic moments 
so after switching of the soft layer the net 
magnetization is different from zero

image from: J. Barnaś, A. Fuss, R.E. Camley, 
P. Grunberg, W. Zinn, Phys. Rev. B 42, 8110 (1990)

A digression:

“All these features can be used for verification of the 
theoretical predictions with the experimental results. 
However, the most reliable one seems to be the 
temperature dependence of the effect. This follows from 
the fact that the relevant experiments are performed on 
one single sample. In the case of other features one 
has to compare data obtained on different samples.” J. 
Barnaś et al. [20]
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The magnetic interactions between magnetic ions in a solid depend on numerous factors 
(neighboring ions, temperature, external fields etc.)
In some case to describe the system one uses Hamiltonian involving simultaneous 
interaction between several spins [35,36]: 

E4 s=−∑
ijkl

K ijkl [( S⃗i⋅S⃗ j)( S⃗k⋅S⃗l)+( S⃗i⋅S⃗l)( S⃗ j⋅S⃗ k)−( S⃗i⋅S⃗k )( S⃗ j⋅S⃗l)]
the energy term involves orientations of 
all four spin

In some other cases it is not enough to use bilinear forms* and biquadratic forms are 
introduced in addition

E4 s=−∑
ij

K ij( S⃗i⋅S⃗ j)
2

θ

S1 S2
r12

*"Form refers to a polynomial function in several variables where each term in the polynomial has the same degree. 
The degree of the term is the sum of the exponents." - K.C Border [37]

In most relevant cases however it is enough to use only two spin 
terms that are bilinear [38]

Ebilinear=−∑
ij

K ij S1
i S2

j
=K xx S1

x S2
x
+K xy S1

x S2
y
+ .. .

Kij is a coupling 3×3 matrix, and in matrix notation we have

Ebilinear= S⃗1[K ] S⃗2
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The interaction matrix, like any 3×3 matrix [38], may be decomposed into a multiple of the 
identity matrix, an antisymmetric part (three different coefficients), and traceless* symmetric 
part:

*trace of a matrix – a sum of diagonal elements

K ij=[
K11 K12 K13

K21 K22 K23

K31 K32 K33
]=J [

1 0 0
0 1 0
0 0 1 ]+[

0 D1 D2

−D1 0 D3

−D2 −D3 0 ]+[
A1 A4 A5

A 4 A 2 A 6

A5 A6 A3
]

J S⃗1[
1 0 0
0 1 0
0 0 1] S⃗2=S1

x S2
x
+S1

y S2
y
+S1

zS2
z
=J S⃗1⋅S⃗2 Ebilinear= S⃗1[K ] S⃗2exchange coupling

S⃗1[
0 D1 D2

−D1 0 D3

−D2 −D3 0 ] S⃗2=−D1S1
y S2

x
−D2S1

z S2
x
+D1S1

x S2
y
−D3S1

z S2
y
+D2S1

x S2
z
+D3 S1

y S2
z

=D1(S1
x S2

y
−S1

y S2
x
)−D2(S1

z S2
x
−S1

x S2
z
)+D3(S1

y S2
z
−S1

zS2
y
)

=( î D3,− ĵ D2, k̂ D1)⋅S⃗1× S⃗2=D⃗⋅( S⃗1×S⃗2)
Dzyaloshinskii-Moriya 
interaction
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The interaction matrix, like any 3×3 matrix [38], may be decomposed into a multiple of the 
identity matrix, an antisymmetric part (three different coefficients), and traceless* symmetric 
part:

*trace of a matrix – a sum of diagonal elements

The matrix of the dipole-dipole interaction

Edipole−dipole=
−μ0

4 π | r |3
[3( ^r12⋅S⃗1)( ^r12⋅S⃗2)− S⃗1⋅S⃗2 ] , ^r12 - unit vector along the vector connecting two spins

reads

M dipole−dipole=
−μ0

4 π | r |3 [
3 r̂x

2
−1 3 r̂ x r̂ y 3 r̂ x r̂z

3 r̂ x r̂ y 3 r̂ y
2
−1 3 r̂ y r̂ z

3 r̂ x r̂ z 3 r̂ y r̂ z 3 r̂ z
2
−1] , r̂x

2
+ r̂ y

2
+ r̂ z

2
=1

K ij=[
K11 K12 K13

K21 K22 K23

K31 K32 K33
]=J [

1 0 0
0 1 0
0 0 1 ]+[

0 D1 D2

−D1 0 D3

−D2 −D3 0 ]+[
A1 A4 A5

A 4 A 2 A 6

A5 A6 A3
]

Mathematica 9.0.1.0 code to get dipole-dipole matrix:
n =3;
wer={"x","y","z"};
r =Table[ ToExpression [StringJoin ["r",wer[[ i]]]],{i,1,n}];
S1 =Table[ ToExpression [StringJoin ["S1",wer[[ i]]]],{i,1,n}];
S2 =Table[ ToExpression [StringJoin ["S2",wer[[ i]]]],{i,1,n}];
macierz=Table[ToExpression[StringJoin["S1", wer[[i]],"*S2",wer[[j]]]],{i,1,n},
{j,1,n}];
m= Expand[ 3( r.S1)( r.S2)-S1.S2];(*write in here the spin hamiltonian (two 
spin interaction), example dipole-dipole:
m= Expand[ 3( r.S1)( r.S2)-S1.S2];
*)
macierz2 =Table [Coefficient [m,macierz[[ i,j]]],{i,1,n},{j,1,n}] ;(*macierz2 is 
the interaction matrix*)
TraditionalForm[macierz2]

symmetric, traceless



  

Spin coupling

Anisotropic spin-spin interactions – those terms of the spin Hamiltonian that are not 
invariant under rotation in spin space (unaccompanied by rotation in real space) [38]

Compare two states:
● one spins point in +z direction and the other one in -z direction; both spins are on y-axis:

● as above but both spins (not spinors) are rotated by 90 Deg about x-axis

S1
x
=0, S1

y
=0, S1

z
=1; S2

x
=0, S2

y
=0, S2

z
=−1 ; r̂ x=0, r̂ y=1, r̂ z=0

S1
x
=0, S1

y
=1, S1

z
=0 ; S2

x
=0, S2

y
=−1, S2

z
=0 ; r̂ x=0, r̂ y=1, r̂ z=0

The energies obtained in both cases are different – dipole-dipole interaction is anisotropic

Edipole−dipole=
−μ0

4 π |r |3
Edipole−dipole=

μ0

2π | r |3

before rotation after rotation



  

Magnetoresistance

RKKY-like interlayer coupling
● two Fe layers separated by a Cr wedge-shaped spacer; scanning electron microscopy with 

polarization analysis (SEMPA)
● measurement on a single specimen!
● up to six oscillations in coupling were
   observed

image from J. Unguris, R. J. Celotta, and D. T. Pierce Phys. Rev. Lett. 67, 140 (1991)

Obtaining wedge-shaped films:

movable shutter

film



  

Magnetoresistance

RKKY-like interlayer coupling
● two Fe layers separated by a Cr wedge-shaped spacer; scanning electron microscopy with 

polarization analysis (SEMPA)
● measurement on a single specimen!
● up to six oscillations in coupling were 
   observed
●

image from J. Unguris, R. J. Celotta, and D. T. Pierce Phys. Rev. Lett. 67, 140 (1991)

● different periods of coupling depending 
on temperature of the substrate during 
 the film growth: samples grown at 
elevated temperature are of better quality 
and the magnetization of the upper Fe 
layer changes with each atomic-layer 
change in Cr thickness

● “lower quality” samples display only 
RKKY-like coupling

grown at elevated temperatures (200-300oC)



  

Magnetoresistance

RKKY-like interlayer coupling

Magnetic impurity in a 
conducting medium 
induces spatial 
fluctuations of spin 
polarization of s-
electrons about the 
impurity [9]
● the oscillatory term 

of wave number 2 k
F
 

falls off like r-3 at 
large distances 

electrons

impurity

downup



  

Magnetoresistance

RKKY-like interlayer coupling

Magnetic impurity in a 
conducting medium 
induces spatial 
fluctuations of spin 
polarization of s-
electrons about the 
impurity [9]
● the oscillatory term 

of wave number 2 
k

F
* falls off like r-3 at 

large distances
● the second impurity 

placed in the vicinity 
experiences 
interaction with the 
first impurity

● depending on the  
distance between 
impurities the 
interactions may be 
ferromagnetic or 
antiferromagnetic

*Fermi wave vector



  

Magnetoresistance

RKKY-like interlayer coupling

Magnetic impurity in a 
conducting medium 
induces spatial 
fluctuations of spin 
polarization of s-
electrons about the 
impurity [9]
● the oscillatory term 

of wave number 2 k
F
 

falls off like r-3 at 
large distances

● the second impurity 
placed in the vicinity 
experiences 
interaction with the 
first impurity

● depending on the  
distance between 
impurities the 
interactions may be 
ferromagnetic or 
antiferromagnetic

r⃗
JRKKY ∝

1

r 3 cos(2 k F r)



  

Magnetoresistance

RKKY-like interlayer coupling

A plane composed of 
exchange coupled 
impurities creates 
spatial oscillations of 
spin polarization in the 
direction perpendicular 
to its surface
● if the moments are 

strongly coupled 
ferromagnetically 
they form a 
ferromagnetic layer

● a similar, parallel, 
layer or multilayer 
placed a certain 
distance away 
experiences 
ferromagnetic or 
antiferromagnetic 
coupling depending 
on a distance from 
the first layer

schematic drawing of a RKKY spin polarization due 
to single atom thick (11´11atoms) layer of 
impurities*

*the drawing shows the sign of the coupling (black and gray correspond to positive and negative spin polarization)

Mathematica 4 code to obtain the RKKY-sketch shown above:
(*first three values - observation point, next 3 - position of impurity*)
RKKY[x_, y_, z_, ax_, ay_, az_] := 
    Cos[1*((x - ax)^2 + (y - ay)^2 + (z - az)^2)^(0.5)]*((x - ax)^2 + (y - 
                  ay)^2 + (z - az)^2)^(-3/2);
(*yline - line of impurities with y starting from 0 *)
yline[xp_, yp_, zp_, pz_] := 
    Sum[RKKY[xp, yp, zp, 0, i*5, pz], {i, 0, 10, 1}];
(*DensityPlot[UnitStep[yline[x, y, 0, 0]], {x, 0, 20}, {y, -10, 60}, 
    PlotPoints -> {60, 60}]*)
(*sheet - set of ylines, with z starting from 0 *)
sheet[xq_, yq_, zq_]  = Sum [ yline[xq, yq, zq, i*5], {i, 0, 10, 1}];
DensityPlot[UnitStep[sheet[x, y, 25]], {x, 0, 40}, {y, -20, 70}, 
  PlotPoints -> {200, 200*   9/4  }, AspectRatio -> 9/4, Mesh -> False, 
  ImageSize -> 600]

in case of quasi-infinite/real ferromagnetic layer the 
lines delimiting areas of opposite spin polarization 
would not be bowed except at the ends



  

Magnetoresistance

RKKY-like interlayer coupling

*the drawing shows the sign of the coupling (black and gray correspond to positive and negative spin polarization)

A

B

the coupling along AB line

Theoretical considerations show that the 
coupling between two ferromagnetic layers 
is inversely proportional to the square of the 
spacer thickness [30]

JRKKY ∝
1

r 2

typically (with noble metal 
spacers) and transition metals 

ferromagnetic layers the 
coupling is of the order of 

1´10-6 Jm-2 in the first 
antiferromagnetic maximum



  

Magnetoresistance

RKKY-like interlayer coupling

image from: F. Stobiecki, T. Luciński, R. Gontarz, M. Urbaniak, Materials Science Forum 287, 513 (1998)

● Si(100)/Cu(20nm)[Ni83Fe17(2nm)/Cu(tCu)]100

● GMR reflects the oscillatory character of the RKKY-like coupling between permalloy layers
● in MLs with identical magnetic layers (the same switching fields) GMR can be observed 

only for spacer thicknesses corresponding to antiferromagnetic coupling; otherwise the 
magnetic field does not change relative orientation of magnetic moments of neighboring 
layers



  

Magnetoresistance

RKKY-like interlayer coupling

image from: F. Stobiecki, T. Luciński, R. Gontarz, M. Urbaniak, Materials Science Forum 287, 513 (1998)

AF-coupling

F
-c

ou
pl

in
g

schematic 
hysteresis loop for 
AF-coupled layers 

for the case of 
exchange energy 
much exceeding 

magnetic 
anisotropy



  

Magnetoresistance

Inverse CPP GMR [31]
● “Fe doped with V gains negative spin 

asymmetry for bulk scattering” - the up-spin 
channel is characterized by higher resistivity

● similarly the interface resistivity depends on 
spin orientation – factor γ (positive)

● in (FeV/Cu/Co/Cu)20 multilayers the 
resistance of saturated system (all 
magnetizations pointing in one direction) may 
be higher than for the case of antiparallel 
orientation of magnetizations in neighboring 
magnetic layers

● depending on the FeV layer thickness the 
GMR can be either normal or inverse; at 
small FeV layer thicknesses the interface 
scattering dominates resulting in normal GMR

● the crossover thickness of FeV layers lies 
between 2 and 3 nm

image from: S.Y. Hsu, A. Barthélémy, P. Holody, R. Loloee, P. A. Schroeder, A. Fert, Phys. Rev. Lett. 78, 2652 (1997)

ρ↑(↓)=ρ bulk (1∓β )



  

Magnetoresistance

Typical GMR systems

- nonmagnetic conductor

- different ferromagnetic conductors

- antiferromagnet



  

Magnetoresistance

Typical GMR systems

- nonmagnetic conductor

- different ferromagnetic conductors

- antiferromagnet

GMR (or TMR*) in systems with exchange 
bias
● magnetization of ferromagnetic layer F1 

“fixed” by the anisotropy of the 
antiferromagnetic layer

● magnetization of the F2 layer is “free” to 
rotate in external magnetic field

● both conducting and insulating spacer 
may be used

● very high field sensitivities of the effect 
achievable

image from: M. Urbaniak, J. Schmalhorst, A. Thomas,
H. Brückl, G. Reiss, T. Luciński, F. Stobiecki

Phys. Stat. Sol. (a) 199, 284 (2003)

insulator

*tunneling magnetoresistance

F1 F2



  

Magnetoresistance

Typical GMR systems

- nonmagnetic conductor

- different ferromagnetic conductors

- antiferromagnet

Granular GMR (G2MR)
● magnetic grains in nonmagnetic 

matrix (content below percolation 
threshold)

● resistance saturates in high fields

image from: M. Urbaniak, I. Gościańska, H. Ratajczak,
Phys. Stat. Sol. (a) 160, 121 (1997)

directions of the magnetic 
moments within the grain 
depend on external field and 
on the effective magnetic 
anisotropy of the grain 
(shape, magnetocrystalline 
etc.) and on interactions 
with other grains.



  

Magnetoresistance

Typical GMR systems

- nonmagnetic conductor

- different ferromagnetic conductors

- antiferromagnet
image from: E. Vélu, C. Dupas, D. Renard, J.P. Renard, J. Seiden, Phys. Rev. B 37, 668 (1988)

GMR in systems with 
perpendicular magnetic 
anisotropy

● two Co layers with slightly 
different coercive fields

● first observation of GMR – 
before “Nobel papers” by 
A. Fert and P. Grünberg; the 
explanation (three different 
mechanisms proposed) of the 
effect was not correct



  

Magnetoresistance

Typical GMR systems

- nonmagnetic conductor

- different ferromagnetic conductors

- antiferromagnet
image from: M. Urbaniak, J. Appl. Phys. 104, 094909 (2008)

GMR in systems with alternating direction of 
magnetic anisotropy
● maximal angle between magnetic moments of 

neighboring magnetic layers approx. 90 deg
● in Mls the domain structure of one layer can 

influence the reversal of the second layer
● approx. linear dependence of resistance on 

the applied perpendicular field strength – 
sensor applications
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