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Spin devices II

● Magnetic semiconductors

● Spin injection

● Spin transistors



  

Metals, half-metals, etc.

Energy bands in various types of materials
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Heusler compounds

Ferromagnetic (or ferrimagnetic etc.) properties are usually associated with transition 
metals Fe, Co, Ni and their alloys/compounds.
The family of compounds XYZ (half-Heusler) or X2YZ (full-Heusler) with X,Y typically 
transition metals and Z main group element can be tailored to show ferromagnetism, 
superconductivity or insulating properties [3]. Some of Heusler compounds display half-
metallicity with potential for applications in spintronics.
Spin polarization of a material:

P0=
N↑−N↓

N↑+N↓

, N↑ , N↓−density of states, at Fermi energy, for majority/minority electrons

In 3d ferromagnets the positive spin polarization is associated with more mobile 4s 
electrons which are polarized by hybridization with 3d states [4]
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● NiMnSb, NiMnV2 [4], Mn2VAl, Co2TiSn, 
Co2FeSi [5] etc.  - half metallic Heusler 
compounds

● Heuslers are attractive because of their 
relatively high Curie temperature in relation to 
other half-metals [5] 

● Half-metals can be considers hybrid between 
metals and semiconductors – electrons with 
one spin display metallic behavior the others 
act like in a semiconductor [5]



  

Giant TMR - example

The highest amplitude to-day tunneling magnetoresistance amplitude was obtained using 
half metallic Heusler Co2MnSi compound

image from: H-Xi. Liu , Y. Honda, T. Taira , K-ichi. Matsuda , M. Arita , T. Uemura, M. Yamamoto, Appl. Phys. Lett.  101, 132418  (2012) [7]

● MgO(001)/MgO(10nm)/CoFe(30nm)/Co2Mn
Si/MgO/Co2MnSi

● Tc = 985K

● room temperature (290K) TMR≈340%

Compare with old “metallic” TMR:

MgO buffered MgO(001) – MgO 

deposited on MgO crystal 
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Diluted magnetic semiconductors

There is an ongoing search for materials displaying both magnetic and semiconductor 
properties.
Most magnetically doped semiconductors and semiconductor oxides, that display 
ferromagnetic features, can be grouped into two main classes [1]:
● uniform systems with randomly distributed transition metals cations (Mn,Fe,Co,Ni) 

where spin-spin interactions are mediated by holes [eg. (Ga,Mn)As]

● In1-xMnxAs epilayers [2]

● Mn implantation (100keV) followed by pulsed 
laser melting on InAs (001) substrates

● ferromagnetism, low saturation field, Tc=82K 
at x=0.105

● perpendicular magnetic anisotropy (field 
parallel to [001] axis) – due to strain induced 
by the Mn ion substitution

image from: Y. Yuan et al., Journal of Physics D Applied Physics 48, 235002 (2015) [2]



  

Diluted magnetic semiconductors

There is an ongoing search for materials displaying both magnetic and semiconductor 
properties.
Most magnetically doped semiconductors and semiconductor oxides, that display 
ferromagnetic features, can be grouped into two main classes [1]:
● heterogeneous systems with non-random distribution of magnetic elements – 

ferromagnetic-like properties are determined by nanoregions with high concentration of 
magnetic cations

“The element-semiconductors silicon and germanium are widely used, but nowadays 
binary, ternary, and even quaternary semi- conductors such as GaN,GaP1−xAsx, or 
Cu(GaIn)Se2 play an important role in electronics and materials for energy conversion. 
More elements allow for more degrees of freedom such as band-gap tuning and multi-
functionality.” - C. Felser et al. 

chemical phase separation
(spinodal decomposition)

for examples see A. Bonani et al.[9]



  

Spin-injection

● an unpolarized current (both spin channels carrying equal current) is flowing under the 
action of an EelecrtoMotoricForce into left ferromagnet (electrode, LE)

● the current experiences polarization and enters the middle, non-ferromagnetic (NM) 
conductor 

● the surplus spin is not dissipated at once but increases magnetic moment at the 
interface – spin accumulation [10]. Its extent is determined by an equilibrium between 
spin injection rate and spin-flip rate in NM

non-ferromagnetic conductor
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● an unpolarized current (both spin channels carrying equal current) is flowing under the 
action of an EelecrtoMotoricForce into left ferromagnet (electrode, LE)

● the current experiences polarization and enters the middle, non-ferromagnetic (NM) 
conductor 

● the surplus spin is not dissipated at once but increases magnetic moment at the 
interface – spin accumulation [10]. Its extent is determined by an equilibrium between 
spin injection rate and spin-flip rate in NM

● the spins injected into NM experience scattering and after some time τ↑↓, on average 
their magnetization is zero. They travel in that time a spin diffusion length



  

Spin-injection

● an unpolarized current (both spin channels carrying equal current) is flowing under the 
action of an EelecrtoMotoricForce into left ferromagnet (electrode, LE)

● the current experiences polarization and enters the middle, non-ferromagnetic (NM) 
conductor 

● the surplus spin is not dissipated at once but increases magnetic moment at the 
interface – spin accumulation [10]. Its extent is determined by an equilibrium between 
spin injection rate and spin-flip rate in NM

● the spins injected into NM experience scattering and after some time τ↑↓, on average 
their magnetization is zero. They travel in that time a spin diffusion length

● only if spin diffusion length is longer than the conductor connecting the ferromagnetic 
electrodes the magnetic state of the left electrode can influence the state of right one



  

Einstein relation*

Consider electron gas at 0K: drift current and diffusion currents at steady state must be 
equal [11]. We have then

j⃗e+ j⃗ D=σ E⃗+e D∇ n , D -diffusion constant, n -particle density [ m−3 ], σ -conductivity (1)

Electrochemical potential is defined as

and its gradient can be written asμ=−eV +E F

inserting gradient of n (Eq.1) into the above equation gives

∇μ=e E⃗+∇ E F=e E⃗+
dE F

d n
∇ n=e E⃗+

1
D(E F)

∇ n

D (E F)=( d n
dE )E F

→
dE F

d n
=

1
D (E F )

∇μ=e E⃗− 1
D (E F)

σ E⃗
D e
=(e− 1

D (E F )
σ

D e ) E⃗

Because electrochemical potential is spatially constant at thermal equilibrium [11] and E is 
arbitrary we get*

∇μ=0

σ=e2 D(E F)D

*for electrons. Classical Einstein relations for Brownian motion at equilibrium relates proportionality factor between terminal velocity under 
the action of force in viscous liquid and that force with diffusion constant [12]

μB=( ∂G
∂ nB

)t , p ,n X≠B

G=U−TS+ pV -Gibbs energy;
formerly free energy or free enthalpy [13]

j⃗=−D∇ n-Fick's first law



  

Spin diffusion*

We analyze separately both spin channels (↑ and ↓). The current density is proportional to 
a gradient of the electrochemical potential:

*the derivation follows T. Schäpers Semiconductor Spintronics, De Gruyt [11]

∂μ
↑ ,↓

∂ x
=
−e j↑ ,↓

σ
↑ ,↓

(2)j⃗e=σ E⃗ → E⃗=
je
σ → electric force: F⃗ e=e E⃗=

e j e
σ , −

∂μ
↑ ,↓

∂ x
=force

The spin diffusion equation, in 1D, reads (this comes from the second Fick’s law)

μ
↑
−μ

↓

τ sf
=D

∂
2
(μ
↑
−μ

↓
)

∂ x2

The general solution of the above equation is

μ↑−μ↓=C 1(t)e
x

√D τ sf +C2 (t)e
−

x

√D τsf , where √D τsf is a spin diffusion length

● Spin diffusion length is a typical length scale on which the spin information is lost

Exemplary solution of diffusion equation 
for a constant concentration of diffusing 
species at x=0 [14] – complementary error 
function:

D=1, Cs=1                                  t-time

c( x , t)=C s erfc (
x

2√Dt
)

this is written in a relaxation time approximation - τ↑↓ 
determines the return to equilibrium

∂C
∂ t

=D∇ 2C

C-concentration



  

Spin diffusion

The expression for the spin polarization, using the Einstein relation, can be written as

P0 ,β=
N ↑−N ↓

N ↑+N ↓

=
D↑(E F)−D↓(E F )

D↑(E F)+D↓(E F )
σ=e 2 D(E F )Dβ=

σFM
↑
−σFM

↓

σFM
↑
+σFM

↓

In non-ferromagnetic semiconductor the conductivity does not depend on spin

σ SC
↑ ,↓
=

1
2
σSC → β=0

We want to find the profile of the electrochemical potential in the vicinity of the ferromagnet/ 
semiconductor interface. The general solutions of the diffusion equation are [11]

μ
↑ ,↓
(x)=μ0

FM
+a x+c↑ ,↓e x / λFM for x≤0

μ
↑ ,↓
(x)=μ0

SC
+b x+d↑ ,↓ e−x /λSC for x>0

μ↑−μ↓

λ sf
2 =

∂2(μ↑−μ↓)

∂ x2

The relation between both c coefficients can be found from current conservation -

the total current must be constant:
μ0

FM
=0

μ0
SC
→ μoff(set)

j (x)= j↑(x)+ j↓(x)=const

In order to fit both μ dependences at the interface it suffices to have one offset coefficient

x=0

ferromagnet semiconductor

scattering center

λ sf=√D τ sf



  

Spin diffusion

We obtain the current density inserting the solution for the ferromagnet into equation (2)

∂μ↑ ,↓

∂ x
=
−e j↑ ,↓

σ
↑,↓ ← μ↑ ,↓( x)=a x+c↑ ,↓ e x /λ FM

j↑ ,↓
=−

σFM
↑ ,↓

e
∂μ

↑ ,↓

∂ x
=−

σFM
↑ ,↓

e (a+c↑ ,↓

λ FM
e x / λFM )

We assume that the total current density at x=-∞ and at x=0 is the same. We have then

j (−∞)= j↑(−∞)+ j↓(−∞)=−
σFM
↑

e
(a+0 )−

σFM
↓

e
(a+0 )

j (0)= j↑(0)+ j↓(0)=−
σFM
↑

e (a+c↑

λFM
)−
σFM
↓

e (a+c↓

λ FM
)

Equating both currents we get

σFM
↑

e
c↑

λFM
+
σFM
↓

e
c↓

λ FM
=0 → c↑=−c↓

σFM
↓

σFM
↑

We assume that spin-diffusion length in 
ferromagnet is the same for both spin 

channels

Analogous calculations can be performed for semiconductor side (x>0) and since both spin 
channels have equal conductivity we have

d↑=−d↓
σSM
↓

σSM
↑ =−d↓

σSM /2

σSM /2
→ d↑=−d↓ σ SC

↑ ,↓=
1
2
σ SC

μ
↑ ,↓
( x)=a x+c↑ ,↓e x / λFM for x≤0

μ↑ ,↓( x)=μoff +b x+d↑ ,↓e−x /λSC for x>0

The electrochemical potential is continuous everywhere, and in particular at x=0:

μFM
↑ ,↓
(0)=μSC

↑ ,↓
(0)

μFM
↑ (0)=μSC

↑ (0): c↑=μoff +d↑

μFM
↓
(0)=μSC

↓
(0): c↓=μoff +d↓



  

Spin diffusion

The coefficients d and μoff are thus given by
c↑=μoff +d↑

c↓=μoff +d↓
μoff=

c↑+c↓

2
d↑=

c↑−c↓

2
d↑=−d↓

From the limits x=-∞ and x=∞, for ferromagnet and semiconductor respectively, we obtain

j↑ ,↓=−σ
↑ ,↓

e
∂μ↑ ,↓

∂ x
(2)j FM (−∞)= j FM

↑
(−∞)+ j FM

↓
(−∞)=−

(σFM
↑ +σFM

↓ )a

e
=−

σ FM a

e

j SC (+∞)= j SC
↑
(+∞)+ j SC

↓
(+∞)=−

(σ SC
↑
+σ SC

↓
)b

e
=−

σ SC b

e

and since                                     we havej FM (−∞)= jSC (+∞):= j a=−
e j
σFM

b=−
e j
σSC

From the continuity of up current at x=0 we get

j↑(0)FM=−
σFM
↑

e (a+c↑

λ FM
)=−

σ SC /2

e (b−d↑

λSC
)= j↑(0)SC which transforms to

−
σ FM
↑

e (a+c↑

λ FM
)=−

σ SC /2

e (b−( c↑−c↓

2 ) 1
λSC ) →

σFM
↑

e (a+c↑

λFM
)=
σ SC

2 e (b−c↑(1+σ FM
↓

σFM
↑ ) 1

2λSC )
c↑=−c↓

σ FM
↓

σFM
↑

Using expressions for a and b we can relate the above equation entirely to properties of 
the system (i.e. without arbitrary constants) 

σFM
↑

e (− e j
σFM

+
c↑

λFM
)=
σ SC

2 e (− e j
σ SC
−c↑(1+σFM

↓

σFM
↑ ) 1

2λSC )
● The equation contains only materials parameters of 

ferromagnet and semiconductor and “experimental” 
variable – current

● it allows finding c↑



  

Spin diffusion

Heaving found c↑ we can obtain the values of all coefficients of solution of the problem. The 
coefficients* are (the exact form of expressions is taken verbatim from T. Schäpers [11])

c↑=−
λSC
σ SC

e jβ(1−β)

1+
λSC

λFM

σ FM
σSC

(1−β)2

*the equations are just for reference -do not try to memorize them

c↓=+
λ SC
σ SC

e jβ(1+β)

1+
λSC

λ FM

σFM
σ SC

(1−β)2

d↑=−d↓=−
λSC

σ SC

e jβ

1+
λSC

λFM

σFM

σSC
(1−β)2

μoff=+
λ SC
σ SC

e jβ2

1+
λSC

λ FM

σFM
σ SC

(1−β)2

β=
D↑(E F )−D↓(EF )

D↑(E F )+D↓(EF )

a=−
e j
σFM

b=−
e j
σSC

Using these coefficients the electrochemical potential for both spin channels, both in 
ferromagnet and in semiconductor, can be calculated



  

Spin diffusion

Using coefficients from previous slide we can plot the electrochemical potential in the 
ferromagnet and in the semiconductor

μ
↑ ,↓
( x)=μ0

FM
+a x+c↑ ,↓ e x / λFM for x≤0

μ
↑ ,↓
( x)=μ0

SC
+b x+d↑ ,↓e−x /λSC for x>0

Mathematica 9 code to get the plot:
cup[e_,j_,B_,Lsc_,Lfm_,Ssc_,Sfm_]:=-(Lsc/Ssc)*(e j B (1-B))/(1+Lsc/Lfm*Sfm/Ssc (1-B^2));
cdown[e_,j_,B_,Lsc_,Lfm_,Ssc_,Sfm_]:=Lsc/Ssc*(e j B (1+B))/(1+Lsc/Lfm*Sfm/Ssc (1-B^2));
dup[e_,j_,B_,Lsc_,Lfm_,Ssc_,Sfm_]:=-(Lsc/Ssc)*(e j B)/(1+Lsc/Lfm*Sfm/Ssc (1-B^2));
ddown[e_,j_,B_,Lsc_,Lfm_,Ssc_,Sfm_]:=Lsc/Ssc*(e j B)/(1+Lsc/Lfm*Sfm/Ssc (1-B^2));
mu0[e_,j_,B_,Lsc_,Lfm_,Ssc_,Sfm_]:=Lsc/Ssc*(e j B^2)/(1+Lsc/Lfm*Sfm/Ssc (1-B^2));
e=1;
j=1;
B=0.5;
Lsc=10;
Lfm=10;
Ssc=1;
Sfm=10;
(*FMup and SCup,FMdown and SCdown*)
Plot[{Piecewise[{{-((e j)/Sfm) x +cup[e,j,B,Lsc,Lfm,Ssc,Sfm]*Exp[x/Lfm],x<=0},{mu0[e,j,B,Lsc,Lfm,Ssc,Sfm]-((e j)/Ssc) x +dup[e,j,B,Lsc,Lfm,Ssc,Sfm]*Exp[-x/Lfm],x>0}}],Piecewise[{{-((e j)/Sfm) x +cdown[e,j,B,Lsc,Lfm,Ssc,Sfm]*Exp[x/Lfm],x<=0},{mu0[e,j,B,Lsc,Lfm,Ssc,Sfm]-((e j)/Ssc) x 
+ddown[e,j,B,Lsc,Lfm,Ssc,Sfm]*Exp[-x/Lfm],x>0}}]},{x,-100,100}, Frame->True,PlotStyle->{{RGBColor[1,0,0], Thickness[0.005]},{RGBColor[0,0,1],Thickness[0.005]},{RGBColor[0,0,1],Thickness[0.002]},{RGBColor[1,0.5,0.5],Thickness[0.002]}},AxesStyle->Directive[GrayLevel[0],AbsoluteThickness[1]],ImageSize-
>{600},BaseStyle->{FontSize->20, FontWeight->"Normal"},FrameStyle->Directive[AbsoluteThickness[2]],FrameTicks->{{Union[Table[-100+i*20,{i,0,5}],{10}],None},{Automatic,None}}]

● Conductivity of the 
ferromagnet 10 times higher 
than that of the 
semiconductor

● The same spin-diffusion 
length both in the ferromagnet 
and in the semiconductor

● Not that different slopes of μ 
versus x in both regions 
reflects different conductivities 

ferromagnet semiconductor

β=0.5
λSC=10
λFM=10

σFM

σSC
=10



  

Spin diffusion

Using coefficients from previous slide we can plot the electrochemical potential in the 
ferromagnet and in the semiconductor

μ
↑ ,↓
( x)=μ0

FM
+a x+c↑ ,↓ e x / λFM for x≤0

μ
↑ ,↓
( x)=μ0

SC
+b x+d↑ ,↓e−x /λSC for x>0

● Conductivity of the 
ferromagnet 10 times higher 
than that of the 
semiconductor

● The same spin-diffusion 
length both in the ferromagnet 
and in the semiconductor

β=0.5
λSC=10
λFM=10

● Not that different slopes of μ 
versus x in both regions 
reflects different conductivities 

ferromagnet semiconductor

● electrons from up and down spin channels have different electrochemical potential 
roughly within spin diffusion length from the ferromagnet/semiconductor interface.

● within the bulk of the semiconductor the potentials are equal.

σFM

σSC
=10



  

Spin diffusion

Using coefficients from previous slide we can plot the electrochemical potential in the 
ferromagnet and in the semiconductor

μ
↑ ,↓
( x)=μ0

FM
+a x+c↑ ,↓ e x / λFM for x≤0

μ
↑ ,↓
( x)=μ0

SC
+b x+d↑ ,↓e−x /λSC for x>0

● Conductivity of the 
ferromagnet equal to that of 
the semiconductor

● The same spin-diffusion 
length both in the ferromagnet 
and in the semiconductor

ferromagnet semiconductor

● Lower conductivity mismatch results in higher difference between μ↑ and μ↓ at the 
interface

β=0.5
λSC=10
λFM=10

σFM
σSC

=1



  

Spin diffusion

Knowing electrochemical potential and the conductivities (different for both spin channels) 
we can calculate the currents (the expression here is for a ferromagnet)

β=0.5

● Note that due to the diffusion the 
spin asymmetry is different from 
bulk values on both sides of the 
interface   

ferromagnet semiconductor

j↑ ,↓
=−

σFM
↑ ,↓

e
∂μ

↑ ,↓

∂ x
=−

σFM
↑ ,↓

e (a+c↑ ,↓

λ FM
e x / λFM )

β=
σFM
↑ −σFM

↓

σFM
↑ +σFM

↓

+
σFM
↑ +σFM

↓ =σFM

β=
0.75−0.25
0.75+0.25

=0.5

note that coefficient c depends only on 
the total conductivity of ferromagnet and 
not on channel conductivities (σ↑ and σ↓)

σFM
↑ =

1
2
σFM (1+β)

σFM
↓
=

1
2
σFM (1−β)



  

Spin diffusion

Knowing electrochemical potential and the conductivities (different for both spin channels) 
we can calculate the currents (the expression here is for a ferromagnet)

β=0.9

● Note that due to the diffusion the 
spin asymmetry is different from 
bulk values on both sides of the 
interface   

ferromagnet semiconductor

j↑ ,↓
=−

σFM
↑ ,↓

e
∂μ

↑ ,↓

∂ x
=−

σFM
↑ ,↓

e (a+c↑ ,↓

λ FM
e x / λFM )

β=
0.95−0.05
0.95+0.05

=0.9

note that coefficient c depends only on 
the total conductivity of ferromagnet and 
not on channel conductivities (σ↑ and σ↓)



  

Transport regimes

The characteristic, material, length scales for electron transport are [11]:
● mean free path (both elastic* and inelastic)
● phase-coherence length – distance covered before the phase is randomized – scattering 

on phonons
● spin-diffusion length 
Size of the sample L in relation to characteristic transport lengths determines the transport 
regime

*no energy transfer, e.g., scattering on charged impurity

Diffusive
Classical λF,lφ, le≪L

Quantum λF,le≪L<lφ

Ballistic
Classical λF≪L<lφ, le

Quantum λF,L<le< lφ

λ F -Ferrmi wavelength
lϕ-phas-coherence length
l e -mean free path (mfp)

electrode electrode

L

+

+
+

+
+

+

+ +

+
+

+
+

+

+

+

+

+

++
+

electrode electrode

L

+
+

+

+

+

++
+

diffusive regime ballistic regime



  

Transport regimes

The characteristic, material, length scales for electron transport are [11]:
● mean free path (both elastic* and inelastic)
● phase-coherence length – distance covered before the phase is randomized – scattering 

on phonons
● spin-diffusion length 
Size of the sample L in relation to characteristic transport lengths determines the transport 
regime

*no energy transfer, e.g., scattering on charged impurity

Diffusive
Classical λF,lφ, le≪L

Quantum λF,le≪L,lφ

Ballistic
Classical λF≪L<lφ, le

Quantum λF,L<le< lφ

λ F -Ferrmi wavelength
lϕ-phas-coherence length
l e -mean free path (mfp)

● in the quantum limit the phase coherence
    length exceeds the elastic mean free path

l e<lϕ

2*(sin(x*60)*cos(x*20-0.2)*cos(x*20-0.2)*cos(x*70+0.3)-0.3*cos(x*30-0.2)*cos(x*77+0.3)) 
drugi dyfuzyjny: 
2*(sin(x*50)*cos(x*25-0.2)*cos(x*18-0.2)*cos(x*67+0.3)-0.3*cos(x*33-0.2)*cos(x*74+0.3))

classical regime quantum regime

Predictable phase of wave 
function and predictable 

change of phase on 
scattering  

Phase of wave
function and change of 
phase on scattering not predictable 



  

The Rashba effect

Two dimensional electron gas (2DEG)

gate  
metal  

oxide  
inversion layer  

p-type semiconductor  
CB  

VB
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)

EF

eVG

μ

image from http://users-phys.au.dk/philip/pictures/physicsfigures/physicsfigures.html

● the negative voltage applied to a metal gate induces n-type region in its vicinity 
(inversion layer) that is rich in electron carriers

● in MOSFET transistors this creates a conducting channel between n-type source and 
drain

“magnetoelectric effects are precluded from bulk ferromagnetic metals due to the 
very short screening length, in films thinner than a few nanometers, spin-dependent 
charge screening and band level shifting can lead to pronounced electric field-driven 
changes to magnetic properties.” [23]



  

The Rashba effect

InGaAs/InPt heterostructure - two dimensional electron gas (2DEG)

2DEG

● the electron wave function is located mainly in the strained In0.53Ga0.47As layer

● the electrons in the 2DEG layer come from negatively doped InP layer [11]

● the tilted potential profile results in an electric field in the quantum well [11]

● high mobilities in 2DEG ≈105 cm2/Vs  [ (cm/s)/V ] at 40K

● InP – semi-insulating, high carrier 
mobility

● InP lattice constant match 
In0.53Ga0.47As at RT [15]

● In0.77Ga0.23As layer is strained due 
to lattice mismatch
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The Rashba effect

● the electric field in 2DEG is oriented perpendicularly to its plane
● electrons moving from the source to the drain experience the effective magnetic field 

given by Lorentz transformation [16]:

B' ||=B B' ⊥=
( B⃗−( v⃗ / c2))× E⃗ ⊥

√(1−v 2
/c2
)

→ B ' ⊥=
( v⃗ /c2)×E⃗

√(1−v 2
/c2
)

we assume that there 
is no external magnetic 
field

● the magnetic field experienced by the electrons is oriented perpendicularly (         ) to the 
plane described by their velocity and the electric field

v⃗× E⃗

● charged plates are the source of a 
magnetic field experienced by moving 
electrons

● the electrons/spins precess in the magnetic 
field 

symmetric
quantum well – no 

intrinsic mesoscopic 
electric field



  

The Rashba effect

● the electric field in 2DEG is oriented perpendicularly to its plane
● electrons moving from the source to the drain experience the effective magnetic field 

given by Lorentz transformation [16]:

B' ||=B B ' ⊥=
( B⃗−( v⃗ /c2))×E⃗ ⊥

√(1−v2
/c2
)

→ B' ⊥=
( v⃗ /c2)×E⃗

√(1−v 2
/c2
)

we assume that there 
is no external magnetic 
field

● the magnetic field experienced by the electrons is oriented perpendicularly (         ) to the 
plane described by their velocity and the electric field

v⃗× E⃗

E=107 V/m

● in III-V semiconductor structures 
additional contribution to spin-orbit 
interaction comes from 
Dresselhaus effect caused by 
bulk inversion asymmetry [19]

● high mobilities in 2DEG ≈105 cm2/Vs
   [ (cm/s)/(V/cm) ] (10 m2/Vs) at 40K



  

The Rashba effect

● the effect is analogous to spin orbit coupling responsible for the magnetocrystalline 
anisotropy (there the electric field is due to the charge of the nucleus) 

The Hamiltonian of the interaction can be written as [11]:

Ĥ Rashba=αR ẑ (σ⃗× k⃗ ) , k⃗= p⃗ /ℏ -wave vector of the electron
αR - Rashba parameter - strength of the coupling

The Rashba parameter depends not only on the mesoscopic electric field acting on 
electrons in 2DEG but also on the potential gradients due to electron orbitals of the atoms 
forming the crystal [11p.153, 19].
The greater atomic number the higher αR.(example indium or antimony).
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external “Rashba field” is 
superimposed on local 
fields of ions



  

The Rashba effect

The energy splitting of the electrons in the Rashba magnetic field is [11]:

E R=±αR | k⃗ |

For fixed energy (here Fermi energy) the wave vector difference is given by [11]:

Δ k R=
2 m *αR

ℏ
2

constant effective mass m * assumed

k

E
n

e
rg

y

EF

image adapted from Fig. 7.4 of T. Schäpers Semiconductor Spintronics, De Gruyter 2016 [11]



  

Gate control of the spin-orbit interaction

● MBE grown structures
● the gate electrode was made on the top of the 100-nm-thick SiO2 insulating layer which 

covers the hall bar

images from J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys.Rev.Lett. 78, 1335 (1997) [17]

2DEG

“We have experimentally demonstrated that 
α can be controlled by the interface electric 
field because the Rashba mechanism is 
dominant. This result suggests that the 
precession of the injected polarized spin can 
be controlled by the gate voltage. This is the 
first step for realizing the spin-polarized 
field effect transistor.”

αR can be controlled by gate voltage



  

Gate control of the spin-orbit interaction – switching off the coupling?

Asymmetric quantum well (QW) (eg.  Ga0.47In0.53As (well), Al0.48In0.52As (left barrier), and 
AlxGa1−xAsySb1−y (right barrier))

images from H. Akera, H. Suzuura, and Y. Egami, Phys. Rev. B  95, 045301 (2017) [18]

● the Rashba coefficient α, which 
depends on the band offset, can be 
tuned to be zero by adjusting the Al 
fraction in the right barrier

● the α coefficient in composition adjusted 
asymmetric QW can be switched on by 
changing the polarity of the external 
field ( theory! )

● required field > 107 V/m for 20nm thick 
QW → 0.2 V

| x−xoptimum |<0.01:
Ez<0:αR≈0
Ez>0:αR≫1



  

Spin relaxation in semiconductors

● “In a diffusive 2DEG, the momentum direction of electron changes frequently, and hence 
 so does the direction of Beff**” [19p18]

●  if δφ is the typical spin precession angle between the scattering events and there was N 
uncorrelated steps then the standard deviation of the precession angle is given by:

   
** the Rashba magnetic field

● spin relaxation time τs is a time after which the standard deviation becomes 1 - the time 
scale on which spin loses its memory

There are several basic mechanisms responsible for spin relaxation in semiconductors:
● Elliott–Yafet (EY)
● D’yakonov–Perel’ (DP)
● Bir–Aronov–Pikus (BAP)
● hyperfine interaction

σ (ϕ)=δϕ√N N=
t
τ

Elliott–Yafet (EY) - a spin relaxation process caused by scattering via phonons, impurities, 
boundaries and so on. 
● in semiconductors, the spin-up and spin-down states are mixed by the spin-orbit 

interaction of the constituent elements of the host material
● the spin state contains a small component of the opposite spin
● spin polarized electrons can thus flip after each scattering events although the probability 

of the spin flip might not be so high



  scattering

Spin relaxation in semiconductors*

D’yakonov–Perel’ (DP) - a spin relaxation process caused by precession in the magnetic 
field that is due to spin-orbit coupling** 
● in compound semiconductors without a center of inversion symmetry
● the spin degeneracy is lifted by the spin-orbit interaction
● precession starts again after each scattering in a randomly changed field**
● spin relaxation rate is proportional to the momentum relaxation time

 

-,i.e., the shorter the momentum relaxation time is, the lower the spin relaxation rate is

*this slide is based on S. Sugahara and J. Nitta, Proceedings of the IEEE 98, 2124 (2010) [19]
** the Rashba magnetic field;***schematic illustration (spin angle may not be consistent with k direction)

Ĥ Rashba=α R ẑ (σ⃗× k⃗ ) ,

k⃗= p⃗ /ℏ -wave vector of the electron
αR - Rashba parameter - strength of the coupling

1
τspin

∝τmomentum

D’yakonov–Perel’
 

precession between 
scattering events*** 

Elliott–Yafet
 

spin flip due to 
scattering events 



  

Spin control with Rashba effect*

● spin orbit coupling is negligible for non-relativistic particles in vacuum but in 
semiconductors the spin-orbit interactions is enhanced by about six orders [19] 

Spin FET – the key idea is that the spin orientation can be controlled by gate voltage 
instead of the external magnetic field
● because of the spin relaxation the electron loses its spin memory after certain number of 

scattering events

++ + + + + +

-- - - - - -

? In spite of the known orientation 
of the spin entering the channel 
the orientation of the spin leaving 
the channel is not known

● if the transport through the channel is ballistic the Rashba effect can be used for 
deterministic control of the spin precession

++ + + + + +

-- - - - - -

known orientation of the spin 
entering the channel and the 
known orientation of the spin 
leaving the channel



  

Spin control with Rashba effect

For diffusive (and ballistic) transport the so called persistent spin helix (PSH) [11,19] can 
be used to suppress DP relaxation.
PSH: the Rashba spin-orbit interaction strength α is equal to linear Dresselhaus spin-orbit 
interaction β [19]
 

● “In this PSH condition, spin polarization is conserved even after scattering events” [19]

● in PSH condition the effective spin-orbit coupling magnetic field is independent of 
electron’s momentum and is directed along (x,-y,0) direction

● the spin precession angle in PSH condition is given by [19]:

Δϕ=
2αm*

ℏ
2 L L - channel length

persistent spin helix condition*:

+

-

+ + + + + + + + + + + + + + +

- - - - - - - - - - - - - - -

known orientation of the spin 
entering the channel and the 
known orientation of the spin 
leaving the channel independent 
of the path of the electron

*“This conservation is predicted to be robust against all forms of spin-independent scattering, including electron-
electron interaction, but is broken by spin-dependent scattering and cubic Dresselhaus term” [19]



  

Datta and Das FET spin transistor

● change of the spin precession angle can be used to match the spin orientation of the 
electrons leaving the “Rashba channel” to the magnetization direction of the drain 
electrode

incoming spin orientation 
determined by the magnetization 
in source electrode spin precession under the 

combined action of Rashba 
and Dresselhaus effects

spins of the electrons leaving the 
“Rashba channel” are opposite to 
the magnetization direction  of the 
ferromagnetic drain electrode

image based on Fig. 7.1 of T. Schäpers Semiconductor Spintronics, De Gruyter 2016 [11]

no current flow



  

Datta and Das FET spin transistor

● change of the spin precession angle can be used to match the spin orientation of the 
electrons leaving the “Rashba channel” to the magnetization direction of the drain 
electrode

spins of the electrons leaving the 
“Rashba channel” are parallel to 
the magnetization direction  of the 
ferromagnetic drain electrode

current can flow

image based on Fig. 7.1 of T. Schäpers Semiconductor Spintronics, De Gruyter 2016 [11]

gate voltage changed

effective field changes due to gate 
voltage change → changed precession 



  

● the perpendicular magnetic anisotropy controlled by the applied voltage
● voltage affects only the interface anisotropy of the CoFeB/oxide interface since the CoFeB 

film is thick enough in comparison with electrical screening length in metals [21]

graph from Koji Kita , D. W. Abraham, M.J. Gajek, and D.C. Worledge, J. Appl. Phys. 112, 033919 (2012)

Voltage control of perpendicular magnetic anisotropy

Si substrate

SiO2

Ta(2nm)

Al2O3(10nm)

MgO(1nm)

Co0.6Fe0.2B0.2(1.2nm)

Ru

● the application of negative (-8V) voltage to Ru 
induces perpendicular magnetic anisotropy of 
CoFeB

● the negative bias decreases electron density 
at interfaces

Kerr effect



  

● three terminal device with magnetic tunnel junction (MTJ)
● buffer layers/CrB(2.5nm)/thick-MgO*/CoFeB(2nm)/thin-MgO/ 

CoFeB(2.2nm)/CoFe(0.8nm)/Ru(0.85nm)/CoFe(2.5nm)/PtMn(15nm)/cap layers on 
thermally oxidized Si substrates using magnetron sputtering

*1.7 MΩ∙μm2

image from Y. Shiota et al., IEEE TRANSACTIONS ON MAGNETICS 51, 4200304 (2015) 

Spin transistor by anisotropy control - concept



  

Spin transistor by anisotropy control - concept

image from Y. Shiota et al., IEEE TRANSACTIONS ON MAGNETICS 51, 4200304 (2015) 

perpendicular magnetic anisotropy of CoFeB layer 
is controlled by gate voltage

the voltage switches the magnetic easy axis from 
in-plane to out-of-plane direction

the changes are transformed to the electric circuit 
via tunneling magnetoresistance (TMR)

Not yet functional: “Although we successfully microfabricated this three-terminal 
device, we did not observe a distinct change of PMA in the middle CoFeB layer as a 
result of applying VGS.”
 

Predicted power gain of more than 104 (with high load resistance – half of the tunnel 
junction resistance )

● three terminal device with magnetic tunnel junction (MTJ)
● buffer layers/CrB(2.5nm)/thick-MgO*/CoFeB(2nm)/thin-MgO/ 

CoFeB(2.2nm)/CoFe(0.8nm)/Ru(0.85nm)/CoFe(2.5nm)/PtMn(15nm)/cap layers on 
thermally oxidized Si substrates using magnetron sputtering

*1.7 MΩ∙μm2



  

Magnetoelectric charge trap memory - concept 

note the small thickness of Fe layers → the screening of electric field in metals

● “a charge-trapping layer integrated into the gate dielectric can provide the missing 
nonvolatility to the magnetoelectric effect and enhances its efficiency by an order of 
magnitude” [23]

● Au(100)/Fe(wedge:0-9ML (≈1.3nm))/
   MgO(10nm)/ZrO2(60nm)/InTO(30nm)

Fe/MgO interface exhibits 
strong interfacial magnetic 
anisotropy

transparent electrode
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Magnetoelectric charge trap memory - concept 
● charge retained at the MgO/ZrO2 interface creates a electric field that disturbs
    the electron density distribution in Fe layer
● this leads to the changes of the effective perpendicular magnetic anisotropy
● Fe layers of a certain thickness, that would be “above” phase reorientation transition without the 

presence of the electric field can retain in-plane orientation of the magnetic moments as long as 
there is enough charge on the interface

+5V



  

Magnetoelectric charge trap memory - concept 

● the charges are supplied through an optically assisted process [23]: ITO electrode is a 
probable source for hole injection

● MOKE measurements show that the changes in magnetic properties (coercive fields, 
remanence) persist at least 24h after the external bias voltage; retention times of 
several days were observed

● addition of the blocking layer to the dielectric stack (MgO/ZrO2/InTO) should allow, 
according to the authors, for retention times in excess of 10 years

image (part) from U. Bauer, M. Przybylski, J. Kirschner, and G. S. D. Beach, Nano Lett. 12, 1437 (2012)

electrode outline
position of laser spot

● Kerr images 100�100μm
● A – initial Kerr map and +5V
● B – 1 hour after bias removal
● C – 8h; D – 24h, E – 72h 



  

All-Optical Switching (AOS) of Magnetic Tunnel Junctions

● switching of MTJ without magnetic field can be achieved by charge and spin current 
injection

● the operational speed is limited fundamentally by the spin-precession time to many 
picoseconds [22]

image from Jun-Yang Chen, Li He, Jian-Ping Wang, and Mo Li, Phys.Rev. Appl. 7, 021001 (2017)
*for possible mechanisms of reversal see M.S. El Hadri et al., Phys. Rev. B 94, 064412 (2016)
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● perpendicularly magnetized Gd(Fe,Co) free 
layer

● Gd(Fe,Co) cosputtered from Fe90Co10 and 
Gd targets

● 1.55μm wavelength laser; pulse width 
400fs; spot diameter 20μm; fluence 
5.8mJ/cm2

● AOS independent of laser polarization (the 
linear used). 

● Laser pulse always reverses the 
magnetization* (for both orientations of 
magnetizations – up and down domains)

● Hall effect measurement show almost 100% 
remanence – rectangular loop

not patterned



  

All-Optical Switching (AOS) of Magnetic Tunnel Junctions

● to demonstrate the applicability of the system for AOS in realistic spintronic devices MTJ 
for TMR readout was designed

image adapted from Fig. 3 of Jun-Yang Chen, Li He, Jian-Ping Wang, and Mo Li, Phys.Rev. Appl. 7, 021001 (2017)

magnetic tunnel junction

magnetic layer* 
switchable with laser 
pulses (free layer)

*Gdx(Fe90Co10)100-x layers for x=22 to 26% display AOS [22]

patterned

pillar diameter is 12μm



  

All-Optical Switching (AOS) of Magnetic Tunnel Junctions

● to demonstrate the applicability of the system for AOS in realistic spintronic devices MTJ 
for TMR readout was designed

image adapted from Fig. 3 of Jun-Yang Chen, Li He, Jian-Ping Wang, and Mo Li, Phys.Rev. Appl. 7, 021001 (2017)

additional layers are needed for electrical readout



  

All-Optical Switching (AOS) of Magnetic Tunnel Junctions

● to demonstrate the applicability of the system for AOS in realistic spintronic devices MTJ 
for TMR readout was designed
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● 0.4ps long laser pulses are able to switch magnetic moments of Gd(Fe,Co) layers
● the picosecond scale switching mode is 2 orders of magnitude faster than other 

switching methods [22] but one needs laser etc.
● on a Hall effect device it was demonstrated that 1MHz repetition rate; the system needs 

more than 10ps to relax to equilibrium
● the authors argue that the ultimate switching rate of AOS device could be higher than 

tens of GHz as “subsequent switching can be performed sooner than the system 
reaches equilibrium” [22]

● the energy required for switching scales inversely with the device area; “for an AOS 
device with subwavelength dimensions [...], femtojoule pulse energy should be 
sufficient to switch it.” [22]
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