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Magnetic materials I

● Diamagnetism

● Paramagnetism



  

Diamagnetism - susceptibility

All materials can be classified in terms of their magnetic behavior falling into one of several 
categories depending on their bulk magnetic susceptibility χ.

χ=
M⃗
H⃗

in general the susceptibility is a position dependent tensor

In some materials the magnetization is 
not a linear function of field strength. In 
such cases the differential susceptibility 
is introduced:

χd=
d M⃗
d H⃗

We usually talk about isothermal 
susceptibility:

χT=(∂ M⃗
∂ H⃗ )

T

Theoreticians define magnetization as:

M=−( ∂ F⃗
∂ H⃗ )

T

F=U−TS - Helmholtz free energy [4]

M
[A

/m
]

H[A/m]

χ

M⃗ ( r⃗ )=
1
2
r⃗× J⃗ ( r⃗ )

without spin

dU =T dS− pdV +∑
i=1

N

μi dni

dF=T dS− p dV +∑
i=1

N

μ i dni−T dS−S dT=−S dT− p dV +∑
i=1

N

μ i dni



  

Diamagnetism - susceptibility

It is customary to define susceptibility in relation to volume, mass or mole:

χ=
M⃗
H⃗

[dimensionless ] , χρ=
(M⃗ /ρ)

H⃗ [ m
3

kg ] , χmol=
(M⃗ /mol )

H⃗ [ m3

mol ]

μ<1 χ<0 diamagnetic*

μ>1 χ>0 paramagnetic**

μ≫1 χ≫1 ferromagnetic***

The general classification of materials according to their magnetic properties

*dia /da mæ n t k/ -Greek: “from, through, across” - repelled by magnets. We have from ɪə ɡˈ ɛ ɪ
L2:  

- water is diamagnetic                    (see levitating frog - Ignoble)

F=
1

20

V ∇B2


the force is directed antiparallel to the gradient of B2

i.e. away from the magnetized bodies

** para- Greek: beside, near; for most materials                        [1].

***susceptibility ranges from several hundred for steels to 100,000 for soft magnetic 
materials (Permalloy) 

χ≈10−5−10−3

χ≈−10−5

In electronics only ferromagnetic materials are relevant (superconductors, with χ=-1 are 
used in some devices too)

B⃗=μ H⃗=μrμ0 H⃗ B⃗=μo( H⃗ + M⃗ )

μrμ0 H⃗=μo( H⃗ + M⃗ ) → μ r=1+χ

1emu=1×10−3 A⋅m2



  

Diamagnetism - susceptibility

It is customary to define susceptibility in relation to volume, mass or mole:

χ =
M⃗
H⃗

[dimensionless ] , χ ρ=
(M⃗ / ρ )

H⃗ [ m
3

kg ] , χ mol=
(M⃗ /mol)

H⃗ [ m3

mol ]

μ<1 χ<0 diamagnetic*

μ>1 χ>0 paramagnetic**

μ≫1 χ≫1 ferromagnetic***

The general classification of materials according to their magnetic properties

image source: С. В. Бонсовский, Магнетизм, Издательство ,,Наука", Москва 1971  [5]

room temperature atomic 
magnetic susceptibility

B⃗=μ H⃗=μrμ0 H⃗ B⃗=μo( H⃗ + M⃗ )

μrμ0 H⃗=μo( H⃗ + M⃗ ) → μ r=1+χ



  

Bohr–van Leeuwen Theorem

At any finite temperature, and in all finite applied electric or magnetic fields, 
the net magnetization of a collection of classical electrons in thermal 
equilibrium vanishes identically

or in other words

In classical mechanics, there can be no magnetization

or still in other words – see [1]

● Note that a single electron orbiting in magnetic field is a source of small 
magnetic moment with direction opposite to that of B [2] but this moment is 
independent of B [3]

“The orbits of a cloud of electrons in space give no net current density in bulk, 
but build a surface current orthogonal to H. Only the outer electrons feed this 
diamagnetic field, but since their ratio to the total number vanishes for larger 
and larger clouds, in thermodynamic limit no magnetization per unit volume 
results. If the motion of several electrons is confined in a box, a current also 
develops along the boundary due to electrons that bounce on it. This current 
density is opposite and exactly cancels the surface current due to electrons 
that do not hit the walls. Thus paramagnetic and diamagnetic terms 
compensate and again, no magnetization survives (van Leeuwen’s theorem, 
1921).” [2]
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Bohr–van Leeuwen Theorem

● Note that a single electron orbiting in magnetic field is a source of small magnetic 
moment with direction opposite to that of B [2] but this moment is independent of B [3]

● For the electron orbiting in circle under the influence of central force adiabatic switching 
of the field (slow increase of the field, taking much longer than orbital period) does 
induce the additional moment that is opposite to the B direction [3]

There are two cases to consider:
● the influence of magnetic field on a free 

(not bound) electron
● the same for an electron under the action 

of central force from nucleus

instantaneous electron velocity



  

Bohr–van Leeuwen Theorem

● Note that a single electron orbiting in magnetic field is a source of small magnetic 
moment with direction opposite to that of B [2] but this moment is independent of B [3]

● For the electron orbiting in circle under the influence of central force adiabatic switching 
of the field (slow increase of the field, taking much longer than orbital period) does 
induce the additional moment that is opposite to the B direction [3]

Faraday law gives emf induced in the “circular current loop”*

emf =−π r 2dB
dt

Magnetic moment of a loop is μ=I A , I - loop current, A - loop area , μ=π r2 I=π r2 q /(2π r
v )

μ=
1
2
r q v and angular momentum is J=mv r→μ=

1
2

(q /m) J

An induced emf force induces torque τ acting on the electron giving it an acceleration

*please read the appropriate Feynman lecture – they are now free to read (www.feynmanlectures.caltech.edu/II_34.html)

← E cirle=
emf
2 π r

=−
r
2
dB
dtτ= r⃗⋅F⃗=E cirle q r=

er2

2
dB
dt

e  istead of q

and a torque is equal to time derivative of angular momentum l

dJ
dt

=
er2

2
dB
dt

→ dJ=
er2

2
dB

“This is the extra angular momentum from the twist 
given to the electrons as the field is turned on” - 
Feynman [4]

and the corresponding change of magnetic moment is (remember q=-e) is

dμ=−
e2 r2

4m
dB and because the field starts from zero → Δμ=−

e2 r 2

4m
B

period of one tour



  

Digression – time independent non-degenerate perturbation method

We have a system described by a Hamiltonian H(0) for which we know the solutions [6,7]

H (0 )
ψ=Eψ → E1

(0) , E2
(0) , E3

(0) , ... ψ1
(0 ) , ψ2

(0) , ψ3
(0) , ...

The system is now perturbed so that the new Hamiltonian differs only slightly from H(0)

(H (0)+H (1))ψ=Eψ → (H (0)+λ V̂ )ψ=Eψ (1)

We assume that the solutions of the perturbed equation can be expressed as a power 
series relative to λ

the eigenfunctions are orthonormal and a form 
complete set

Em=Em
(0)

+λ Em
(1)

+λ
2 Em

(2)
+...

ψm=ψm
(0)+λ ψm

(1)+λ2 ψm
(2)+...

Inserting the above solutions to (1) we get

(H (0)+λ V̂−Em
(0)−λ Em

(1)−λ2 Em
(2)−...)(ψm

(0)+λ ψm
(1)+λ2 ψm

(2)+...)=0

Collecting terms according to the powers of λ we obtain [7]

(H (0)
−Em

(0)
)ψm

(0)
=0

(H (0)
−Em

(0)
)ψm

(1)
=(Em

(1)
−V̂ )ψm

(0)
(2)

(H (0)−Em
(0))ψm

(2)=(Em
(1)−V̂ )ψm

(1)+Em
(2)ψm

(0)

unperturbed equation

contains zeroth and first order terms



  

Digression – time independent non-degenerate perturbation method

We want to find the first order correction to the energy [7]
To that end we multiply (2) with        to get

ψm
(0)*(H (0)−Em

(0))ψm
(1)=ψm

(0)*(Em
(1)−V̂ )ψm

(0)

ψm
(0)*

(H (0 )
−Em

(0)
)ψm

(0 )
=0

(H (0)−Em
(0))ψm

(1)=(Em
(1)−V̂ )ψm

(0) (2)

(H (0)−Em
(0 ))ψm

(2)=(Em
(1)−V̂ )ψm

(1)+Em
(2 )ψm

(0)

Integrating the above expression we have

∫ (ψm
(0)*

(H (0)
−Em

(0 )
)ψm

(1))dV=∫ψm
(0)* Em

(1)
ψm

(0)dV−∫ψm
(0)* V̂ ψm

(0)dV V lm :=∫ψl
(0)* V̂ ψm

(0 )dV

Hermitian operator is defined 
by the condition [8]

∫ψ1
* x̂ ψ2dV=∫ψ2 ( x̂ ψ1 )

*dV

∫ (ψm
(0)*(H (0)−Em

(0)) ψm
(1))dV=∫ψm

(0)* H (0) ψm
(1) dV−∫ψm

(0)* E m
(0) ψm

(1)dV=∫ψm
(1)(H (0)ψm

(0))* dV −∫ψm
(0)* Em

(0) ψm
(1)dV =

∫ψm
(1)E m

(0)
ψm

(0)* dV−∫ψm
(0)* E m

(0)
ψm

(1)dV=0

0=Em
(1)−V mm

∫ψm
(0)* Em

(1 )
ψm

(0)dV =Em
(1)∫ ψm

(0) *
ψm

(0 )dV=Em
(1 ) , because eigenfunctions are normalized to 1 and Em

(1) is just a number

and finally

Em
(1)=V mm=∫ψm

(0)* V̂ ψm
(0)dV

The correction to the eigenvalues in the first order approximation is the equal to the 
average energy of the perturbation in the unperturbed state

Em=Em
(0)+λV mm Em=E0+<0 m| H (1) |0 m>

becaues energy is a real number: 
(Em

(0)
)
*
=Em

(0)



  

Digression – time independent non-degenerate perturbation method

To find eigenfunctions in the first order of perturbation we express them as the 
superpositions of the functions of the unperturbed Hamiltonian [7] 

ψm
(1)=∑

l=1

ψl
(0 )c lm and insert them to Eq. (2) to obtain

(H (0)−Em
(0))∑

l=1

ψl
(0) clm=(Em

(1)−V̂ )ψm
(0) (3) (H (0)

−Em
(0)

)ψm
(1)

=(Em
(1)

−V̂ )ψm
(0 )

(2)

To find coefficients c for k≠m we multiply (3) by         and integrate to getψk
(0)*

∫ [ψk
(0)*(H (0)−Em

(0))∑
l=1

ψl
(0)c lm] dV=∫ψk

(0)* Em
(1)ψm

(0)dV−∫ψk
(0)* V̂ ψm

(0)dV

H (0)∑
l=1

ψl
(0)clm=∑

l=1

E l
(0 )

ψl
(0)clm

V lm :=∫ψl
(0)* V̂ ψm

(0)dV

orthogonality of ψk
(0 ) and ψm

(0)

=0

LHS=∑
l=1

(E l
(0)

−Em
(0 )

)c lm∫ψk
(0)*

ψl
(0 )dV =∑

l=1

(E l
(0)

−Em
(0)

)clm δkl=(E k
(0)

−Em
(0)

)ckm
Kronecker delta: 
δij=0 if i≠ j

which gives (E k
(0)

−Em
(0)

)ckm=−V km

or

ckm=
V km

(Em
(0)

−E k
(0)

)
for k≠m



  

Digression – time independent non-degenerate perturbation method

ψm
(1)= ∑

l , l≠m

c lmψl
(0)

In order to obtain approximately normalized eigenfunction one assumes that cmm=0 [7]. We 
have then 

c km=
V km

(E m
(0)

−E k
(0 )

)
for k≠m

and finally, for the function in the first order of perturbation

ψm
(0)

+λ ψm
(1)

=ψm
(0 )

+ ∑
l , l≠m

V lm

(Em
(0)−E l

(0))
ψl

(0)

● note the the approximating series do not always converge [7] 
requiring more advanced methods

● for degenerate energy levels (eigenfunctions with the same 
energy ) the above methods fails: some c coefficients go to 
infinity

Em=Em
(0)

+λ Em
(1)

+λ
2 Em

(2)
+...

ψm=ψm
(0)+λ ψm

(1)+λ2 ψm
(2)+...

clm

ll=m

● perturbation mixes every 
unperturbed state with other 
states [9, Fig.11.1]

● the states in the vicinity 
(energy) are more strongly 
admixed than those farther 
away

1

(Em
(0 )−E l

(0))



  

Atom in magnetic field

Hamiltonian of an atom containing Z electrons reads [10]

H 0=∑
i=1

z

(
pi

2

2m
+V i) , V i - potential energy

The external magnetic field can be written using vector potential
From previous lectures we have for the energy of an electron

A⃗(r )=
1
2

( B⃗× r⃗ )
B⃗=∇× A⃗

B⃗× r⃗ = x̂ (−B z y+B y z )+ ŷ (B z x−Bx z )
+ ẑ (−B y x+Bx y )

∇×( B⃗× r⃗ )=2 B⃗
H=

1
2
m ( p⃗−e A⃗ )

2
+eV

Expanding the kinetic energy term we get

1
2
m ( p⃗−e A⃗ )2=

p2

2m
−
e
m

A⃗⋅p⃗+
e2

2m
A⃗2

=
p2

2m
−

e
2m

( B⃗× r⃗ )⋅p⃗+
e2

2m (1
2

( B⃗× r⃗ ))
2

=

p2

2m
−

e
2m

( r⃗× p⃗)⋅B⃗+
e2

8m
( B⃗× r⃗ )

2
orbital angular momentum

The complete Hamiltonian, including the spin of an electron, is then [10]

ℏ L

H=∑
i=1

Z

( pi
2

2m
+V i) + μB( L⃗+ g S⃗ )⋅B⃗ +

e 2

8m
∑
i=1

Z

( B⃗× r⃗ i)
2

μB=
eℏ

2m
g≈2 - g-factor of an electron

paramagnetic term diamagnetic term



  

Atom in magnetic field - diamagnetism

To simplify the matters we assume that all electronic shells of the atom are filled so that 
orbital and spin momenta vanish [10] – the atom has no magnetic moment on its own 

H=∑
i=1

Z

( pi
2

2m
+V i) +

e2

8m
∑
i=1

Z

( B⃗×r⃗ i)
2

← L⃗=0, S⃗=0

We further assume the magnetic field is parallel to z-axis: B=(0,0,B) 

B⃗×r⃗ i=B(− x̂ y i+ ŷ x i) → ( B⃗×r⃗ i)
2
=B2

(x i
2
+ y i

2
)

Consequently (see previous slides on perturbation method) an energy shift due to the 
diamagnetic term is

Em
(1)

=V mm=∫ψm
(0)*V̂ ψm

(0)dV

Perturbation correction

Δ E=B2 e2

8m ∑
i=1

Z

<0| x i
2
+ y i

2 |0> |0> - ground state wave function

For spherically symmetric electronic wave function we have

< x i
2 >=< y i

2 >=< z i
2 >=

1
3

< r i
2 > → Δ E=B2 e2

12m ∑
i=1

Z

<0| r i
2 |0>

m=−( ∂ F⃗
∂ H⃗ )

T

F=U −TS

and using a thermodynamic definition of magnetic moment we get (for T=0)

M=−
N
V (∂ F⃗

∂ H⃗ )
T

=−B
N
V

e2

6mμ0
2 ∑

i=1

Z

<0| r i
2 |0>

Number of atoms in a volume – to obtain magnetization

H=∑
i=1

Z

( p i
2

2 m
+V i) + μB( L⃗+ g S⃗ )⋅B⃗ +

e2

8 m
∑
i=1

Z

( B⃗× r⃗i)
2



  

Atom in magnetic field - diamagnetism

To simplify the matters we assume that all electronic shells of the atom are filled so that 
orbital and spin momenta vanish [10] – the atom has no magnetic moment on its own 

M=−
N
V (∂ F⃗

∂ H⃗ )
T

=−B
N
V

e2

6mμ0
2 ∑

i=1

Z

<0| r i
2 |0>

● the susceptibility is negative – diamagnetism

● the outermost shells contribute more to the the susceptibility due to 

χ=−
N
V

e2

6mμ0
2 ∑

i=1

Z

<0|r i
2 |0>

χ∝< r i
2 >

H=∑
i=1

Z

( pi
2

2m
+V i) +

e2

8m
∑
i=1

Z

( B⃗×r⃗ i)
2

← L⃗=0, S⃗=0 H=∑
i=1

Z

( p i
2

2 m
+V i) + μB( L⃗+ g S⃗ )⋅B⃗ +

e2

8 m
∑
i=1

Z

( B⃗× r⃗i)
2



  

Pauli principle – fermions, bosons

In the system composed of indistinguishable particles the exchange of the particles does 
not change the wave function 

H ψ(r1, r2)=E ψ(r1, r2) H ψ(r2, r1)=E ψ(r 2, r1)

Since the observables do not change when particles are exchanged we must have* 

< ψ(r1, r 2) |some operator| ψ(r1, r 2)>=a< ψ(r1, r 2) |some operator| ψ(r1, r 2)>

*argument, leading to identical conclusions, is different if energy levels are degenerate

or

ψ(r1, r2)=aψ(r1, r2)

But exchanging the particles twice brings us back to the initial state

ψ(r1, r2) → aψ(r1, r 2) → a2 ψ(r1, r 2)

It follows a=±1

● a=1 – symmetric wave functions – bosons

● a=-1 – antisymmetric wave functions – fermions (electrons, protons, neutrons)

H ψ(r1, r2)=E ψ(r1, r2) H ψ(r2, r1)=E ψ(r 2, r1)



  

Pauli principle – fermions, bosons

 

● a=1 – symmetric wave functions – bosons

● a=-1 – antisymmetric wave functions – fermions (electrons, protons, neutrons)

“This brings up an interesting question: Why is it that particles with half-integral spin 

are Fermi particles whose amplitudes add with the minus sign, whereas particles with 

integral spin are Bose particles whose amplitudes add with the positive sign? We 

apologize for the fact that we cannot give you an elementary explanation. An 

explanation has been worked out by Pauli from complicated arguments of quantum 

field theory and relativity. He has shown that the two must necessarily go together, but 

we have not been able to find a way of reproducing his arguments on an elementary 

level. It appears to be one of the few places in physics where there is a rule which can 

be stated very simply, but for which no one has found a simple and easy explanation. 

The explanation is deep down in relativistic quantum mechanics. This probably means 

that we do not have a complete understanding of the fundamental principle involved. 

For the moment, you will just have to take it as one of the rules of the world.”

R. Feynman, Feynman Lectures on Physics, Identical Particles, III Ch.4, 1963



  

Fermions, bosons – an example; non-interacting particles 

ψ(x)=√2
a

sin (n
π
a

x ) , n=±1,±2,. . .

x

a

n=2

n=1

Depending on whether the particles are distinguishable 
(classical case) or not and on whether they are bosons or 
fermions the wave function of two non-interacting particles 
can be written in one of three ways*:

● distinguishable particles

● bosons (symmetric wave function)

● fermions (antisymmetric function)

*see the video lectures 7.1-7.5 of Ron Reifenberger () [26]

ψ(r1 , r 2)=ψn1(r1) ψn2(r2)
which means that particle no.1 is in 
state n1 at position r1 and particle 
no.2 is in state n2 at position r2

ψ(r1 , r 2)=
1

√2
[ ψn1(r1)ψn2(r 2)+ψn1(r2)ψn2 (r1) ]

ψ(r1 , r 2)=
1

√2
[ ψn1(r1)ψn2(r 2)−ψn1(r 2)ψn 2(r1)]

Assume that two identical particles are confined to a potential well of the infinite depth and 
width a. The normalized 1-D solutions to Schrödinger equation are of the form [9]:



  

Fermions, bosons – an example; non-interacting particles 

Assume that two identical particles are confined to a potential well of the infinite depth and 
width a. The normalized 1-D solutions to Schrödinger equation are of the form [9]:

ψ(x)=√2
a

sin (n
π
a

x ) , n=±1,±2,. . .

Depending on whether the particles are distinguishable 
(classical case) or not and on whether they are bosons or 
fermions the wave function of two non-interacting particles 
can be written in one of three ways*:

● distinguishable particles

● bosons (symmetric wave function)

ψ(r1 , r 2)=
1

√2
[ ψn1(r1)ψn2(r 2)+ψn1(r2)ψn2 (r1) ]

Both particles in the same quantum state [26]
probability density

P(r1 , r 2)=( 1

√2
[2 ψn(r1)ψn(r 2)])( 1

√2
[2 ψn(r1)ψn (r 2) ])

*

= 2 ψn(r1)ψn(r 2)ψn(r1)
*ψn (r 2)

*

Bosons have enhanced probability of being in the same quantum state

ψ(r1 , r 2)=ψn1(r1) ψn2(r2) P(r1 , r 2)=ψn(r1)ψn(r 2)ψn(r1)
* ψn(r 2)

*



  

Fermions, bosons – an example; non-interacting particles 

We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Distinguishable particles – classical description

x1

x2

x1 and x2 denote the positions of particles along x-axis 

x1

a

n=2
n=1

w
e
ll

x2

x1
P( x1 , x2)=[√2

a
sin (1

π
a

x1)√2
a

sin (2
π
a

x 2)]
2



  

Fermions, bosons – an example; non-interacting particles 

P( x1 , x2)=[√2
a

sin (1
π
a

x1)√2
a

sin (2
π
a

x 2) + √2
a

sin (1
π
a

x2)√2
a

sin (2
π
a

x1)]
2

We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Indistinguishable boson particles



  

Fermions, bosons – an example; non-interacting particles 

P( x1 , x2)=[√2
a

sin (1
π
a

x1)√2
a

sin (2
π
a

x 2) - √2
a

sin (1
π
a

x2)√2
a

sin (2
π
a

x1)]
2

We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Indistinguishable fermions



  

Density of states

We define the density of states as a number of electron states per unit energy range [11]
From previous lectures we know that there is one
allowed wave vector (kx,ky,kz) for

          volume of k space [12](2 π

L )
3

If we allow for the possible orientations
of spin the density of states in k-space
is [13]

d statee=(2S+1)( L
2π )

3
L3 is the volume of the crystal
For electrons we have S=½

● we assume that the space is 
isotropic

● and that the allowed k values are 
quasi continuous (macroscopic 
system [13]

The number of allowed states in the 
range 0 to k (see the sphere to the 
right) is given by

N=
4
3

π k3 d states=
4
3

πk 3
(2 S+1)( L

2π )
3

volume of the k-sphere



  

Density of states

The number of states in the k to k+dk range is thus (surface of the sphere times its thickness,...)

dN=4 πk 2 d statesdk=(2S+1)
L3

2 π
2 k

2dk d states=(2S +1)( L
2π )

3

k=√2mϵ

ℏ
2 → dk=

1
2 √2m

ℏ
2 ϵ

−1/2 d ϵ

From the expression for the for the energy of free particles                          we getϵ=
p2

2m
=

ℏ
2

2m
k 2

Combining last two expressions we obtain [13]

dN=(2 S+1)
L3

2π
2 k

2 ×
1
2 √2m

ℏ
2 ϵ−1/ 2 d ϵ → ρ(ϵ)=

dN
d ϵ

=(2 S+1)
V

4 π
2 (2m

ℏ
2 )

3/2

ϵ+1/2

The density of states* in three dimensional systems is proportional to square of energy

*often denoted as DOS

DOS(ϵ) ∝ ϵ+1/2



  

Density of states

The dependence of the DOS on energy depends on the dimensionality of the system [13]

DOS(ϵ)=const

DOS(ϵ) ∝ ϵ−1/2

DOS(ϵ) ∝ ϵ+1/2

3D

2D

1D



  

temperature  
in Kelvins

room temperature

Fermi-Dirac distribution

The Fermi-Dirac distribution (probability that a single state of a given energy is filled) is 
given by the expression
                                            for T=0 this is Heaviside step function [13]FF−D=

1

e(E−EF)/ kbT+1 1eV / kb≈11608.69

● note that Fermi energy EF for the graphs is 5 eV

● value of F-D function at  EF is 0.5 for any temperature

Gnuplot commands to get the graph (Version 5.0 patchlevel 4):
set samples 250;set xlabel "E[eV]" font "Arial,12";set ylabel "F-D" 
font "Arial,18";set xrange [4.7:5.3];set yrange [0:1.1];plot 1/
(exp(11608.69*(x-5)/100)+1) with lines lw 3 lt rgb "black",1/
(exp(11608.69*(x-5)/200)+1) with lines lw 3 lt rgb "blue", 1/
(exp(11608.69*(x-5)/300)+1) with lines lw 3 lt rgb "green",1/
(exp(11608.69*(x-5)/400)+1) with lines lw 3 lt rgb "red"



  

Fermi-Dirac distribution

thermal excitations 
transfer particles to 
states above Fermi 
energy

Kb 100K= 0.008 eV

The Fermi-Dirac distribution (probability that a single state of a given energy is filled) is 
given by the expression
                                            for T=0 this is Heaviside step function [13]FF−D=

1

e(E−EF)/ kbT+1



  

Fermi energy

Because of Pauli exclusion principle, at T=0K, the electrons fill the energy levels up to 
some maximum value which can be estimated from previously found expression for the 
number of allowed states for wave vectors less than kF

For electrons (S=½) this transforms to N =
4
3

π k F
3 (2S+1)( L

2 π )
3

N=
V

3π
2 k F

3
→ k F=(3π

2 N
V )

1/3

and since                         we get [12]ϵ=
p2

2m
=

ℏ2

2m
k 2

EF=
ℏ

2

2m (3 π
2 N
V )

2 /3

v F=
ℏ k F

m
=

ℏ

m (3π
2 N
V )

1/3

EF [eV*] kF [1010m-1] vF [106m/s]       N/V
[1028 electrons/m3]

Cu 7.0 1.35 1.56 8.5

Ag 5.5 1.19 1.38 5.8

Au 5.5 1.20 1.39 5.9

Some Fermi vectors, energies and velocities (according to Kittel [12])

approx. 6 eV approx. 0.5% velocity
of light



  

F-D distribution - density of filled states

Number of particles/electrons with a given energy is a product of available states and the 
probability of finding a particle in a state characterized by a given energy [12]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6
E[eV]

1/(exp(11608.69*(x-5)/300)+1)*sqrt(x)

1/(exp(11608.69*(x-5)/300)+1)

sqrt(x)

N filled states=F F−D (ϵ)∗DOS (ϵ)

density of available states (DOS)

Fermi-Dirac function

states that are actually filled



  

F-D distribution - density of filled states

When dealing with magnetic properties of materials one often separates density of states 
with different spin orientation

 1

 2

 3

 4

 5

 6

Note the convention [13]:

● spin up (up spin) denotes the spins 
parallel to magnetic field

● spin down – antiparallel orientation

T=800K

Note that depending on the convention 
for the sign of g-factor for an electron its 
magnetic moment can be parallel to the 
spin (g<0) or antiparallel [14]. Saying 
that spins align along the field direction 
is usually meant to mean the associated 
magnetic moments

● NIST (USA) gives the g-factor as
     -2.002 319 304 361 82(52)*

*http://physics.nist.gov/cgi-bin/cuu/Value?gem, retrieved 2017.01.17

μ⃗=−gμB S⃗

http://physics.nist.gov/cgi-bin/cuu/Value?gem


  

F-D distribution - density of filled states

When dealing with magnetic properties of materials one often separates density of states 
with different spin orientation

Exemplary theoretical calculations of the 
DOS for single-crystalline CeRh3Si2

● note that density of states is determined 
for different non-equivalent positions of 
Ce atoms (“on  cerium  atoms forming two 
magnetic sublattices”)
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Pauli susceptibility – magnetic susceptibility of itinerant electrons 

● The susceptibility of the electron gas is largely overestimated if one assumes that spin of 
electrons are free to align with magnetic field [12]

● In metal most of the electrons, those lying far below Fermi level, can not change the 
orientation of their spins because the states with comparable energy (we assume that 
the magnetic field is weak*) are already filled

*meaning that it does not noticeably change the electronic structure of the material - bands

DOS

 1

 2

 3

 4

 5

 6

DOS

E[eV]

up
down

2μB

B

DOS

 1

 2

 3

 4

 5

 6

DOS

E[eV]

up down

2μB

B



  

Pauli susceptibility – magnetic susceptibility of itinerant electrons 

● The susceptibility of the electron gas is largely overestimated if one assumes that spin of 
electrons are free to align with magnetic field [12]

● In metal most of the electrons, those lying far below Fermi level, can not change the 
orientation of their spins because the states with comparable energy (we assume that 
the magnetic field is weak*) are already filled

Concentration of electrons with magnetic moments “parallel” to the external magnetic field 
is given by [19]

*meaning that it does not noticeably change the electronic structure of the material - bands

N up=
1
2 ∫

−μ B

EF

F F−D (ϵ)∗D (ϵ+μ B)d ϵ

We expand the DOS:                                                            and substituteD (ϵ+μ B )=D (ϵ)+μ B∂
∂ϵ

D (ϵ)+.. .

N up=
1
2 ∫

0

∞

F F−D (ϵ)∗D (ϵ)d ϵ+
1
2 ∫

−μ B

0

F F−D (ϵ)∗D (ϵ)d ϵ+
μ B

2 ∫
−μ B

∞

F F−D (ϵ)∗∂
∂ϵ

D (ϵ)d ϵ

integral divided into two integrals;
the second one vanishes because 
D(E)
is 0 for E<0

∫
−μ B

∞

F F−D (ϵ)∗∂
∂ϵ

D(ϵ)d ϵ=F F−D (ϵ)D (ϵ)|−μ B
∞ − ∫

−μB

∞

D(ϵ)∂
∂ ϵ

F F−D (ϵ)d ϵ=

∂
∂ ϵ

F F −D (ϵ)D(ϵ)=F F−D (ϵ)∂
∂ϵ

D (ϵ)+D(ϵ)∂
∂ ϵ

F F −D (ϵ)

integration by parts

vanishes because D(E)=0 for E<0 (lower 
summation limit) and FF-D is zero at +∞

Dirac’ delta

= D (E F)

∂
∂ϵ

FF−D(ϵ)=−δ(ϵ−EF )

N up=
1
2
n0+

μ B
2

D (E F)

n0 – number of states up to Fermi 
energy in unperturbed system (B=0)



  

Pauli susceptibility – magnetic susceptibility of itinerant electrons 

● The susceptibility of the electron gas is largely overestimated if one assumes that spin of 
electrons are free to align with magnetic field [12]

● In metal most of the electrons, those lying far below Fermi level, can not change the 
orientation of their spins because the states with comparable energy (we assume that 
the magnetic field is weak*) are already filled

Concentration of electrons with magnetic moments “parallel” to the external magnetic field 
is given by [12,19]

*meaning that it does not noticeably change the electronic structure of the material - bands

Concentration of electrons with magnetic moments “antiparallel” to the external magnetic 
field is

and the resultant magnetization is (μ - magnetic moment of a particle)

M=μ(N down−N down)≈μ2 D (EF )B=
3 N μ2

2E F

B

D (ϵ)=
V

2π2 (2 m

ℏ2 )
3/ 2

ϵ+1 /2

E F=
ℏ2

2m (3π
2 N
V )

2 /3

χ=μ0

3 N μ2

2E F

χ=
∂M
∂H

D (E F )=
V

2π2 (2m

ℏ2 )
3 /2

( ℏ2

2m (3 π2 N
V )

2/ 3

)
+1/ 2

=
V

2π2 (2m

ℏ2 )
3 /2

( ℏ2

2m )
1 /2

(3 π2 N
V )

1/3

=

V

2 π 2 ( ℏ2

2m )
−1

(3 π2 N
V )

−2/ 3

(3π2 N
V )

+1

=
3 N
2 E F

1 /EF

N up=
1
2
n0+

μ B
2

D (E F)

N down=
1
2
n0−

μ B
2

D (E F)



  

Spin-orbit interaction (coupling) 

● The electron is orbiting the nucleus of the +Ze charge*
● Looking at the nucleus from electron we have the magnetic field due to the motion of the 

nucleus. The energy of electron in that field is

*the derivation is taken from Einführung in die Quantenmechanik (Physik IV), ETH Zurich [16] 

B⃗=−gμBms B

Correspondingly every electronic state splits into two (with two orientations of the spin).
We assume that an electron is orbiting the nucleus in xy plane and that its instantaneous 
velocity is along x-direction.
The electric field of the nucleus at the place of an electron is along y-direction then 

E y=
1

4 πϵ0

Z e

r2

x

y

ve

From special relativity theory (A. Einstein) for the components of the 
magnetic field in the electron reference frame we have [16] 

Bx
el(ectron)

=B x=0

B y
el=

1

√1−v2
/c2 (B y+

v e

c2 E z)=0 B z
el=

1

√1−v2
/ c2 (Bz−

ve

c2 E y)≈−
ve

c2 E y

Electron feels then the magnetic field that is oriented along z-axis
Further, the field seen by the electron can be written as

Bel
=

1

c2
( E⃗× v⃗ )=

1

mc2
( E⃗× p⃗ ) p⃗=

m0 v⃗

√1−v2
/c2



  

Spin-orbit interaction (coupling) 

Inserting the above calculated magnetic field into the expression for energy yields

x

y

ve

The direction of the magnetic field cal-
calculated from Biot-Savart law for a 
moving charge is the same

B⃗=
μ0

4 π

q

r2
v⃗× r⃗

Vn

Δ E spin−orbit=−gμBms B=−gμB ms
1

mc2
( E⃗× p⃗ )=−gμB ms

1

mc2 ([ 1
4 πϵ0

Z e

r 2 ] r⃗r × p⃗)

Δ E spin−orbit=−gμBms

1

mc2 ([ 1
4 πϵ0

Z e

r3 ] r⃗× p⃗)=−gμBm s

1

mc2 ([ 1
4 π ϵ0

Z e

r3 ] L⃗)

this give the appropriate 
direction of electric field

angular momentum

More exact calculations require taking into account the so called Thomas 
precession* – this leads to factor ½ which leads to “final” expression

*the derivation assumed that electron moves along straight line [16]

Δ E spin−orbit=−
g
2

μB

1

mc2

1
4π ϵ0

Z e

r 3
L⃗

● note that spin-orbit coupling is proportional to  Z

● ...and to orbital moment of an electron

Bel=
1
c2 ( E⃗×v⃗ )=

1
mc2 ( E⃗× p⃗ )



  

Spin-orbit interaction (coupling)

● In a crystal conducting electrons move in the average electric field of the atom cores and 
other electrons

● The core electrons that remain in the vicinity of the nucleus experience strong electric fields 
and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit 
coupling (please see movies at https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html)  

ve

v
e

v
e

v
e

ve

v
e

ve

v e

v
e

ve

ve

ve

ve
ve

ve

paths of itinerary 
electrons

orbits of core 
electrons

https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html


  

Spin-orbit interaction (coupling)

● In a crystal conducting electrons move in the average electric field of the atom cores and 
other electrons

● The core electrons that remain in the vicinity of the nucleus experience strong electric fields 
and provided that the orbit is not centrosymmetric they experience strong spin-orbit coupling 
(please see movies at https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html)

● The magnetic fields due the core electron movement can be huge [17]:  

Linear velocity of an electron rotating around a nucleus is ~2.1*106 m/s
The electric field experienced by an electron in the vicinity of nucleus (calculated for 1s 
orbital of hydrogen atom) is roughly 5*1011 V/m
The effective magnetic field of the spin-orbit interaction is about 12 T

For comparison we [17] estimate the effective field in devices in which we try to influence 
the behavior of itinerant electrons applying external electric fields
The maximal electron velocity (saturation velocity, maximal drift speed) ~1*107 m/s
The maximal available electric field (limited by breakdown voltage of the materials), for 
GaAs or Si it is roughly 5*107 V/m
The effective magnetic field of the spin-orbit interaction is about 5*10-4 T (about the 
strength of the earth magnetic field)

https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html


  

Spin-orbit interaction (coupling) – dependence on atomic number  

The SO coupling depends indirectly on the charge of the nucleus (Z)
The dependence is different for different series

image source [19]
● The Z4 dependence for SO in central 

field (near core electrons) comes from 
perturbative correction [18]:

H SO (r )=
1

2m2 c2

∂V (r )
∂ r

L⃗⋅⃗S

E nl=E nl
0
+F (l , j) Z 4

● The Z2 dependence is more relevant 
for solids



  

Coordinational polyhedron  

● The arrangement of nearest neighbors depends on the coordination number [21]

coordinational octahedron  

NaCl structure  

six nearest
neighbors  



  

Crystal field  

● The basic assumption of crystal field theory (also called ligand field theory) is that the crystal 
is ionic

● The paramagnetic ion is surrounded by a set of point charges and the electric potential V 
produced by these ions is added to the Hamiltonian [19]

H=∑
i=1

n

[ pi
2

2m
−
Z e2

r i

+e2∑
j>i

1
r ij

]+λ L⃗⋅S⃗+∑
i=1

n

eV i

● The crystal field is calculated by summing the contributions of the nearest neighbors, next 
nearest neighbors etc. - it possesses thus the symmetry of the lattice

● This leads to lifting of some degeneracies of the electron levels

The central ion is surrounded by nearest 
neighbors

In this case six neighbors are arranged on 
the vertexes of octahedron

The neighbors produce some electric 
potential



  

Crystal field  

● The basic assumption of crystal field theory (also called ligand field theory) is that the crystal 
is ionic

● The paramagnetic ion is surrounded by a set of point charges and the electric potential V 
produced by these ions is added to the Hamiltonian [19]

H=∑
i=1

n

[ pi
2

2m
−
Z e2

r i

+e2∑
j>i

1
r ij

]+λ L⃗⋅S⃗+∑
i=1

n

eV i

● The crystal field is calculated by summing the contributions of the nearest neighbors, next 
nearest neighbors etc. - it possesses thus the symmetry of the lattice

● This leads to lifting of some degeneracies of the electron levels

Various orbitals (p-orbitals in the image) 
can be oriented differently relative to the 
charges of neighboring ions

Consequently the electrostatic energies are 
different for px, py, and pz orbitals

source of E



  

Crystal field  

● The basic assumption of crystal field theory (also called ligand field theory) is that the crystal 
is ionic

● The paramagnetic ion is surrounded by a set of point charges and the electric potential V 
produced by these ions is added to the Hamiltonian [19]

● Assuming a simple model of point charges we see that purely electrostatic interactions 
cause the pz orbital to have lower energy (than the py orbital) – the potential energy of 
electron cloud is lowered as electron is closer to positive ions (see Jahn-Teller effect at 
https://chem.libretexts.org...Jahn-Teller_Distortions)

● Similar situation exists for other orbitals: five d orbitals, depending on the symmetry of the 
surrounding , can split into 4-levels (https://en.wikipedia.org/wiki/Crystal_field_theory)

o
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y

px,py,pz
px,py

pz

free atom crystal field

image based of Fig. 3.7 from [19]

https://chem.libretexts.org/Core/Inorganic_Chemistry/Coordination_Chemistry/Properties_of_Coordination_Compounds/Coordination_Numbers_and_Geometry/Jahn-Teller_Distortions


  

Degeneracy in crystal field

● Wigner theorem [5,p.134]: if eigenfunction φ of operator H corresponds to eigenvalue E and H is 
invariant under a symmetry operation T then the function Tφ will be the eigenfunction of H 
corresponding to the same eigenvalue E

The set of functions transforms under the action of operation T into new set of functions [5]

(ϕ1 ,ϕ2 , ... ,ϕ f )=(ψ1 ,ψ2 , ... ,ψ f )(
T 11 T 12 ... T 1 f

T 21 T 22 ... T 2 f

... ... ... ...
T f 1 T f 2 ... T f f

)
If the set of transformation forms a group the set of functions                        is its base
In general the matrices representing transformations can be transformed int a new set of 
matrices

(ψ1 ,ψ2 , ... ,ψ f )

Group [20]:
● the product of any two elements in the group must be an 

element of the group (square of each of them too)
● one element of he group must commute with all others 

and leave them unchanged (identity element)
● the associative law of multiplication holds:

A(BC)=(AB)C
● every element must have a reciprocal within the group

T (k) → Q−1 T (k) Q , k numbers members of the group (e.g. rotation, reflection etc.)

(
T 11 T 12 T 13 T 14 T 15 T 16 T 17

T 21 T 22 T 23 T 24 T 25 T 26 T 27

T 31 T 32 T 33 T 34 T 35 T 36 T 37

T 41 T 42 T 43 T 44 T 45 T 46 T 47

T 51 T 52 T 53 T 54 T 55 T 56 T 57

T 61 T 62 T 63 T 64 T 65 T 66 T 67

T 71 T 72 T 73 T 74 T 75 T 76 T 77

) (
T 11 T 12 0 0 0 0 0
T 21 T 22 0 0 0 0 0
0 0 T 33 T 34 0 0 0
0 0 T 43 T 44 0 0 0
0 0 0 0 T 55 T 56 T 57

0 0 0 0 T 65 T 66 T 67

0 0 0 0 T 75 T 76 T 77

)if all matrices of the group 
can be transformed into 
similar blocked out 
matrices by the same Q 
matrix then

the group representation is 
reducible [20]



  

Using the block matrix we get (by standard matrix multiplication of vector by matrix)

( ψ1T 11+ψ2T 21 ,ψ1T 12+ψ2T 22 ,
ψ3T 33+ψ4T 43 ,ψ3T 34+ψ4T 44 ,
ψ5T 55+ψ6T 65+ψ7T 75 ,
ψ5T 56+ψ6T 66+ψ7T 76 ,
ψ5T 57+ψ6T 67+ψ7T 77 )

… and for each of the blocks we have something like that

(ψ1, ψ2 , ... ,ψ7)(
T 11 T 12 0 0 0 0 0
T 21 T 22 0 0 0 0 0
0 0 T 33 T 34 0 0 0
0 0 T 43 T 44 0 0 0
0 0 0 0 T 55 T 56 T 57

0 0 0 0 T 65 T 66 T 67

0 0 0 0 T 75 T 76 T 77

)=

(ψ5, ψ6 ,ψ7)(
T 55 T 56 T 57

T 65 T 66 T 67

T 75 T 76 T 77
)=(ψ5T 55+ψ6T 65+ψ7T 75 ,ψ5T 56+ψ6T 66+ψ7T 76 ,ψ5T 57+ψ6T 67+ψ7T 77)

Which means that functions ψ5, ψ6 ,ψ7 will be transformed only between themselves (they 
won’t get contribution from function ψ1 for example) [5] 

Degeneracy in crystal field

row vector
(i.e. not a matrix)



  

Atom in the crystal field of a cubic symmetry (a tetrahedron group) – we take the hydrogen 
orbitals in real form (combination of complex orbitals) [5]: 

Degeneracy in crystal field

d
x^2-y^2

d
2z^2-x^2-y2

d
xy

ψs=R0 s orbitals
ψ1 p=R1 x ψ2 p=R1 y ψ3 p=R1 z p orbitals

ψ1d=R2
(1) xy ψ2d=R2

(1) yz ψ3d=R2
(1) zx ψ4 d=R2

(2)(x2− y2) ψ5d=R2
(2)(2 z2−x2− y2) d orbitals

d xz∝sin (θ)cos (θ)cos (ϕ)=
sin (θ)cos (ϕ) cos (θ)=( x /r ) ( z /r )=const xz

x=r sin θ cos ϕ
y=r sinθ sin ϕ
z=r cosθ

Polar plot of a function xy

The operation of the rotation by  (120Deg) around the diagonal of the cube

T (2 π/3,(111))=(
0 0 1
1 0 0
0 1 0)

Cyclically exchanges the axes of the cube: x→z→y
It follows, using Wigner theorem, that all p-orbitals belong to the same eigenvalue of energy.

R0 , R1 ,R 2
(1) , R2

(2) depend only on the module of r⃗



  

Analogous arguments lead to the conclusion that the fivefold degeneracy of d-level of free ion 
is split into two levels [5]: 

Degeneracy in crystal field

ψ1d=R2
(1) xy ψ2d=R2

(1) yz ψ3d=R2
(1) zx ψ4 d=R2

(2)
(x2

− y2
) ψ5d=R2

(2) 2 z 2
−x 2

−y 2 d orbitals

Polar plot of a functions xy and x2-y2 (the 
second function is rotated by π/2 – 0.05)

Note that although the function x2-y2 can be transformed into 
xy with the rotation by 45 Deg such a rotation is not present 

in the octahedron group

image source С. В. Бонсовский, Магнетизм, Издательство ,,Наука", Москва 1971 [5]

Stark splitting of d-energy levels depends 
on the symmetry of the crystal field
β - cubic symmetry
γ – trigonal (rhombohedral*) symmetry
δ – tetragonal symmetry – stretching of a 
      cube

а – 6 nearest neighbors
б – 4, 8 or 12 nearest neighbors

45 Deg rotation around z axis :

(
1
√2

−
1

√2
0

1
√2

1
√2

0

0 0 1
)

x →
1

√ 2
x+

1
√ 2

y y → −
1

√ 2
x+

1
√2

ynewlign ¿ x
2
− y

2
→ 2 xy



  

● Experiments show that in many important cases (for ions of transition metals, like copper or 
iron) magnetic properties of ions placed in crystal structure are predominantly determined 
by their spins.

● In solid Fe, Co, Ni the orbital moment is only about 5% of the spin moment [22] as a result 
of the interaction of 3d electrons with the crystal field

● Other effects, like spin-orbit or Coulomb interactions, can lead to partial restoring of the 
orbital moments [22]

Quenching of orbital moments

image source: A. Reck, D. L. Fry, Phys. Rev. 184, 492 (1969)

Fe Co Ni

values determined from 
magnetomechanical ratio - 
g factor

4%

10%



  

The degree of moment quenching depends on the size of the “solid” - in clusters containing 
less than few hundred atoms the magnetic moment per atom may be much higher than in the 
bulk

Quenching of orbital moments

image source: S. E. Apsel, J. W. Emmert, J. Deng, and L. A. Bloomfield, Phys. Rev. Lett. 76, 1441 (1996)

● 0.61μB/atom - bulk value of magnetic 
moment of Ni

● observations support theoretical 
predictions of enhanced 
magnetization in systems with 
decreased coordination between 
atoms, increased symmetry, and 
reduced dimensionality

● the similar behavior is observed in 
clusters of Co, Fe and Rhodium
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