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Geometry of solid state

● Constraints and order

● Symmetry properties of crystals



  

Thomson problem

● Minimum electrostatic energy configuration for n electrons constrained to a surface of a 
sphere

● Electrons interact (repel each other) according to Coulomb's law

F ∝
1

R 2

● The problem is related to the early (“pre quantum”) investigations of electrons in atoms 
[1]
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Thomson problem

● Minimum electrostatic energy configuration for n electrons constrained to a surface of a 
sphere

● Electrons interact (repel each other) according to Coulomb's law

● The drawing shows stable configurations of electrons as determined by L. Föpll [1]

Image source: L. Föppl, Journal für die reine und angewandte Mathematik 141, 251 (1912) [6]
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Thomson problem

● Minimum electrostatic energy configuration for n electrons constrained to a surface of a 
sphere

● Electrons interact (repel each other) according to Coulomb's law
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Thomson problem

● Case of 6 electrons

F ∝
1
R2



  

Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● First try to do this in 2D:

Hexagonal structure

equilateral triangle



  

Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

● Single layer of spheres has three times as many interstitials (B and C) as there are 
spheres (see schematic on previous page)



  

Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

● The next, identical, layer of spheres can be put 
onto B or C sites



  

Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

● The third layer of spheres can be put onto B or C sites of the second layer
● For ABAB… sequence the structure is called hexagonal close packed (hcp)
● For ABCABC… sequence the structure is cubic close packed or face centered cubic 

(see later)

hcp



  

Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

● The third layer of spheres 

hcp



  

Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

● We add the lines connecting the centers of the spheres

hcp



  

Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

● The spheres shrunk 

hcp
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Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

hcp
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Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

● Two blue spheres form the base of hcp structure – see Bravai's lattice (later on) 

hcp
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Close packing of equal spheres

● How to arrange hard spheres to fill the space most effectively (to have as little empty 
space between them as possible)?

● And in 3D:

● Edges of the cell:  

hcp

N
o

te
s 

th
a

t 
th

e
 s

p
h

e
re

s 
a

re
 d

e
fla

te
d

 b
u

t 
th

e
 d

is
ta

n
ce

s 
b

e
tw

e
e

n
 t

h
e

m
 a

re
 u

n
ch

a
n

g
e

d

P=(
1
3
a1,

2
3
a2,

1
2
c)

a1=a2=2⋅r r− sphere radius

c=2 √ 6
3 ⋅a1≈1.63⋅a1

top view:

a1

a2



  

Close packing of equal spheres

● Cubic close packing [2]

ccp

● ABCABC… stacking
● Note that any stacking (without repetition) gives close-packing – so called stacking faults 

[2]



  

Close packing of equal spheres

● Cubic close packing [2]

ccp

● ABCABC… stacking



  

Close packing of equal spheres

● Cubic close packing [2]

ccp

● ABCABC… stacking
● We add the lines connecting the centers of the spheres



  

Close packing of equal spheres

● Cubic close packing [2]

ccp

● ABCABC… stacking
● diagonal of the cube is perpendicular to hexagonal 

planes
● From previous considerations we know that these planes have

densest packing

Notes that the spheres are deflated but the distances between them are unchanged

top view:



  

Close packing of equal spheres

● Cubic close packing [2] = face-centred cubic

ccp

● ABCABC… stacking
● Center of each face of the cube is occupied by a sphere (atom)
● The cube contains 4 atoms (8•⅛ corner atom+6• ½ face atom)  

Notes that the spheres are deflated but the distances between them are unchanged



  

Close packing of equal spheres

● Coordination layers in fcc structure – number of nearest neighbors, second nearest 
neighbors (snn),...

first layer
second layer

third layer
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Close packing of equal spheres

● Coordination layers in fcc structure – number of nearest neighbors, second nearest 
neighbors (snn),...

first layer – 12 neighbors

13
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ye
r 

– 
72
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alternative view (stacking)

6 neighbors in “own” close-packed layer

3 neighbors in lower and upper layers

One is usually not interested in 
neighbors farther than in the 
second layer*

*structural investigations may be exception



  

Close packing of equal spheres

● Coordination layers in fcc structure – number of nearest neighbors, second nearest 
neighbors (snn),...



  

Close packing of equal spheres

● Amorphous substances – radial distribution function
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]

● Amorphous solids have no crystal lattice*

● The metallic amorphous alloys are usually 
produced by quenching (very fast cooling) from 
liquid or vapor 

*see later in this lecture
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Packing of equal spheres 

● Body centred cubic (bcc)

bcc

● The bcc structure is not close-packed!  

top view, orthographic:



  

Packing of equal spheres 

● Body centred cubic (bcc)

bcc

● The bcc structure is not close-packed!
● Unit cell contains two atoms  



  

Packing of equal spheres 

● Body centred cubic (bcc)

bcc

● The bcc structure is not close-packed!
● Unit cell contains two atoms  



  

Packing of equal spheres 

● Body centred cubic (bcc)

bcc

● The bcc structure is not close-packed!
● Unit cell contains two atoms  

Notes that the spheres are deflated but the distances between them are unchanged



  

BCC versus FCC

● For same size of spheres bcc cell is smaller than fcc cell

Both cubes in the image are drawn in the same scale

bcc :a= 4 r

√ 3

fcc :a= 4 r

√ 2bcc
fcc

a fcc
abcc

=√3
√2
≈1.23



  

BCC versus FCC

● For same size of spheres bcc cell is smaller than fcc cell

Both cubes in the image are drawn in the same scale

bcc :a= 4 r

√ 3

fcc :a= 4 r

√ 2bcc
fcc

a fcc
abcc

=√3
√2
≈1.23

bcc structure fcc structure

2 atoms in a unit cell 4 atoms in a unit cell

Fraction of space occupied by the 
spheres:

Fraction of space occupied by the 
spheres:

Coordination number*:      8 Coordination number*:      12

f packing=
4 (4 /3π r3)

(4 r/√2)3 =
√8π

12 ≈0.741f packing=
2(4 /3π r3)

(4 r/√3)3
=√3π

8 ≈0.68

*number of nearest neighbors



  

Close packing of equal spheres

● In real crystal structures the ratio between the lengths of cell edges a (i.e., ion/sphere 
diameter) to a spacing between successive close-packed layers always differs from the 
predictions of purely geometrical model described previously [2]

For ideal close-packed structures the (stacking faults can be present) h/a ratio is approx. 
0.8165



  

Real crystal structures

● In fabrication of thin films one can obtain, using molecular beam epitaxy (MBE), 
structures which are ideal over hundreds of interatomic distances

● “The STM topographic images (figures 10(a) and (b)) revealed atomically flat and defect-
free Se-terminated (0 0 1) surfaces with large terraces.” [3]

● layer-by-layer growth on SiC(0 0 0 1) substrate 
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Metals – crystal structures

Metallic bonds – bonds between atoms of low electronegativity that contain low number 
of electrons in outer shell [12]:
● the metallic bond is not directional
● the bond is weaker than covalent bond
● metal may be viewed as a set of positive ions immersed in electronic cluod

* the power of an atom to attract electrons to itself [13]. The higher the electronegativity the higher the tendency to attract electrons.
**in fact in every period of the Mendeleyev's periodic table the metals are the elements with the highest density 
  (bor is a half-metal) [14]
***able to be hammered or pressed into shape without breaking or cracking (google dictionary)

Characteristic features of metal structures [12]:
● they form high symmetry structures, regular or hexagonal
● due to the dense packing or packing close to dense they have high density**
● high coordination numbers (about 12) and relatively high bonding energies result in 

relatively high melting temperatures
● the metals are mallable***

Metals that are most important for electronics:
- Al, Cu, Au
- Fe,Co,Ni

13Al 1s2 2s22p6 3s23p1

29Cu 1s2 2s22p6 3s23p63d10 4s1



  

Derivative structures

● More complicated structures can be obtained from simpler ones by operations removing 
some symmetries present in the initial structure – the idea introduced by M. Buerger [4]

● One dimensional example*:

*taken from crystallography lectures by Prof. Bernhardt Wuensch – MIT,USA, 2005 [4]

The translational periodicity of 
the derivatives is higher than 
that of the parent

superstructures



  

Some facts about crystal symmetries*

● A mapping of a set A into a set B is a relation such that for each element a Î A there is 
a unique element b Î B which is assigned to a. The element b is called the image of a.

*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5]

● An affine mapping – lines parallel in A 
   are also parallel in B

● An isometry - affine mapping that 
leaves all distances between points 
(and thus angles between lines) 
invariant

a

b

A

B

A

B

...b
ut a

ngle
s ca

n cha
nge

a

b

b

A

B



  

Some facts about crystal symmetries*

*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5]

● An isometry - affine mapping that 
leaves all distances between points 
(and thus angles between lines) 
invariant

● Symmetry operations of an object – “isometries which map the object onto itself such 
that the mapped object cannot be distinguished from the object in the original state” [5]

Rotation by 60 Deg (cw or ccw) brings A into
Itself (B=A)

A
a

b

b

B



  

Basis (a1,a2) is not a primitive basis:
one can not reach B from A by 
translation with integer multiplies of a1 

and a2

Primitive (lattice) basis*

*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5]

● crystal patterns - idealization of real crystals in the physical space by 3–dimensional 
periodic sets of points representing, e. g., the centres of the atoms of the crystal [5]. 

● The set of all translation vectors belonging to symmetry translations of a crystal pattern 
is called the vector lattice of the crystal pattern (and of the real crystal). Its vectors are 
called lattice vectors.

● A basis of three (two in 3-dimmensional patterns) linearly independent lattice vectors is 
called a lattice basis. If all lattice vectors are integer linear combinations of the basis 
vectors, then the basis is called a primitive basis.

For each lattice there exists an infinite 
number of primitive bases



  

Primitive (lattice) basis*

*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5]

● Example of primitive basis for 3-dimensional lattice – fcc structure  

primitive basis (red rods)



  

Primitive (lattice) basis*

*taken mostly from H. Wondratschek, Matrices, Mappings and Crystallographic Symmetry, 2002 [5]

● Example of primitive basis for 3-dimensional lattice – fcc structure  

60 deg

60deg=arccos(
(1,0 ,1)⋅(0,1 ,1)

√((1,0 ,1)⋅(1,0 ,1))√((0,1 ,1)⋅(0,1 ,1))
)



  

Bravais lattice

Bravais lattice:
● an infinite arrangements of points in space (“A lattice is an infinite array of points in 

space, in which each point has identical surroundings to all others” [8])
● the lattice can be generated from one point using the translation operators:

● the lattice points are given by the end points of the vectors t (vectors a,b,c are linearly 
independent*)

● vectors a,b,c have the same origin; no matter which lattice point is chosen as an
origin, the array always looks the same when viewed from it [8]

● forming the parallelpiped from a,b,c vectors one obtains a unit cell 
● unit cells fill the entire space
● The only rotations that are symmetry elements of crystals are n-fold rotations with 

n=1,2,3,4,6 (proper or improper) – it is not possible to fill the space with uniformly 
shaped unit cells of other symmetries (without gaps and overlapping)

● One can fill the space with cells of other rotational symmetries using two or more kinds 
of cells – quasi-crystals [8,9]

t n1,n2,n3
=n1 a⃗+n2 b⃗+n3 c⃗ , n1,n2, n3−integers

*it is not possible to get zero vector summing integer multiplies of a,b,c



  

Bravais lattice

Bravais lattice:
● an infinite arrangements of points in space (“A lattice is an infinite array of points in 

space, in which each point has identical surroundings to all others” [8])
● the lattice can be generated from one point using the translation operators:

● the lattice points are given by the end points of the vectors t (vectors a,b,c are linearly 
independent*)

● vectors a,b,c have the same origin; no matter which lattice point is chosen as an
origin, the array always looks the same when viewed from it [8]

● forming the parallelpiped from a,b,c vectors one obtains a unit cell 
● unit cells fill the entire space
● The only rotations that are symmetry elements of crystals are n-fold rotations with 

n=1,2,3,4,6 (proper or improper) – it is not possible to fill the space with uniformly 
shaped unit cells of other symmetries (without gaps and przenikania)

● One can fill the space with cells of other 
rotational symmetries using two or more 
kinds of cells – quasi-crystals [8,9]

Penrose tiling example – 5 fold and
10-fold symmetry

t n1,n2,n3
=n1 a⃗+n2 b⃗+n3 c⃗ , n1,n2, n3−integers

*it is not possible to get zero vector summing integer multiplies of a,b,c

local 5-fold symmetry
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Bravais lattice - 2D examples

● There are 14 Bravais lattices in 3D
● Thera are 5 Bravais type lattices in 2D: oblique, rectangular, centered rectangular, 

hexagonal and square

We start with an arbitrary point P in a plane and arbitrary vectors a and b



  

Bravais lattice - 2D examples

*”The infinite set of symmetry-related points is known as a crystallographic orbit” [8]
**denoted usually with 1 or E

● There are 14 Bravais lattices in 3D
● There are 5 Bravais type lattices in 2D: oblique, rectangular, centered rectangular, 

hexagonal and square

We start with an arbitrary point P in a plane and arbitrary vectors a and b
...and “orbit“* with translations t n1, n2,n3

=n1 a⃗+n2 b⃗+n3 c⃗

For arbitrary base vectors
identity** may be the only 
symmetry of the structure



  

Bravais lattice - 2D examples

● There are 14 Bravais lattices in 3D
● There are 5 Bravais type lattices in 2D: oblique, rectangular, centered rectangular, 

hexagonal and square

For some special relations between vectors a and b it is customary to use unit cell that is 
different from the primitive cell [11]

a⃗y=
1
2
b⃗y



  

Bravais lattice - 2D examples

For some special relations between vectors a and b it is customary to use unit cell that is 
different from the primitive cell [11]

a⃗y=
1
2
b⃗y

some of primitive cells

centered rectangular cell

● There are 14 Bravais lattices in 3D
● There are 5 Bravais type lattices in 2D: oblique, rectangular, centered rectangular, 

hexagonal and square



  

Bravais lattice

The choice of the Bravais unit cell for a given basis is made using the following conditions* 
[11]:

1.The symmetry of the unit cell should correspond to the symmetry of the crystal (lattice). 
Edges of the cell should be lattice vectors

2.The unit cell should contain maximum possible number of right angles (between edges) 
or equal angles and equal edges

3.The unit cell should have minimum volume

● The primitive cell to the right has minimum volume

● The cell has no right angles

● The cell (its symmetry operations) has no planes of
symmetry present in the symmetry of the lattice

*the conditions should be fulfilled consequtively: the first condition is more important than the second



  

Bravais lattice - 2D examples

For special relation between basis vectors a and b one (equal length, in-between angle of 
60 deg) one obtains lattice with 6-fold rotational symmetry consistent with close packing of 
spheres in a plane (hexagonal lattice)



  

Bravais lattice - 2D examples

For special relation between basis vectors a and b one (equal length, in-between angle of 
60 deg) one obtains lattice with 6-fold rotational symmetry consistent with close packing of 
spheres in a plane (hexagonal lattice)



  

Bravais lattices in 3D
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Space groups

● Point group – all the symmetry operations that leave one point fixed; this point is called 
the origin [8].

● “the point group which has the symmetry of the lattice is called the holohedral point 
group, and as such it possesses the largest number of symmetry operations” [8]

● There are several methods to develop (find) point groups; one of them is to:
1. start with five point groups defined by rotations 1, 2, 3, 4 ,and 6*
2. add 2-fold rotations perpendicular to these axes
3. add reflections perpendicular to, or containing the cyclic axis
4. substitute improper** for proper rotation

● One arrives then at 32 crystallographic point groups (allowed in normal crystals – 
filling all space)

● Point groups characterize macroscopic crystals
● “most of the macroscopic symmetry aspects of the physical properties of solids are

related to the point group, as given by the so-called Neumann principle” [8]

*in international notation the n symbo denotes symmetry axis (cyclic axis of symmetry) with rotation by 2π/n radians
**rotation followed with inversion; symbol n



  

Space groups

Consider some 2D Bravais lattice*** (rectangular, equal length of basis vectors)

mirror planes**symmetry element for operation of reflection [8]
**it is customary to talk about counter-clockwise rotations, *** 2D lattice is called a net

ro
ta

tio
n 

ax
es

** Note that Bravais lattice 
points do not necessarily 
coincide with atoms

4

4



  

Space groups

Consider some 2D Bravais lattice (rectangular, equal length of basis vectors)

ro
ta

tio
n 

ax
es

We now populate the 
Bravais lattice with 
molecules so that each 
point is associated with one 
molecule (base).

2

2

crystal

The new structure (crystal) has no mirror planes and only 2-fold axes of rotation 
(previously 4-fold). The translational symmetry is preserved.

the molecule 
possesses no 4-fold 
symmetry axis



  

Space groups*

● Space group - the set of geometrical symmetry operations that take a three-dimensional 
periodic object (a crystal) into itself [8]

● The operations belonging to the space group must form a group in the mathematical 
sense.

● Space groups are obtained combining translational symmetry 
(Bravais lattice) with point symmetry (point groups) together 
with two additional symmetry operations:
-glide reflection
-screw rotation

● Both these operations may involve translation τ smaller than a 
primitive lattice translation

● Simple combination of 32 point groups with 14 Bravais lattice 
gives 73 out of 230 space groups (so called symmorphic 
groups**)

*taken largely from G. Burns and A.M. Glazer, Space Groups for Solid State Scientists [8]
**screw and glide operations can be symmetry operations but they can be obtained by combining other operations

Group [16]:
● the product of any two elements in 

the group must be an element of 
the group (square of each of them 
too)

● one element of he group must 
commute with all others and leave 
them unchanged (identity element)

● the associative law of multiplication 
holds:
A(BC)=(AB)C

● every element must have a 
reciprocal within the group



  

Space groups

● Space groups are obtained combining translational symmetry (Bravais lattice) with point 
symmetry (point groups) together with two additional symmetry operations:
-glide reflection: reflection through glide plane followed by translation
-screw rotation

Note that translations can have various orientations relative to basis vectors, i.e., not necessarily 
parallel (axial glide, diagonal glide, etc.) [8]



  

Space groups

● Space groups are obtained combining translational symmetry (Bravais lattice) with point 
symmetry (point groups) together with two additional symmetry operations:
-glide reflection: reflection through glide plane followed by translation

   -screw rotation: rotation by 360o/n followed by a translation

360o/6 rotation

Note that “..., the amount of translation is (1/n) th of one or more unit repeat distances” [8]

Performing n screw 
rotations results
in multiples of unit 
vector translation
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