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Thomson problem Quantum electronics

« Minimum electrostatic energy configuration for n electrons constrained to a surface of a

sphere
» Electrons interact (repel each other) according to Coulomb's law

ok

* The problem is related to the early (“pre quantum?”) investigations of electrons in atoms

[1]
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Thomson problem Quantum electronics

* Minimum electrostatic energy configuration for n electrons constrained to a surface of a
sphere
» Electrons interact (repel each other) according to Coulomb's law

ne=2+2. n=1+3+1. ne=14d+1 14541,

(Tetraeder.) (Oktaeder.)
/,F

BYSRY4h
TASPANPA
/\

ne=2, ne=3, ﬂ_
\j \Q

1. n=1+54+5+1. n=14646+1. B 1045,
n=4+4, nm=ltdtdt (Ikosaeder.)

Image source: L. Foppl, Journal fur die reine und angewandte Mathematik 141, 251 (1912) [6]

* The drawing shows stable configurations of electrons as determined by L. Fopll [1]
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Thomson problem Quantum electronics

« Minimum electrostatic energy configuration for n electrons constrained to a surface of a

sphere
» Electrons interact (repel each other) according to Coulomb's law
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Thomson problem Quantum electronics

« Minimum electrostatic energy configuration for n electrons constrained to a surface of a
sphere
» Electrons interact (repel each other) according to Coulomb's law
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Thomson problem Quantum electronics

* Case of 6 electrons
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Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 First try to do this in 2D:

Hexagonal structure
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Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

« Single layer of spheres has three times as many interstitials (B and C) as there are
spheres (see schematic on previous page)
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Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

&
o’o"”o%%

30
. -cl)-rr:teo nBe>étr, giir;teigal’ layer of spheres can be put ‘Q'Y‘?"?'Y‘Q'Y‘e

M. Urbaniak
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Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

hcp

« The third layer of spheres can be put onto B or C sites of the second layer

 For ABAB... sequence the structure is called hexagonal close packed (hcp)

 For ABCABC... sequence the structure is cubic close packed or face centered cubic
(see later)
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Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

hcp

* The third layer of spheres
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Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

hcp

* We add the lines connecting the centers of the spheres
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Close packing of equal spheres Quantumislectionics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

top view:

Notes that the spheres are deflated but the distances

between them are unchanged

* The spheres shrunk

M~
—
o
N
al
al

M. Urbaniak



Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

Notes that the spheres are deflated but the distances

between them are unchanged
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Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

top view:

Notes that the spheres are deflated but the distances

between them are unchanged

* Two blue spheres form the base of hcp structure — see Bravai's lattice (later on)
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Close packing of equal spheres Quantum electronics

« How to arrange hard spheres to fill the space most effectively (to have as little empty
space between them as possible)?
 And in 3D:

top view:

Notes that the spheres are deflated but the distances

between them are unchanged

* Edgesofthecell: aql=a2=2-r r— sphere radius

2017
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Close packing of equal spheres Quantum electronics

» Cubic close packing [2]

« ABCABC... stacking
* Note that any stacking (without repetition) gives close-packing — so called stacking faults

[2]
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Close packing of equal spheres Quantum electronics

» Cubic close packing [2]

« ABCABC... stacking
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Close packing of equal spheres Quantum electronics

» Cubic close packing [2]

« ABCABC... stacking
« We add the lines connecting the centers of the spheres
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Close packing of equal spheres Quantum electronics

» Cubic close packing [2]

Notes that the spheres are deflated but the distances between them are unchanged

: top view: I
J

« ABCABC... stacking

« diagonal of the cube is perpendicular to hexagonal
planes

* From previous considerations we know that these planes have -
densest packing
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Close packing of equal spheres Quantum electronics

» Cubic close packing [2] = face-centred cubic

Notes that the spheres are deflated but the distances between them are unchanged

« ABCABC... stacking
» Center of each face of the cube is occupied by a sphere (atom)
* The cube contains 4 atoms (8% corner atom+6e+ %2 face atom)
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Close packing of equal spheres Quantum electronics

« Coordination layers in fcc structure — number of nearest neighbors, second nearest
neighbors (snn),...

first layer
second layer

third layer

13" layer — 72 neighbors

7" layer — 24 neighbors
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Close packing of equal spheres Quantum electronics

« Coordination layers in fcc structure — number of nearest neighbors, second nearest
neighbors (snn),...

3 neighbors in lower and upper layers

alternative view (stacking) ——p»

6 neighbors in “own” close-packed layer

first layer — 12 neighbors

One is usually not interested in
neighbors farther than in the %
second layer* 2
L
2
)
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% A
*structural investigations may be exception — M. Urbaniak a




Close packing of equal spheres Quantum electronics

« Coordination layers in fcc structure — number of nearest neighbors, second nearest
neighbors (snn),...

Fcc structure:

100 - ‘ nn 12
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distance from the "central atom" [ramm]



Close packing of equal spheres Quantum electronics

« Amorphous substances — radial distribution function

« Amorphous solids have no crystal lattice*

100T

% * The metallic amorphous alloys are usually
— 8ot Amorohous produced by quenching (very fast cooling) from
< g liquid or vapor
5 60t
=
S 4ol crystalline amorphous

Image source: S. Olibet et al., Phys. Status Solidi A, 1-6 (2010) / DOI 10.1002/pssa.200982845

Figure 8 HR-TEM micrographs showing (a) abrupt flat crystallographic c¢-Si/a-Si:H/pc-Si:H interfaces of Si HIJ solar cells, (b) an
epitaxially connected i a-Si:H interface passivation layer in the pyramidal groove of a textured S1 HJ solar cell, and (¢) a rough a-Si:H/c-Si
interface, also of a textured S1 HJ solar cell.

Image source: J. M. D. COEY, Magnetism and Magnetic Materials, Cambridge University Press 2009 [6]

PP 2017
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Packing of equal spheres Quantum electronics

» Body centred cubic (bcc)

top view, orthographic:

* The bcc structure is not close-packed!
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Packing of equal spheres Quantum electronics

» Body centred cubic (bcc)

* The bcc structure is not close-packed!
« Unit cell contains two atoms
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Packing of equal spheres Quantum electronics

» Body centred cubic (bcc)

* The bcc structure is not close-packed!
« Unit cell contains two atoms
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Packing of equal spheres Quantum electronics

» Body centred cubic (bcc)

Notes that the spheres are deflated but the distances between them are unchanged

* The bcc structure is not close-packed!
« Unit cell contains two atoms
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* For same size of spheres bcc cell is smaller than fcc cell

Both cubes in the image are drawn in the same scale
cy=4r
bcc:a= 7
4r
CcC.ad=——F
bcc Jeesa=n
e V3 ~1.23

|

abcc o "/

M~
—
o
o
o
o

M. Urbaniak



* For same size of spheres bcc cell is smaller than fcc cell

bcc structure fcc structure
bcc:a:%
2 atoms in a unit cell 4 atoms in a unit cell
| I—
. L
fee:a= B3
Fraction of space occupied by the | Fraction of{space occupied by the
spheres: spheres:
v
__2(4/3nr) _\3m __ __44/3n7) _V8xn
fp“"ki”g_ (4r/\3F — 8 ~0.68 fpacking_ (4r/V2) — 12 ~(0.741
?
Coordination number*: 8 Coordination number*: 12 @ _ 3 ~123
Apec _‘/_EN )

*number of nearest neighbors



Close packing of equal spheres Quantum electronics

 In real crystal structures the ratio between the lengths of cell edges a (i.e., ion/sphere
diameter) to a spacing between successive close-packed layers always differs from the
predictions of purely geometrical model described previously [2]

Table 1
Material h/a Material hia
Cd 0,943 Agl 0.815
Zn 0.928 BeO 0.815
» He 0.8165 CdSe 0.815
Co 0.814 Zn0O 0.800
Mg 0.812 AIN 0.800
Sc 0.797 CdS 0.810

For ideal close-packed structures the (stacking faults can be present) h/a ratio is approx.
—-0.8165
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Real crystal structures Quantum electronics

* In fabrication of thin films one can obtain, using molecular beam epitaxy (MBE),
structures which are ideal over hundreds of interatomic distances

5nm
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Figure 10. STM characterization of the as-grown FeSe films. (a) Topographic image (2.5V, 0.1 nA, 200 x 200 nm?) of a FeSe film (about
30 unit cells thick). The step height is 5.5 A. Inset shows the crystal structure. (b) Atomic resolution STM topography (10mV, 0.1 nA,

5 x 5nm?) of the FeSe film. The bright spots correspond to the Se atoms in the top layer. @ and b correspond to either of the Fe—Fe bond
directions. The same convention is used for a- and b-axes throughout the paper. (¢) Temperature dependence of differential conductance
spectra (setpoint: 10 mV, 0.1 nA). (d) Schematic of the unfolded Brillouin zone and the Fermi surface (green ellipse). The nodal lines for
cos k, cos ky and (cos k, + cos k) gap functions are indicated by black and red dashed lines, respectively. The size of all pockets is
exaggerated for clarity. The black arrow shows the direction of nesting (from [73]).

image source: Jin-Feng Jia et al., J. Phys. D: Appl. Phys. 44, 464007 (2001)

» “The STM topographic images (figures 10(a) and (b)) revealed atomically flat and defect-
free Se-terminated (0 0 1) surfaces with large terraces.” [3]
 layer-by-layer growth on SiC(0 0 O 1) substrate
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Metals — crystal structures Quantum electronics

Metallic bonds — bonds between atoms of low electronegativity that contain low nhumber —
of electrons in outer shell [12]:

» the metallic bond is not directional

 the bond is weaker than covalent bond

* metal may be viewed as a set of positive ions immersed in electronic cluod

Characteristic features of metal structures [12]:

* they form high symmetry structures, regular or hexagonal

* due to the dense packing or packing close to dense they have high density**

 high coordination numbers (about 12) and relatively high bonding energies result in
relatively high melting temperatures

* the metals are mallable***

Metals that are most important for electronics: 13Al 1s? 2s?2p®3s?3p’ <
- Al, Cu, Au
- Fe,Co,Ni 20CU 18°2s°2p° 3s5°3p°3d'°4s!

* the power of an atom to attract electrons to itself [13]. The higher the electronegativity the higher the tendency to attract electrons.
**in fact in every period of the MendeleyeV's periodic table the metals are the elements with the highest density

(bor is a half-metal) [14]
***able to be hammered or pressed into shape without breaking or cracking (google dictionary)



Derivative structures Quantum electronics

* More complicated structures can be obtained from simpler ones by operations removing
some symmetries present in the initial structure — the idea introduced by M. Buerger [4]

* One dimensional example*:

Parent structure

OO0 O0000000

Substitution derivative

-O_._O_O_._O_O_._O_O_ The translational periodicity of

the derivatives is higher than
Omission derivative that of the parent

Addition derivative

Distortion derivative

O-00-00-00000

*taken from crystallography lectures by Prof. Bernhardt Wuensch — MIT,USA, 2005 [4]



1 *
Some facts about crystal symmetries Quantum electronics

« A mapping of a set A into a set B is a relation such that for each element a € Athere is
a unique element b € B which is assigned to a. The element b is called the image of a.

B

« An affine mapping — lines parallel in A
are also parallel in B

B

ca chand=

S
o a(\q\e
\Y

* An isometry - affine mapping that
leaves all distances between points
(and thus angles between lines)
invariant

M~
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*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5] M. Urbaniak



1 *
Some facts about crystal symmetries Quantum electronics

* An isometry - affine mapping that
leaves all distances between points

(and thus angles between lines)
invariant A

 Symmetry operations of an object — “isometries which map the object onto itself such
that the mapped object cannot be distinguished from the object in the original state” [5]

B

Rotation by 60 Deg (cw or ccw) brings A into
Itself (B=A)

A

(o‘a’{\on by 35 Deg
N
©

2017

: o
*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5] M. Urbaniak a



T . .
Primitive (lattice) basis Quantum electronics

» crystal patterns - idealization of real crystals in the physical space by 3—dimensional
periodic sets of points representing, e. g., the centres of the atoms of the crystal [5].

* The set of all translation vectors belonging to symmetry translations of a crystal pattern
Is called the vector lattice of the crystal pattern (and of the real crystal). Its vectors are
called lattice vectors.

» Abasis of three (two in 3-dimmensional patterns) linearly independent lattice vectors is
called a lattice basis. If all lattice vectors are integer linear combinations of the basis
vectors, then the basis is called a primitive basis.

® © o ¢ o o o For each lattice there exists an infinite
number of primitive bases
® e o6 o o
e O o O
® o o o
® ® ® ® ® Basis (ai,a2) is not a primitive basis:
A one can not reach B from A by
translation with integer multiplies of a:
and a:

*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5]



e e . C %
Primitive (lattice) basis Quantum electronics

« Example of primitive basis for 3-dimensional lattice — fcc structure

primitive basis (red rods)
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*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5] M. Urbaniak
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Primitive (lattice) basis Quantum electronics

« Example of primitive basis for 3-dimensional lattice — fcc structure

(1,0,1)-(0,1,1) )
Vv((1,0,1)-(1,0,1))+((0,1,1)-(0,1,1))

*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5] M. Urbaniak

60 deg =arccos (

M~
—
o
o
o
o



Bravais lattice Quantum electronics

Bravais lattice:

 an infinite arrangements of points in space (“A lattice is an infinite array of points in
space, in which each point has identical surroundings to all others” [8])

 the lattice can be generated from one point using the translation operators:

t =n,a+n,b+n;c, n, n, ny—integers

nl,n2,n3

 the lattice points are given by the end points of the vectors t (vectors a,b,c are linearly
independent*)

« vectors a,b,c have the same origin; no matter which lattice point is chosen as an
origin, the array always looks the same when viewed from it [8]

« forming the parallelpiped from a,b,c vectors one obtains a unit cell

« unit cells fill the entire space

* The only rotations that are symmetry elements of crystals are n-fold rotations with
n=1,2,3,4,6 (proper or improper) — it is not possible to fill the space with uniformly
shaped unit cells of other symmetries (without gaps and overlapping)

* One can fill the space with cells of other rotational symmetries using two or more kinds
of cells — quasi-crystals [8,9]

*it is not possible to get zero vector summing integer multiplies of a,b,c



Bravais lattice Quantum electronics

(a) (©)

Ny
\ -

T4
2R
)

local 5-fold symmetry
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* One can fill the space with cells of other
rotational symmetries using two or more
kinds of cells — quasi-crystals [8,9]

(b) (@)
FIG. 3. Penrose tilings. (a) A portion of a perfect Penrose til-
. ing. The shaded unit cells compose a segment of a “worm.” (b)
Penrose tiling example — 5 fold A distortion of the tiling of (a) corresponding to variations in
the phonon degree of freedom u,. The unit-cell shapes are dis-
torted, but their arrangement is the same as in (a). (c) A tiling

Image source : J. E. S. Socolar, T. C. Lubensky, P. J. Steinhardt, Phys. Rev. B 34, 3345 (1986) [10]




Bravais lattice - 2D examples Quantum electronics

* There are 14 Bravais lattices in 3D
* Thera are 5 Bravais type lattices in 2D: oblique, rectangular, centered rectangular,

hexagonal and square

We start with an arbitrary point P in a plane and arbitrary vectors a and b

2017
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Bravais lattice - 2D examples Quantum electronics

* There are 14 Bravais lattices in 3D
* There are 5 Bravais type lattices in 2D: oblique, rectangular, centered rectangular,
hexagonal and square

For arbitrary base vectors
identity** may be the only
symmetry of the structure

\
Y
:

:
0
:
i
0””:

\
A
e

N ‘Q’
o

Q””Q Q””Q Q”’
Y
“ () Q"’ () Q”’ Q’
i
W

-

We start with an arbitrary point P in a plane and arbitrary vectors a and b
1] 14k H 1 - - -
...and “orbit** with translations v =1, G+n,b+n, ¢

*The infinite set of symmetry-related points is known as a crystallographic orbit” [8]
**denoted usually with 1 or E



Bravais lattice - 2D examples

 There are 14 Bravais lattices in 3D

Quantum electronics

* There are 5 Bravais type lattices in 2D: oblique, rectangular, centered rectangular,

hexagonal and square

/

- 1=
yzby

For some special relations between vectors a and b it is customary to use unit cell that is

different from the primitive cell [11]



Bravais lattice - 2D examples

 There are 14 Bravais lattices in 3D

Quantum electronics

* There are 5 Bravais type lattices in 2D: oblique, rectangular, centered rectangular,
hexagonal and square

centered rectangular cell

some of primitive cells

For some special relations between vectors a and b it is customary to use unit cell that is
different from the primitive cell [11]



Bravais lattice Quantum electronics

The choice of the Bravais unit cell for a given basis is made using the following conditions*
[11]:

1. The symmetry of the unit cell should correspond to the symmetry of the crystal (lattice).
Edges of the cell should be lattice vectors

2. The unit cell should contain maximum possible number of right angles (between edges)
or equal angles and equal edges

3. The unit cell should have minimum volume

« The primitive cell to the right has minimum volume l * L
» The cell has no right angles ® o ® [ [
» The cell (its symmetry operations) has no planes of ® ® ¢
symmetry present in the symmetry of the lattice
® ® ® [ ®
¢ ¢ ® ¢
® ® ® [ ®

*the conditions should be fulfilled consequtively: the first condition is more important than the second



Bravais lattice - 2D examples Quantum electronics

For special relation between basis vectors a and b one (equal length, in-between angle of
60 deg) one obtains lattice with 6-fold rotational symmetry consistent with close packing of
spheres in a plane (hexagonal lattice)




Bravais lattice - 2D examples Quantum electronics

For special relation between basis vectors a and b one (equal length, in-between angle of
60 deg) one obtains lattice with 6-fold rotational symmetry consistent with close packing of
spheres in a plane (hexagonal lattice)

N/ N/ N/ AN AN/ AN
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Bravais lattices in 3D Quantum electronics

primitive base centered  body centered face centered
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Bravais lattices in 3D

Pomouveckag
orthorombic

'

-
'.-' C

A
primitive

A=A
base centered

e v

ATA
body centered

A=
face centered

Tpuzonansras
(poMOo-
Jdpuyeckas)

trigonal

Tempazo-
HANLHAA

tetragonal

[excazo-
Ha/bHAS

hexagonal

Kyouyecxas
cubic

92,

14 pewerok Bpass

antum electronics

Image source : M.IN. Wackonbckas, Kpuctannorpadgus, Mockba, “Bbicias Lkona”, 1984, Fig.92

M. Urbaniak
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Space groups Quantum electronics

* Point group — all the symmetry operations that leave one point fixed; this point is called
the origin [8].

* “the point group which has the symmetry of the lattice is called the holohedral point
group, and as such it possesses the largest number of symmetry operations” [8]

* There are several methods to develop (find) point groups; one of them is to:
1. start with five point groups defined by rotations 1, 2, 3, 4 ,and 6*
2. add 2-fold rotations perpendicular to these axes
3. add reflections perpendicular to, or containing the cyclic axis
4. substitute improper** for proper rotation

* One arrives then at 32 crystallographic point groups (allowed in normal crystals —
filling all space)

* Point groups characterize macroscopic crystals

* “most of the macroscopic symmetry aspects of the physical properties of solids are
related to the point group, as given by the so-called Neumann principle” [8]

*in international notation the n symbo denotes symmetry axis (cyclic axis of symmetry) with rotation by 2x/n radians
**rotation followed with inversion; symbol n



Space groups Quantum electronics

Consider some 2D Bravais lattice*** (rectangular, equal length of basis vectors)

® *r——¢ ¢ ¢ ®
e ,
¢ *———o ® ® ¢ ) )
5 . Note that Bravais lattice
O : points do not necessarily
e - coincide with atoms
= ¢ ¢ ¢ o ———¢ ¢ ¢ ®
g 4 ;
o .
— > .
¢ ¢ ¢ *——¢ ¢ ¢ ¢
¢ ¢ ¢ *———+¢ ¢ ¢ ®
IIIIIIIIIIIIIIIIIlllllllllllllllll:lllIlllllllllllllllllllIlllllllll‘1I
® ® ® e . o ¢ ® |
. . I~
| | | | l_|
t t iror planes* S
*symmetry element for operation of reflection [8] mirror planes )
**it is customary to talk about counter-clockwise rotations, *** 2D lattice is called a net M. Urbaniak &



Space groups

rotation axes

Quantum electronics

Consider some 2D Bravais lattice (rectangular, equal length of basis vectors)

The new structure (crystal) has no mirror planes and only 2-fold axes of rotation

(previously 4-fold). The translational symmetry is preserved.

the molecule
possesses no 4-fold

symmetry axis
1 -

We now populate the
Bravais lattice with
molecules so that each
point is associated with one
molecule (base).

crystal

2017
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*
Space groups Quantum electronics

« Space group - the set of geometrical symmetry operations that take a three-dimensional
periodic object (a crystal) into itself [8]

* The operations belonging to the space group must form a group in the mathematical
sense.

« Space groups are obtained combining translational symmetry
(Bravais lattice) with point symmetry (point groups) together Group [16]:
with two additional symmetry operations: .

the product of any two elements in

-glide reflection the group must be an element of
) the group (square of each of them
-Screw rotation t00)

* Both these operations may involve translation T smaller than a |+ one element of he group must

.l . . commute with all others and leave
p”mmve lattice translation them unchanged (identity element)

« Simple combination of 32 point groups with 14 Bravais lattice |- the associative law of multiplication

gives 73 out of 230 space groups (so called symmorphic holds: -
*% A(BC)=(AB)C
groups ) « every element must have a

reciprocal within the group

*taken largely from G. Burns and A.M. Glazer, Space Groups for Solid State Scientists [8]
**screw and glide operations can be symmetry operations but they can be obtained by combining other operations



Space groups Quantum electronics

« Space groups are obtained combining translational symmetry (Bravais lattice) with point
symmetry (point groups) together with two additional symmetry operations:
-glide reflection: reflection through glide plane followed by translation
-screw rotation

Note that translations can have various orientations relative to basis vectors, i.e., not necessarily
parallel (axial glide, diagonal glide, etc.) [8]

glide plane

|
I translation I

2017
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Space groups Quantum electronics

« Space groups are obtained combining translational symmetry (Bravais lattice) with point
symmetry (point groups) together with two additional symmetry operations:
-glide reflection: reflection through glide plane followed by translation Performing n screw

-screw rotation: rotation by 360°n followed by a translation rotations results
in multiples of unit

Note that “..., the amount of translation is (1/n) th of one or more unit repeat distances” [8] «—— vector translation

360°/6 rotation

M. Urbaniak &



Quantum electronics
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