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Magnetic field and its sources

● The beginnings of the science of magnetism

● The field of the currents - Biot-Savart law

● The field of magnetic dipoles

● Magnetization

● Sources specific for small scale devices



  

A bit of history

Thales of Miletus (about 585BCE)- the first mention of the influence of loadstone* on iron [1]

Aristotle: ‘Thales, too, to judge from what 
is recorded of his views, seems to 
suppose that the soul is in a sense the 
cause of movement, since he says that a 
stone [magnet, or lodestone] has a soul 
because it causes movement to iron’ 
(On the soul (Perì Psūchês), 405 a20-
22)

Sushruta Samhita (Indian book from IV 
century CE giving supposedly teachings 
of surgeon Sushruta acting about 600 
BCE):  
A loose, unbarbed arrow, lodged in a 
wound with a broad mouth and lying in 
an Anuloma direction, should be 
withdrawn by applying a magnet to its 
end.

Probably the first practical application of 
magnetism

*alternative spelling: lodestone



  

A bit of history

Lucretius (98-55 BCE)- the first recorded theory of magnetic interactions (following the 
view of Epicurus and Democritus [1]. De rerum natura (O naturze wszechrzeczy, 
translation in polish E. Szymański):

Teraz powiem, na mocy jakiego natury prawa
Może żelazo przyciągać ten kamień, który Greki
Magnesem zwą od ziemi Magnetów — w tym bo dalekim
Kraju kamień ten cenny rodzi się i przebywa.
Ludzi uczonych od dawna nie darmo on zadziwia:
…
Teraz cel osiągniemy dokładniej już i prędzej.
Bo skoro wszystkie dane sprawdzone i gotowe,
Z ich pomocą prawdziwie poznamy siły owe,
Dzięki którym kamień żelazo do siebie przyzywa.
Naprzód musi z kamienia dużo ziaren wypływać.
Istny prąd, co roztrąca swem mocnem uderzeniem
Warstwę powietrza między żelazem i kamieniem.
Gdy się opróżni przestrzeń i w środku miejsca sporo,
Zaraz ziarna żelaza wyskoczą, wnet się zbiorą
Próżnię wypełnić, zaczem zbliża się i ogniwo,
Całem swem ciałem dążąc ku kamieniowi co żywo.

”In other word, tiny particles 
emanating from the loadstone 
sweep away the air and the 
consequent suction draws in 
the iron” -Fowler [1]

Lucretius:

● the gold is to heavy to be 
attracted by magnets

● the wood is so light...



  

A bit of history

And of course there were Chinese. They new magnetic needle from ca. 400 BCE. But the 
first Chinese mention of the use of magnetic needle for navigation refers to the period 
1086-99 and concerns the use by ”Muslim sailors between Canton and Sumatra” [5]. 

The South-Pointing Fish



  

A bit of history

William Gilbert (1544-1603) – royal physician to Queen Elizabeth I

-”De Magnete” (1600) the first scientific investigation of magnetism [1]:

●  the earth is a giant magnet (previously there was a belief that there was a magnetic 

  island or star Polaris that attracted compass needles)

●  magnetic (and electric) attraction depends on the distance between bodies

Working iron in a smithy



  

A bit of history

William Gilbert (1544-1603) – royal physician to Queen Elizabeth I

-”De Magnete” (1600) the first scientific investigation of magnetism [1]:

●  the earth is a giant magnet (previously there was a belief that there was a magnetic 

  island or star Polaris that attracted compass needles)

●  magnetic (and electric) attraction depends on the distance between bodies

Working iron in a smithy

inducing 
magnetic 

anisotropy by 
metalworking

north

south

Earth magnetic field 
orients the elementary 
magnets within the piece of metal



  

A bit of history

William Gilbert (1544-1603) – royal physician to Queen Elizabeth I

-”De Magnete” (1600) the first scientific investigation of magnetism [1]:

●  the earth is a giant magnet (previously there was a belief that there was a magnetic 

  island or star Polaris that attracted compass needles)

●  magnetic (and electric) attraction depends on the distance between bodies

Note that earth magnetic north 
pole is physically a south pole

earth image from: Christoph Hormann, chris_hormann@gmx.de



  

original image taken from:
B. D. Cullity

Introduction to magnetic materials
Addison-Wesley, Reading,

Massachusetts 1972

A bit of history
  - magnetic domains, early views 



  

A bit of history

Hans Christian Ørsted (1777–1851)

●  Around 1750 Benjamin Franklin magnetized sewing 

needles by an electrical discharge of a Leyden jar [6] but 

the effect was due to Joule heating in the Earth's magnetic 

field.

●  In 1795 Coulomb established that magnetic forces obey 

  the inverse square law [6].

●  In 1805 Hachette and Désormes unsuccessfully attempted 

  to build a electric compass [6].

●  In 1820 Ørsted discovers that electric current deflects 

  magnetic needle – the begin of electromagnetism.



  

A bit of history

Hans Christian Ørsted (1777–1851)

Ørsted's laboratory notes from 1820.07.15

●  Before 1820 Ørsted’s first hypothesis was that the magnetic effect should be parallel to  
 the wire [6] – it lead to the misplacement of the wire relative to the south-north direction:
 a force couple would act to turn the needle in a vertical plane, and the suspension of the 
 needle would prevent this kind of motion. So, if Ørsted attempted such experiments, he  
 could observe no effect [6].



  

A bit of history

Hans Christian Ørsted (1777–1851)

Ørsted's laboratory notes from 1820.07.15

●  Before 1820 Ørsted’s first hypothesis was that the magnetic effect should be parallel to  
 the wire [6] – it lead to the misplacement of the wire relative to the south-north direction. 

●  According to Ørsted’s final view, the magnetic effect of an electric current rotates
around the conducting wire

The needle oriented initially along south-north line is 
deflected when the current flows in the wire.



  

Biot-Savart Law – 1820
 

●  Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841) 

d B⃗=
μ0 I

4 π
d̂l× r⃗

|r⃗|3
μ0=4π10−7 Hm−1

● magnetic field is created by the electric current

● meaningful only for closed circuits  

-vacuum 
 permeability

author: Jfmelero; from Wikimedia Commons



  

d B⃗=
μ 0 I

4π
d̂l×r⃗

∣r⃗∣3
=
μ0 I

4π
dy∣r⃗∣sin(θ )

∣r⃗∣3
=
μ 0 I

4π

dy∣⃗r∣
R
∣r⃗∣

∣r⃗∣3
=
μ0 I

4π
R dy

∣⃗r∣3
=
μ0 I

4π
Rdy

( √ R2+ y2)
3

The problem has a circular symmetry so the magnitude of B depends only on R.  

B⃗ (R)=
μ0 I R

4π ∫−∞

∞
dy

( √ R2
+ y2)

3
=
μ0 I R

4π [ y

R2 ( √ R2
+ y2) ]

−∞

+∞

=
μ0 I

4π R [ ∞∞−(−∞+∞ ) ]=
μ 0 I

2π R

B⃗ (R)=
μ0 I

2π R

● An infinite straight conductor carrying a current of 1 A creates a 
magnetic field which is weaker than earth's magnetic field (~10-5 T)  
at a distance greater than 4 millimeters from the wire.

●  Passing a current through a straight wire is not an effective way of 
generating magnetic field [11].

Biot-Savart Law – 1820



  

Basic properties of static magnetic field

B⃗ ( r⃗ )=
μ0

4π∫ J⃗ ( r⃗ ' )×
r−r '

∣r−r '∣3
d 3r '

∇ r⃗( 1
∣r−r '∣) = ∇ r⃗( 1

√ ( x−x ' )2+ ( y− y ' )2+ ( z−z ' )2) = −
r⃗− r⃗ '

∣r−r '∣3

B⃗( r⃗ )=
−μ0

4π ∫ J⃗ ( r⃗ ' )×∇( 1
∣r−r '∣) d 3r '

∇×(β a⃗)=β∇×a⃗−a⃗×∇β a⃗→ J⃗ β→1 /|r−r '|

J⃗ ( r⃗ ' )×∇( 1
∣r−r '∣)=

1
∣r−r '∣

∇× J⃗ ( r⃗ ' )−∇×
J⃗ ( r⃗ ' )
∣r−r '∣

J⃗ ( r⃗ ' ) - current density

b

It follows from Biot-Savart law that [7,8]:

Using the identity:

We obtain:

Using the identity                                              with            and                       we get:

                                                                            , but J does not depend on r, so*...

d B⃗=
μ0 I

4π
d̂l× r⃗

|⃗r|3

*r is the observation point and r’ describes the current distribution



  

Basic properties of static magnetic field
 

so...

, and thus

J⃗ ( r⃗ ' )×∇ ( 1
|r−r '|)=−∇×

J⃗ ( r⃗ ' )
|r−r '|

, and since rotation operator does not act on primed 
coordinates we can rewrite (nabla moves outside 
the integral): 

B⃗ ( r⃗ )=
μ0

4π
∇×∫

J⃗ ( r⃗ ' )
|r−r '|

d 3r '=
μ0

4π
∇×some vector field (1)

Using vector identity                         we get the first differential equation of magnetostatics:∇⋅(∇×a⃗)=0

∇⋅B⃗=0

●  there are no sources or sinks of magnetic induction vector 
  (there are no magnetic charges emanating magnetic 
induction)

●  B is a solenoidal field

B⃗ ( r⃗ )=
μ0

4π∫∇×
J⃗ ( r⃗ ' )
|r−r '|

d 3r '

J⃗ ( r⃗ ' )×∇ ( 1
|r−r '|)=

1
|r−r '|

∇× J⃗ ( r⃗ ' )−∇×
J⃗ ( r⃗ ' )
|r−r '|

0



  

Separatrix and stagnation points

● Directions of magnetic field of two parallel, infinite currents lines:

two currents of the same direction and magnitude

● The field configuration does not depend on 
 z-coordinate
● Note that far from currents the field lines are 

 more and more circle-like
●  Stagnation point is defined by [19]:

y

x

Bx=B y=0

●  In case of z-independent field the stagnation 
  point is a stagnation line

●  Its coordinates are:

x s=0 y s=
d
2

I 1−I 2

I 1+ I 2

, d-spacing of wires

stagnation line

separatrix



  

For an arbitrary A the magnetic induction B is divergenceless 

B⃗ ( r⃗ )=
μ0

4π
∇×∫

J ( r⃗ ' )
|r−r '|

d3 r '=∇×
μ0

4π∫
J ( r⃗ ' )
|r−r '|

d 3r '
This is called 
magnetic vector potential

B⃗ ( r⃗ )=∇×A⃗( r⃗ )

∇⋅(∇×a⃗ )=0

*because                       one can add gradient of scalar function to A without changing B.∇×∇ϕ=0

*

Basic properties of static magnetic field

B⃗ ( r⃗ )=∇×
μ0

4π∫
J ( r⃗ ' )
|r−r '|

d 3r '
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Basic properties of static magnetic field
 

From (1), using the identity                                            , the rotation of magnetic induction 
is:

In the first term we use the identities                                       and                             
to get:

In manetostatics we assume                    (no charge accumulation) so we get, 
remembering that nabla acts here on unprimed coordinates (for the second integral) [7]:

∇×(∇×a⃗ )=∇ (∇⋅⃗a )−∇ 2 a⃗

∇×B⃗ ( r⃗ )=
μ0

4π
∇(∇⋅∫ J ( r⃗ ' )

∣r−r '∣
d 3r ' )− μ0

4π
∇

2(∫ J ( r⃗ ' )
∣r−r '∣

d 3 r ')

∇× B⃗( r⃗ )=
μ0

4π
∇ (∫ J ( r⃗ ' )⋅∇ ' 1

|r−r '|
d 3 r ' )−

μ0

4π
∫ J ( r⃗ ' )∇ 2 1

|r−r '|
d3r ' (2)

∇⋅(β a⃗)=a⃗⋅∇ β+ β ∇⋅⃗a

∇⋅∫
J ( r⃗ ' )
∣r−r '∣

d 3r '=∫∇⋅
J ( r⃗ ' )
∣r−r '∣

d 3 r '=−∫∇ '⋅
J ( r⃗ ' )
∣r−r '∣

d 3 r '=

−∫( J ( r⃗ ' )⋅∇ '
1

∣r−r '∣
+

1
∣r−r '∣

∇ '⋅J ( r⃗ ' )) d 3 r '

∇⋅J ( r⃗ )=0

∇( 1
∣r−r '∣)=−∇ '( 1

∣r−r '∣)

a⃗=J ( r⃗ ' ) β=
1

∣r−r '∣

B⃗( r⃗ )=
μ0

4π
∇×∫

J ( r⃗ ' )
∣r−r '∣

d 3 r ' (1)



  

Basic properties of static magnetic field

The first integral vanishes by the divergence of current (                 ). The second integral 
can be changed into a surface integral [8, 9] by applying:

 

From (2), using the identity: 

                                                        (Dirac's delta:                                      )

we get:

∇× B⃗ ( r⃗ )=−
μ 0

4π
∇(∫ J ( r⃗ ' )⋅∇ '

1
∣r−r '∣

d 3 r ')+ μ0 J ( r⃗ )

∇
2( 1
∣r−r '∣)=−4πδ (r−r ' )

∫ J ( r⃗ ' )⋅∇ '
1

|r−r '|
d3 r '=−∫

∇ '⋅J ( r⃗ ' )
|r−r '|

d 3r '+∫∇ '⋅( J ( r⃗ ' )|r−r '|)d 3 r '

We integrate the remaining integral using integration by parts:

∇⋅J ( r⃗ )=0

∫S
A⃗⋅dS=∫V

∇⋅A⃗ dVGauss's theorem

∇× B⃗( r⃗ )=...−
μ0

4π∫ J ( r⃗ ' )∇ 2 1
∣r−r '∣

d 3 r ' (2)

( J ( r⃗ ' )|r−r '|)
'

=J ( r⃗ ' )( 1
|r−r '|)

'

+J ' ( r⃗ ' )( 1
|r−r '|)

∫
−∞

+∞

f (x )δ(x )dx= f (0)



  

Basic properties of static magnetic field

The integral vanishes as the volume enclosing currents is limited but the surface S can be 
placed far away from the currents. Finally we get:

 

∫ J⃗ ( r⃗ ' )⋅∇ '
1

∣r−r '∣
d 3 r '=∫∇ '⋅( J⃗ ( r⃗ ' )∣r−r '∣) d 3r '=∫S

J⃗ ( r⃗ ' )⋅⃗n
∣r−r '∣

dS

∫S
A⃗⋅dS=∫V

∇⋅A⃗dVGauss's theorem

●  B is a solenoidal field

No current at surface S

∇× B⃗( r⃗ )=μ0 J⃗ ( r⃗ )



  

Magnetic field of circular currents loops
 

● We are interested in the field produced by a current loop

● The exact formulas are quite difficult to derive [see 7, 12] 

(for off-axis positions)

● Here we do a numerical integration from Biot-Savart law 

(loop radius-1m, current 1A) 
Source E. Durand [12]

Field on symmetry axis



  

Magnetic field of circular currents loops
 

● We are interested in the field produced by a current loop

● The exact formulas are quite difficult to derive [see 7, 12] 

(for off-axis positions)

● Here we do a numerical integration from Biot-Savart law 

(loop radius-1m, current 1A) 
Source E. Durand [12]

2r

Field in plane of the loop (z=0)



  

Magnetic field of circular currents loops
 

● We are interested in the field produced by a current loop

● The exact formulas are quite difficult to derive [see 7, 12] 

(for off-axis positions)

● Here we do a numerical integration from Biot-Savart law 

(loop radius-1m, current 1A) 
Source E. Durand [12]

Field in plane of the loop (z=0)

As in the the case of straight wire 
field B is stronger only in the 
direct vicinity of the current.  

The magnitude of B is shown



  

Magnetic field of circular currents loops
 

It is usual to display magnetic fields as streamlines:

image source: Wikimedia Commons; author: Geek3 (modified by MU)



  

Magnetic field of a dipole
 

Bx=
3mz x z

r5

B y=
3m z y z

r5

B z=
mz 3z2

−r 2


r5



  

Magnetic field of a dipole – difference between dipole and current fields
 

●  at relatively small distances from the 
current loop (radius 1m, centered at (0,0,0) 

and placed in x-y plane) the difference of 
magnitudes between the fields

 calculated from Biot-Savart law
and dipole approximation

 are well below 5%.

At large distances from 
the current distribution

the field can be 
approximated by

the dipole field.

z[m]

x[m]

relative difference



  

Magnetic field of a dipole – difference between dipole and current fields
 

Far from the current loop the induction is given by the approximate expressions [7]:

Comparing the above expressions with the dipole field:

Br=
2 p cos(ϕ)

r3

We conclude:

Seen from distances large compared to the circular loop 
radius its magnetic induction B has a dipolar character.

p∝ I r2

Br=(μ0 I r
2

2 ) cos(ϕ)r3 Bϕ=(μ0 I r2

2 ) sin(ϕ)r3

Bϕ=
psin(ϕ)

r3



  

 Multipole expansion of magnetic fields
 

●  We assume that the currents density is null outside some 
 bounded volume

●  The magnetic vector potential of the distribution is given by:

A⃗=
μ 0

4π
∫ J⃗ ( r⃗ ' )
∣⃗r− r⃗ '∣

d 3r ' (3)

●  We express the denominator of the integrand in a Taylor 
  series expansion* [9]:

f ( r⃗− r⃗ ' )= f ( r⃗ )−[ x ' ∂∂ x+ y '
∂

∂ y
+ z '

∂

∂ z ] f ( r⃗ )+ 1
2
∑i , j

x ' i x ' j
∂

2 f ( r⃗ )
∂ x ' i∂ x ' j

+ ...

●  We have:

∂
∂ x ( 1

√ (x−x ' )2+ ( y−y ' )2+ ( z−z ' )2 )=
−(x−x ' )

((x−x ' )2+ ( y− y ' )2+ ( z−z ' )2)3/2

●  It follows, taking derivatives at r'=0, that:

r⃗ '⋅∇( 1
∣⃗r− r⃗ '∣)=− r⃗ '⋅

r⃗

∣⃗r∣3

*usually one uses expansion into spherical harmonics

B⃗( r⃗ )=∇×
μ0

4π∫
J ( r⃗ ' )
∣r−r '∣

d 3 r '



  

 Multipole expansion of magnetic fields
 

●  At the moment we are interested in the first two terms of the   
 expansion:

1
∣⃗r− r⃗ '∣

=
1
∣⃗r∣
+
r⃗⋅⃗r '

∣⃗r∣3
+ ...

●  Combining this with the expression (3) for vector potential we 
  get:

A⃗( r⃗ )=
μ 0

4 π
∫ J⃗ ( r⃗ ' )
∣⃗r− r⃗ '∣

d 3 r '=
μ 0

4π
∫ J⃗ ( r⃗ ' )( 1

∣⃗r∣
+

r⃗⋅⃗r '

∣⃗r∣3
+ ...) d 3r '=

μ0

4 π∫ J⃗ ( r⃗ ' )( 1
∣⃗r∣) d 3r '+

μ0

4π∫ J⃗ ( r⃗ ' )( r⃗⋅⃗r '∣⃗r∣3 ) d 3 r '+ ...



  

 Multipole expansion of magnetic fields
 

●  We take on the first integral [9]:
- the current distribution is a divergenceless
- we can consider any time-independent current distribution   
  as a sum of circulating currents
- through each current tube there passes a current I= J⃗⋅Δ S

μ0

4π
∫ J⃗ ( r⃗ ' )( 1

∣⃗r∣) d 3 r '=
μ 0

4π (
1
∣⃗r∣)∫ J⃗ ( r⃗ ' )d 3r '

●  For each current circuit we have:

∫ J⃗ ( r⃗ ' )dV '=∫ J⃗ ( r⃗ ' )Δ S '⋅ds '=I∮ds '{
volume element of the circuit

closed circuit

●  Since path integral of ds along closed path is zero we 
  conclude that the first term of the multipole expansion of the 
  field of the current vanishes. 

There are no magnetic monopoles
*

*We have already seen that with             .∇⋅B⃗=0

A⃗( r⃗ )=
μ 0

4π
∫ J⃗ ( r⃗ ' )( 1∣r⃗∣) d 3 r '+

μ0

4π
∫ J⃗ ( r⃗ ' )( r⃗⋅⃗r '∣r⃗∣3 ) d 3 r '+ ...

ds '

Δ S '

current tube

{



  

 Multipole expansion of magnetic fields
 this slide shows an alternative to the derivation from the previous one 

●  Alternatively [14] the first integral* can be rewritten by the use 
of the vector identity:

●  We have then:

∇⋅( f A⃗)= f ∇⋅A⃗+ A⃗⋅∇ f
●  It follows (as divergence of the current vanishes):

∇⋅(x J⃗ )=x∇⋅J⃗ + J⃗⋅∇ x= J⃗⋅∇ x= J⃗ x̂=J x

0

∫ J x ( r⃗ )d
3 r=∫∇⋅(x J⃗ )d 3 r=∯ x J⃗ dS=0

   as the current density J vanishes at the outer boundary.

●  Similar consideration holds for other Cartesian components 
of J, so finally we have:

μ 0

4π (
1
∣r⃗∣)∫ J⃗ ( r⃗ ' )d 3 r '=0

A⃗( r⃗ )=
μ 0

4π
∫ J⃗ ( r⃗ ' )( 1∣r⃗∣) d 3 r '+

μ0

4π
∫ J⃗ ( r⃗ ' )( r⃗⋅⃗r '∣r⃗∣3 ) d 3 r '+ ...

*



  

 Multipole expansion of magnetic fields
 

A⃗( r⃗ )=
μ 0

4 π
∫ J⃗ ( r⃗ ' )( 1

∣⃗r∣) d 3 r '+
μ0

4π
∫ J⃗ ( r⃗ ' )( r⃗⋅⃗r '∣⃗r∣3 ) d 3r '+ ...

●  We rewrite now the second integral of Taylor expansion:

●  We have, for arbitrary scalar functions f and g:

●  Going now 3D [15]:

= 0 since current density vanishes on the outer boundary

● Rewriting yields:

∫ ( g J⃗⋅∇ ' f + f J⃗⋅∇ ' g+ f g∇ '⋅J⃗ )d 3 x '=0 (4)

∂
∂ x
(g f J⃗ )=f g ∂

∂ x
J⃗+ J⃗ ∂

∂ x
f g=f g ∂

∂ x
J⃗+ f J⃗ ∂

∂ x
g+g J⃗ ∂

∂ x
f

g J⃗ ∂
∂ x

f=∂
∂ x
(g f J⃗)−f g∂

∂ x
J⃗−f J⃗ ∂

∂ x
g

three cartesian
coordinates

∫S
A⃗⋅dS=∫V

∇⋅A⃗ dV

Gauss's theorem

∫ g J⃗⋅∇ ' f d3 x '=∑i∫ g J i∂ ' i f d
3 x '=

∑i∫ [∂ ' i (J i f g )− f J i∂ ' i g− f g ∂ ' i J i ] d
3 x '=

∫ [∇ '⋅( J⃗ f g )− f J⃗⋅∇ ' g− f g∇ '⋅J⃗ ]d 3 x '=

∯ f g J⃗⋅dS−∫ [ f J⃗⋅∇ ' g+ f g∇ '⋅J⃗ ] d 3 x '

∑i
∂ ' i J i=divergence



  

 Multipole expansion of magnetic fields
 

●  We rewrite (4) using the substitutions

∫ ( g J⃗⋅∇ ' f + f J⃗⋅∇ ' g+ f g∇ '⋅J⃗ )d 3 x '=0 (4)

f =x ' i g=x ' j

∫ ( x ' j J⃗⋅∇ ' x ' i+ x ' i J⃗⋅∇ ' x ' j ) d
3 x '=0

∫ ( x ' j J⃗⋅x̂ i+ x ' i J⃗⋅x̂ j ) d
3 x '=0

∫ ( x ' j J i+ x ' i J j ) d
3 x '=0

●  We note that:

∫ ( x ' j J i )d
3 x '=∫ (−x ' i J j )d

3 x '

∫ 2 x ' j J i d
3 x '=∫ ( x ' j J i+ x ' j J i )d

3 x '=∫ ( x ' j J i−x ' i J j )d
3 x '

∫ ( x ' j J i )d
3 x '=−

1
2∫ ( x ' i J j−x ' j J i )d

3 x ' (5)

●  We calculate now i-th component of the second term of the   
   expansion of vector potential A:

Ai( r⃗ )=
μ 0

4π
r⃗

∣⃗r∣3
⋅∫ J i( r⃗ ' ) r⃗ ' d

3r '

scalar

0

A⃗( r⃗ )=
μ 0

4π
∫ J⃗ ( r⃗ ' )(1∣r⃗∣ ) d 3 r '+

μ0

4π
∫ J⃗ ( r⃗ ' )( r⃗⋅⃗r '∣r⃗∣3 ) d 3 r '+ ...

does not depend on r’ - can be put outside the integral



  

 Multipole expansion of magnetic fields
 

●  We rewrite the expression for the component i of potential A:

Ai( r⃗ )=
μ0

4 π
r⃗

|⃗r|3
⋅∫ J i( r⃗ ' ) r⃗ ' d

3 r '=
μ0

4 π
1

|⃗r|3
∑ j

r j∫ r ' j J i( r⃗ ' )d
3r '=

−
1
2

μ0

4π
1
|⃗r|3
∑ j

r j∫ (r ' i J j−r ' j J i )d
3 r '

●  The x component of A is then:

Ax( r⃗ )=−
1
2

μ0

4π
1

∣⃗r∣3
∑ j

r j∫ ( r ' x J j−r ' j J x ) d
3 r '=−

1
2

μ0

4π
1

∣⃗r∣3
×

[ r x∫ ( r ' x J x−r ' x J x ) d
3r '+ r y∫ ( r ' x J y−r ' y J x ) d

3r '+ r z∫ ( r ' x J z−r ' z J x ) d
3r ' ]

0
●  Note that:

 
 and consequently:

[ r⃗×( r⃗ '× J⃗ )] x=r y r ' x J y−r y r ' y J x−r z r ' z J x+ r z r ' x J z

Ax ( r⃗ )=−
1
2

μ0

4π
1

∣⃗r∣3
[ r⃗×∫( r⃗ '× J⃗ ( r⃗ ' ))d 3 r ' ] x

A⃗( r⃗ )=−
1
2

μ0

4π
1

∣⃗r∣3
r⃗×∫( r⃗ '× J⃗ ( r⃗ ' ))d3 r '

Vector potential from the first 
two terms of the expansion:

1
∣⃗r− r⃗ '∣

=
1
∣⃗r∣
+
r⃗⋅⃗r '

∣⃗r∣3
+ ...

us
in

g 
(5

)

r i≡x i

∫ ( x ' j J i ) d
3 x '=−

1
2∫ ( x ' i J j− x ' j J i )d

3 x ' (5)

one component

etc.



  

 Multipole expansion of magnetic fields
 

A⃗( r⃗ )=−
1
2

μ0

4 π
1

|⃗r|3
r⃗×∫( r⃗ '× J⃗ ( r⃗ ' ))d 3 r '

●  We define magnetic dipole moment of current distribution [7]:

m⃗=
1
2
∫ ( r⃗ '× J⃗ ( r⃗ ' ))d 3 r ' [m⋅

A

m2⋅m
3
=A⋅m2

]

● The integrand of the above expression is called 
magnetization

M⃗ ( r⃗ )=
1
2
r⃗ '× J⃗ ( r⃗ ' )

MFe≈ 1.7×106 A/m

MCo≈ 1.4×106 A/m

MNi ≈ 0.5×106 A/m
at RT

Note that in ferromagnetic materials 
magnetic magnetization is due 
mainly to spin, i.e., the property of 
electron independent of current flow*

*electron orbiting a nucleous can be thought of as a current flowing in a circle



  

 Multipole expansion of magnetic fields
 

●  We define magnetic dipole moment of current distribution [7]:

m⃗=
1
2∫( r⃗ '× J⃗ ( r⃗ ' ))d 3 r ' [m⋅

A

m2⋅m
3
=A⋅m2

]

● The integrand of the above expression is called 
magnetization

M⃗ ( r⃗ ' )=
1
2
r⃗ '× J⃗ ( r⃗ ' )

MFe≈ 1.7×106 A/m

MCo≈ 1.4×106 A/m

MNi ≈ 0.5×106 A/m
at RT

Note that in ferromagnetic materials 
magnetic magnetization is due 
mainly to spin, i.e., the property of 
electron independent of current flow*

|M |=
1
2
r J

V=2 π r  - length as a volume

m=M V=π r2 J

m[ A⋅m2
]



  

 Multipole expansion of magnetic fields – dipole approximation
 

A⃗( r⃗ )=
μ 0

4π
1

∣⃗r∣3
m⃗× r⃗

●  From the expression for the potential A and the definition of 
m we have [14]:

●  We have from the definition of A⃗ : B⃗( r⃗ )=∇× A⃗( r⃗ )

●  Using                                                we obtain: ∇×(a⃗ f )= f ∇×a⃗−a⃗×(∇ f )

B⃗( r⃗ )=∇× A⃗( r⃗ )=
μ 0

4π [ 1

∣r⃗∣3
∇×(m⃗× r⃗ )−(m⃗× r⃗ )×∇

1

∣⃗r∣3 ]
∇×(a⃗×b⃗)=(b⃗⋅∇) a⃗−(a⃗⋅∇) b⃗+ a⃗ (∇⋅⃗b)−b⃗(∇⋅⃗a)●  Using                                                                            we 

obtain: 

B⃗( r⃗ )=
μ 0

4π { 1

∣⃗r∣3
[ ( r⃗⋅∇) m⃗−(m⃗⋅∇) r⃗+ m⃗(∇⋅⃗r )− r⃗ (∇⋅m⃗)]−(m⃗× r⃗ )×∇

1

∣⃗r∣3 }
0 as m does not depend on r

B⃗( r⃗ )=
μ 0

4π { 1

∣⃗r∣3
[−(m⃗⋅∇) r⃗+ m⃗(∇⋅⃗r )]−(m⃗× r⃗ )×∇

1

∣⃗r∣3 }



  

 Multipole expansion of magnetic fields
 

( m⃗⋅∇ ) r⃗=m⃗

∇⋅⃗r=3

∇( 1∣⃗r∣3 )=−
3 r⃗

∣⃗r∣5

●  We have, from the definition of nabla:

B⃗( r⃗ )=
μ 0

4π { 1

∣⃗r∣3
[−(m⃗⋅∇) r⃗+ m⃗(∇⋅⃗r )]−(m⃗× r⃗ )×∇

1

∣⃗r∣3 }



  

 Multipole expansion of magnetic fields
 

( m⃗⋅∇ ) r⃗=m⃗

∇⋅⃗r=3

∇( 1∣⃗r∣3 )=−
3 r⃗

∣⃗r∣5

●  We have, from the definition of nabla:

B⃗( r⃗ )=
μ 0

4π { 1

∣⃗r∣3
[−m⃗+ 3 m⃗ ]+

3

∣r⃗∣5
(m⃗× r⃗ )× r⃗}

B⃗( r⃗ )=
μ 0

4π { 1

∣⃗r∣3
[−(m⃗⋅∇) r⃗+ m⃗(∇⋅⃗r )]−(m⃗× r⃗ )×∇

1

∣⃗r∣3}



  

 Multipole expansion of magnetic fields - dependence on origin
 

●  To transform the third term we use the identity:

B⃗( r⃗ )=
μ 0

4π { 1

∣⃗r∣3
[−m⃗+ 3 m⃗ ]+

3

∣⃗r∣5
(m⃗× r⃗ )× r⃗}=

μ 0

4π {1∣⃗r∣3 2 m⃗+
3

∣⃗r∣5
( r⃗ ( r⃗⋅m⃗)−m⃗( r⃗⋅⃗r ))}=

μ 0

4π {1∣⃗r∣3 2 m⃗+
3

∣⃗r∣5
( r⃗ (m⃗⋅⃗r )−m⃗∣⃗r∣2 )}=

μ 0

4π {−m⃗∣⃗r∣3 +
3

∣⃗r∣5
( r⃗ (m⃗⋅⃗r ))}

(b⃗×c⃗)×a⃗=c⃗ ( a⃗⋅⃗b)−b⃗ (a⃗⋅⃗c)

B⃗( r⃗ )=
μ 0

4π

3
r⃗
∣⃗r∣
(m⃗⋅

r⃗
∣⃗r∣
)−m⃗

∣⃗r∣3
=

μ 0

4π
3 r̂ (m⃗⋅r̂)−m⃗

∣⃗r∣3

●  We should compare it with the expression for the field of 
  electric dipole [7, 14]:

E⃗ ( r⃗ )=
1

4 πε 0

3 r̂ ( p⃗⋅r̂ )− p⃗

∣⃗r∣3

*

*magnetic induction from first two terms of the expansion 



  

 Multipole expansion of magnetic fields - dependence on origin
 

● The values of the components of the successive terms of the multipole expansion of the 
 field depend in general on the origin of the coordinate system.

 

● The dipole moment of the current distribution does not depend on the origin.
 

● It can be shown that quadrupole moments of the current distribution do not depend on 
 origin provided that the dipole moment is zero.



  

Field of a distribution of magnetic moments
 

●  We are looking for the field produced by the distribution of spatially limited closed 
current loops. Remembering the definition of magnetization:

*this section is taken from K.J. Ebeling and J. MJ. Mähnß [14]

Amagn.dipol r =
0

4
∫
M r ' ×r−r ' 

∣r−r '∣3
d 3 r '

m=
1
2∫r '×

J d 3 r '=∫ M r ' d 3 r '

●  We obtain potential at r from magnetic moments localized at r'-s:

●  Further, using first                             and then                                    we rewrite the 
  integrand:

A r =
0

4
1

∣r∣3
m×r

∇×( f a⃗)= f ∇×a⃗+ ∇ f ×a⃗∇ '  1
∣r−r '∣= r−r '

∣r−r ' ∣3

M⃗ ( r⃗ ' )×∇ ' ( 1
|r−r '|)=

1
|r−r '|

∇ '×M⃗ ( r⃗ ' )−∇ '×
M⃗ ( r⃗ ' )
|r−r '|

M⃗ ( r⃗ ' )×∇ ' ( 1
|r−r '|)=−∇ ' ( 1

|r−r '|)×M⃗ ( r⃗ ' )

A⃗magn. dipol( r⃗ )=
μ0

4 π∫(
1

|r−r '|
∇ '×M⃗ ( r⃗ ' )−∇ '×

M⃗ ( r⃗ ' )
|r−r '| )d 3r '

to obtain:



  

 

*this section is taken from K.J. Ebeling and J. MJ. Mähnß [14]

● We assume that moments associated with current loops occupy a finite volume (i.e. 
magnetization vanishes at infinity) and integrate first the second term of the integral.

∫∇ '×
M⃗ ( r⃗ ' )
∣r−r '∣

d 3 r '⇒∫
−∞

+∞

[ ∂∂ y ' M⃗ z( r⃗ ' )

∣r−r '∣
− ∂
∂ z '

M⃗ y( r⃗ ' )

∣r−r '∣ ] dx ' dy ' dz '=

∬
−∞

+ ∞

[∫
−∞

+∞

∂
∂ y '

M⃗ z( r⃗ ' )

∣r−r '∣
dy ' ] dx ' dz '−∬

−∞

+∞

[∫
−∞

+∞

∂
∂ z '

M⃗ y( r⃗ ' )

∣r−r '∣
dz ' ] dx ' dy '=

∬
−∞

+ ∞

[ M⃗ z ( r⃗ ' )

∣r−r '∣ ]−∞
+∞

dx ' dz '−∬
−∞

+∞

[ M⃗ y( r⃗ ' )

∣r−r '∣ ]−∞
+∞

dx ' dy '=0⇒∫∇ '×
M⃗ ( r⃗ ' )
∣r−r '∣

d 3 r '=0

x-component of the curl

0 0

A⃗magn.dipol( r⃗ )=
μ0

4π
∫∇ '×M⃗ ( r⃗ ' )

∣⃗r− r⃗ '∣
d 3 r '

●  Finally for a contribution of the magnetization to the magnetic potential A we have:

the second term 
of integral is zero

Field of a distribution of magnetic moments

integral of the derivative



  

 

*this section is taken from K.J. Ebeling and J. MJ. Mähnß [14]

●  The overall potential A can be written as**:

A⃗( r⃗ )=
μ0

4π∫
⃗j free( r⃗ ' )+ ∇ '×M⃗ ( r⃗ ' )

∣⃗r− r⃗ '∣
d 3 r '

The effect of magnetic moment distribution on
magnetic field is the same as that of current 
distribution given by:

j⃗ bound ( r⃗ )=∇×M⃗ ( r⃗ )

We distinguish two types of currents contributing to magnetic field:

●  the free currents – flowing in lossy circuits (coils, electromagnets) or superconducting 

  coils; in general one can influence (switch on/off) and measure free currents

●  the bound currents – due to intratomic or intramolecular currents and to magnetic 

  moments of elementary particles with spin [13]  

A⃗( r⃗ )=
μ0

4π∫
j( r⃗ ' )
∣r−r '∣

d 3 r '

**A was defined previously (p. 18) as:

Field of a distribution of magnetic moments
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j⃗bound ( r⃗ )=∇×M⃗ ( r⃗ )

●  An illustration of the fact that:

∇×M⃗ ( r⃗ )≠0→ M⃗ ( r⃗ )≠const

Field of a distribution of magnetic moments



  

 
Correspondence between the coil and the magnet

the typical coils are fed with 
currents of up to several amperes

the typical coils has up to 
several hundred windings 
and the coil height is several 
tens of centimeters  

The surface current densities K in the coils are at most of the order of 100 thousand 
amperes per meter:

K=several hundred×several amperes×
100cm

several tens of centimeters  
≈100 kA/m



  

 
Correspondence between the coil and the magnet

The effect of magnetic moment distribution on
magnetic field is the same as that of current 
distribution given by:

j⃗ bound ( r⃗ )=∇×M⃗ ( r⃗ )

magnet

The surface current densities K corresponding to magnetization (magnets: alloys of iron, 
cobalt etc.) are of the order of million ampere per meter.



  

Introducing magnetic field strength H*
 

● From Biot-Savart law we have: 

∇×B⃗=μ 0 j⃗( r⃗ )=μ 0 j⃗ free+ μ 0 j⃗bound=μ0 j⃗ free+ μ 0∇×M⃗ (6)

● We introduce a field strength vector:                                           In old cgs system:

H⃗=
1
μ 0

B⃗−M⃗

● From (6) we have:

∇×B⃗−μ 0∇×M⃗=μ0∇×(
1
μ0

B⃗−M⃗ )=μ 0 j⃗ free

●  It follows that the rotation of field strength H is determined solely by the free 
currents:

∇×H⃗= j⃗ free

H⃗=B⃗−4π M⃗

∇⋅H⃗≠0●  In general                      i.e. magnetic field strength is not source-free.

*this section is taken from K.J. Ebeling and J. MJ. Mähnß [14]



  

Magnetic moment of an electron
 

*it is customary to express magnetic moment in J T-1 which is equivalent [1T=1 kg s-2A-1].

●  Spin magnetic moment (Bohr magneton):                                                                          

   

●  Magnetic moment of electron originates from spin i.e. angular momentum of electron 

 which is equal to                        and its component along arbitrary direction can take on 

     values             .

●  the magnitude of magnetic moment of electron is constant; only its orientation can be  

  changed.

● Giromagnetic ratio:                     - angular momentum

● Giromagnetic ratio for a classical rigid body (with mass density proportional to charge 

 density) equals 

●  Giromagnetic ratio for spin magnetic moment is twice (ge- factor) that of classic circular 

movement of a charge (like for examlpe electron circulating nucleus).

μB=
e h

4 πme

=9.27400 968(20)×10−24 Am2

√ 1
2 ( 1

2
+ 1) h

2π

*

±
1
2

h
2π

γ=
m⃗

L⃗
, L⃗

γ=
q

2m

γ e=1.760859 708(39)×1011 s−1T−1



  

Magnetic moment of an electron

●  At large distances electron magnetic field has a dipolar character

●  The external field exerts on electron the torque which is equal to the one exerted on the 

  current loop with equal magnetic moment

●  Within the electron             as in classical sources of magnetic field [13].                      ∇ B⃗=0

●  Spin ge factor:                                                                            

m⃗e=−g e

e
2m

S⃗ m⃗=γ L⃗

G. Gabrielse, Measurements of the Electron Magnetic Moment



  

The Rashba effect

InGaAs/InPt heterostructure - two dimensional electron gas (2DEG)

2DEG

● the electron wave function is located mainly in the strained In0.53Ga0.47As layer

● the electrons in the 2DEG layer come from negatively doped InP layer [11]

● the tilted potential profile results in an electric field in the quantum well [11]

● high mobilities in 2DEG ≈105 cm2/Vs  [ (cm/s)/(V/m) ] at 40K

● InP – semi-insulating, high carrier 
mobility

● InP lattice constant match 
In0.53Ga0.47As at RT [15]

● In0.77Ga0.23As layer is strained due 
to lattice mismatch
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The Rashba effect

InGaAs/InPt heterostructure - two dimensional electron gas (2DEG)

2DEG

● the electron wave function is located mainly in the strained In0.53Ga0.47As layer

● the electrons in the 2DEG layer come from negatively doped InP layer [11]

● the tilted potential profile results in an electric field in the quantum well [11]

● high mobilities in 2DEG ≈105 cm2/Vs  [ (cm/s)/(V/m) ] at 40K

● InP – semi-insulating, high carrier 
mobility

● InP lattice constant match 
In0.53Ga0.47As at RT [15]

● In0.77Ga0.23As layer is strained due 
to lattice mismatch

im
ag

e 
fr

om
 T

h
. 

S
ch

äp
er

s,
 J

. 
K

no
bb

e,
 v

an
 d

er
 H

ar
t,

an
d 

H
. 

H
a

rd
td

e
ge

n,
 S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
of

 A
dv

an
ce

d 
M

at
er

ia
ls

 4
, 

1
9 

(2
0

03
)

Lorentz transformation



  

● the electric field in 2DEG is oriented perpendicularly to its plane
● electrons moving from the source to the drain experience the effective magnetic field 

given by Lorentz transformation [10]:

The Rashba effect

B' ||=B B' ⊥=
( B⃗−( v⃗ / c2))× E⃗ ⊥

√(1−v 2
/c2
)

→ B ' ⊥=
( v⃗ /c2)×E⃗

√(1−v 2
/c2
)

we assume that there 
is no external magnetic 
field

● the magnetic field experienced by the electrons is oriented perpendicularly (         ) to the 
plane described by their velocity and the electric field

v⃗× E⃗

● charged plates are the source of a 
magnetic field experienced by moving 
electrons

● the electron spins precess in the magnetic 
field 



  

● the electric field in 2DEG is oriented perpendicularly to its plane
● electrons moving from the source to the drain experience the effective magnetic field 

given by Lorentz transformation [10]:

The Rashba effect

B' ||=B B' ⊥=
( B⃗−( v⃗ / c2))× E⃗ ⊥

√(1−v 2
/c2
)

→ B ' ⊥=
( v⃗ /c2)×E⃗

√(1−v 2
/c2
)

we assume that there 
is no external magnetic 
field

● the magnetic field experienced by the electrons is oriented perpendicularly (         ) to the 
plane described by their velocity and the electric field

v⃗× E⃗

E=107 V/m

● in III-V semiconductor structures 
additional contribution to spin-orbit 
interaction comes from 
Dresselhaus effect caused by 
bulk inversion asymmetry [20]

● high mobilities in 2DEG ≈105 cm2/Vs
   [ (cm/s)/(V/cm) ] (10 m2/Vs) at 40K



  

χ=
M⃗
H⃗

→ χ p=
M
H

E=−m⃗⋅B⃗ m⃗=M⃗⋅V V− volume of the magnet

 the induced magnetic moment of a superparamagnet is parallel to the external field
 we bring the magnet from infinity (B=0) to the location with the magnetic field B and 

decrease thus its energy:

m=V χ p

B
μ0

→ dm=V χ p

dB
μ0

→ dE=−dm B=−V χ p

dB
μ0

B

E=−∫
0

B( r⃗ )

V χ p

B
μ0

dB=−
1

2μ0

V χ p B
2

The force acting on a magnet is                 :

F⃗=
1

2μ0

V χ p∇ B2

F⃗=−∇ E

The higher the gradient of B2 the higher the force acting on a para/superparamagnetic material

The formula is true within the field range in which susceptibility is constant

Forces in magnetic field

● In some case the quantity of interest is not the field strength/induction but its spatial 
gradient:

- magnetophoresis
- magnetobiology (cell growth)



  



  

3D structures - a paternoster for superparamagnetic beads

images from T. Ueltzhöffer, R. Streubel, I. Koch, D. Holzinger, D. Makarov, O.G. Schmidt, and A. Ehresmann, 

ACS Nano 10, 8491 (2016) 

● exchange bias system: Cu(50nm)/Ir
17

Mn
83

(10nm)/Co
70

Fe
30

(7.5nm)/Ta (10nm)  
deposited via rf sputtering in an external magnetic field of 28 kA/m

● magnetic patterning (the direction of the exchange bias) done with He+ ion 
bombardment of the films covered with patterned resist

3D structures - a paternoster for superparamagnetic beads



  

3D structures - a paternoster for superparamagnetic beads

image from T. Ueltzhöffer, R. Streubel, I. Koch, D. Holzinger, 
D. Makarov, O.G. Schmidt, and A. Ehresmann, 

ACS Nano 10, 8491 (2016) 



  

Most important facts from todays talk:

●  Static magnetic field sources are electric currents and 

intrinsic magnetic moments of elementary particles

●  At distances large in comparison to its spatial extension 

every current distribution produces magnetic induction 

which can be approximated by magnetic dipole
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