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Quantum electronics

Magnetic anisotropy

« Magnetocrystalline anisotropy
e Shape anisotropy
« Surface anisotropy

e Stress anisotropy



Anisotropy of hysteresis

single crystals i
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Abbildung 4: Magnetisierungskurven von
Einkristallen von (a) Fe nach Honda et al. [7],
(b) Co nach Kaya [8] und (c¢) Ni nach Kaya
[9]. Die leichten Achsen von Fe sind die [100]
Richtungen, fiir Ni die [111] Richtungen und
fir Co die [0001] Achse. Die leichten Rich-
tungen sind dadurch ausgezeichnet, dafl kleine
Magnetfelder geniigen um die S&ttigungsma-
gnetisierung zu erreichen.
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image source: S. Blugel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Julich ISBN 3-89336-235-5, 1999



Anisotropy of hysteresis

lron
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*hard-axis reversal is characterized by higher field needed to saturate the sample

*the easy-axis reversal is usually characterized by higher hysteresis losses



Anisotropy of hysteresis — hysteresis of a sphere

In case of large sphere (containing many atoms) the shape of the sample does not
introduce additional anisotropy

In small clusters the magnetization reversal is complicated by the reduction of symmetry
(and the increased relative contribution of surface atoms)
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In Fe sphere of radius 1uym the surface
atoms constitute roughly 0.04% of all atoms



Anisotropy of hysteresis — hysteresis of a sphere

In case of large sphere (containing many atoms) the shape of the sample does not

introduce additional anisotropy
In small clusters the magnetization reversal is complicated by the reduction of symmetry

(and the increased relative contribution of surface atoms)

sphere-like — no
breaking of crystal
symmetry for high r
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FIG. 6. (a) high-resolution transmission electron microscopy
(HRTEM) observation of a cobalt cluster along a [110] direction.
Interplanar distances =2 =1.77+£0.02 A

and angles correspond to bulk fee cob'llt Mo1em er facef] — &+ . - - — _|_
sistent with the Wulff theorem (Ref. 27). (b) HRTEM g Illtel'plﬂnﬂl dlStElIlCES d“ 11) =2.04> 0 02 & d{ 200) 1 77 0 02 &

of an iron cluster along a [110] direction. The mterplan [ﬂl]d angles CcOoI1T ESPOIICI to bulk fce CObElltJ Moreover f’lce‘rmg 15 COI1l-

d110=2.01£0.03 A corresponds to the bulk bee iron on — - I W - . el

o consisent it the WollT theorem (Ref. 27) sistent with the Wultf theorem (Ref. 27). (b) HRTEM observation
of an iron cluster along a [110] direction. The interplanar distance

d(119p=2.0120.03 A[con‘esponds to the bulk bee 1ron oneJ Faceting

M. Jamet et al., PHYSICAL REVIEW B 69, 024401 (2004)



Anisotropy of hysteresis
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Free magnetic moment in empty space (without
the external field) — the energy does not depend
on the orientation of the moment
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Anisotropy of hysteresis — single atoms on a crystal surface

» Co atoms deposited by molecular beam epitaxy on Pt(111) surface

» Coverage less than 0.03 ML

* “The XMCD signal (Fig. 1C) is the difference between the XAS* spectra recorded for
parallel and antiparallel alignment of the photon helicity with the applied field B. Fields of
up to 7 T were used to magnetize the sample at

angles 0° and 70° with respect to the surface *

normal.” Cshl TN
s D 5 4r
* The presence of Pt surface induces ST g o b
— | very high magnetic anisotropy of | T
9.3+1.6 meV/atom S S ——
D C 00 T i
. . i I'l ,r‘/ Lo (09
* In SmCos magnets the anisotropy is ~ : | 3 \4 et (709)
0.3 meV/Co atom < < N e
Y - / s 5 B
s E 0.5 | I|"._‘
It is about 6% of a latent heat '||| || [
of melting (243 kJ/kg [14]) of . P | —— - . " e o
bulk Co isolated Co adatoms 8 6 4 -2 0 2 4 6 8 775 780 785 790 795 800
B (Tesla) Photon Energy (eV)

Fig. 1. (A) STM image of isolated Co adatoms (bright dots) on Pt(111). The Co coverage is 0.010
ML, and the image size is 85 A by 85 A. (B) Lz3 XAS spectra of isolated Co adatoms (0.010 ML) at
T =55 = 05K, B =7 T taken with parallel (j._ ) and antiparallel (n._) alignment of light helicity

[ 1 1 with respect to B at i, = 0°, 70° relative to the surface normal (inset). The spectra at 70° have been
Very hlgh Saturatlon fleld normali‘fed to the [pc_) + p_) L, intensity at 0° to eliminate tge de[}aendenge of the electron yield
on the sample orientation. (C) XMCD spectra (., — w_) obtained for the 6, = 0° and 70°
magnetization directions. The dashed line is the integrated XMCD at 6, = 0° (D) Magnetization
curves at fi, = 0° (black squares) and 70° (red squares) measured at T = 5.5 K. The points represent
the peak of the [, XMCD intensity at 778.6 eV divided by the pre-edge intensity at 775 eV as a
function of B. The difference between the i, = 0° and 70° curves was checked for consistency with

P. Gambarde”a et al., SCience 300, 1 130 (2003) the XAS-normalized XMCD spectra. The solid lines are fits to the data according to Eq. 3.

*XAS — X-ray absorption spectroscopy



Anisotropy of hysteresis — hysteresis of a sphere

The local
neighborhood
determines the
preferential
direction of the
magnetic moment
- spin-orbit
coupling




Spin-orbit interaction (coupling)

*The electron is orbiting the nucleus of the +Ze charge*
*Looking at the nucleus from electron we have the magnetic field due to the motion of the
nucleus. The energy of electron in that field is

E=—gu,mB

Correspondingly every electronic state splits into two (with two orientations of the spin).
We assume that an electron is orbiting the nucleus in xy plane and that its instantaneous
velocity is along x-direction.

The electric field of the nucleus at the place of an electron is along y-direction then
=1 Ze

Y dme, p AY
From special relativity theory (A. Einstein) for the components of the
magnetic field in the electron reference frame we have [16] Ve

el(ectron) __ _
B =B =0

Belz 1 =0 Bel_

Electron feels then the magnetic field that is oriented along z-axis
Further, the field seen by the electron can be written as

ve
By+—2EZ
C

B'=L Exv)=—1 [Exp| o MY

2

¢ me’ p_\/l—vzlc2

*the derivation is taken from Einfihrung in die Quantenmechanik (Physik 1V), ETH Zurich [13]



Spin-orbit interaction (coupling) BEIZ%(EX.V.): 12 Exp

Inserting the above calculated magnetic field into the expression for energy yields

1 - . 1 1 Zel? . this give the appropriate
AE oy =—8Uzm,B=—guym,—5|EXD|=—guzm — Ame 2 |7 %P direction of electric field
mc mc o r
]
_ 1 1 Ze|._ 5| 1 1 Ze |z angular momentum
AEspin—orbit__gMBms ) 4TCE 3 pr __gMBms 2 4TEE 3 L
mc 0o r mc o |A
]
More exact calculations require taking into account the so called Thomas Ay

precession” — this leads to factor ¥2 which leads to “final” expression

g 1 1 Ze -~
AE = =—2 L
spin—orbit ) MB C'2 47 Eo r3

enote that spin-orbit coupling is proportional to Z

»...and to orbital moment of an electron

/

The direction of the magnetic field cal-
calculated from Biot-Savart law for a
moving charge is the same

Mo g
4
0 J

*the derivation assumed that electron moves along straight line [13]



Spin-orbit interaction (coupling)

In a crystal conducting electrons move in the average electric field of the atom cores and
other electrons

*The core electrons that remain in the vicinity of the nucleus experience strong electric fields
and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit coupling
(please see movies at hitps://staff.aist.go.jp/v.zayets/spin3 32 SpinOrbit.html)

O)C

paths of itinerary
electrons

orbits of core
electrons



https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html

Spin-orbit interaction (coupling)

In a crystal conducting electrons move in the average electric field of the atom cores and
other electrons

*The core electrons that remain in the vicinity of the nucleus experience strong electric fields
and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit coupling
(please see movies at hitps://staff.aist.go.jp/v.zayets/spin3 32 SpinOrbit.html)

*The magnetic fields due the core electron movement can be huge [15]:

Linear velocity of an electron rotating around a nucleus is ~2.1*10° m/s

The electric field experienced by an electron in the vicinity of nucleus (calculated for 1s
orbital of hydrogen atom) is roughly 5*10* V/m

The effective magnetic field of the spin-orbit interaction is about 12 T

For comparison we [15] estimate the effective field in devices in which we try to influence
the behavior of itinerant electrons applying external electric fields

The maximal electron velocity (saturation velocity, maximal drift speed) ~1*10” m/s

The maximal available electric field (limited by breakdown voltage of the materials), for
GaAs or Si it is roughly 5*107 VIm

The effective magnetic field of the spin-orbit interaction is about 5*10* T (about the
strength of the earth magnetic field)


https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html

Spin-orbit interaction (coupling) — dependence on atomic number

The SO coupling depends indirectly on the charge of the nucleus (Z)
The dependence is different for different series

image source [19] PHYSICAL REVIEW B 90, 165108 (2014)
*The Z* dependence for SO in central

—~ 10g7 . 5 field (near core electrons) comes from

gci g ] perturbative correction [18]:

< 1F E 1 oVir)= <

g 15 E HSO(r)_zmzcz 8r LS

SO E

o ol )

5 10-2:5 Enl:Egl-l-F(l’]) A

Q F

f? 1073 L *The Z2? dependence is more relevant for
| ] | ] ] ' |

|
20 40 60 80 100 solids

Atomic number (Z)

FIG. 1. (Color online) Dependence of the spin-orbit coupling
strength A,; for atoms as a function of the atomic number Z. The
calculated results of Herman and Skillman [24] using the Hartree-
Fock method (colored lines) are compared to the hydrogenic Z*
dependence, which is computed from Eq. (4) for the 3d series (upper
dashed line). For the ourermost electrons (indicated by the circles
and the shaded area), which are the relevant electrons in the solid,
the quantum numbers n/ change with Z and the spin-orbit interaction
increases much more slowly, following roughly the Landau-Lifshitz
Z? scaling [lower dashed line, calculated from Eq. (5) with A = 0.10].




Anisotropy of hysteresis — hysteresis of a sphere

*For all practical purposes the atomic magnetic moments of a macroscopic homogeneous
magnetic sphere behave as if placed in infinite crystal of the same shape.

A. Aharoni: "in ferromagnetism there is no physical meaning to the limit of an infinite crystal
without a surface” [2]

*\We do not know a priori the dependence of the energy of the crystal on the orientation of
magnetic moment of the sample.

It can be shown [1] that energy density related to the orientation of magnetic moment in a
crystal structure can be expanded into power series of direction cosines relative to the
crystal axes:

Ecwsta,(ﬂ):bo+ Z b.o+ Z bl.ja,.aj+ Z bl.jkaiajak+... (1)

i=123 i, j=123 i, j, k=123

a,, a,, o, -direction cosines of magnetization

(a,,a,,a;)=(sin(0)cos(¢),sin(0)sin(¢),cos(8)) 0., ¢ -polarand azimuthal angles

*The experience shows that it is enough to use very limited number of expansion terms to
describe the magnetic systems — the usual limit are sixth order anisotropy constants



Anisotropy of hysteresis — hysteresis of a sphere

*An example of the use of sixth order anisotropy constants for hysteresis description:

Figure 3. Magnetisation curves calculated for 8 = 0°, 6:5°,13-7° (~6,), 17:3° and 35:3° [110].
The parameters K, and K are phenomenological and not directly related to DyAl,.

To see qualitatively that a sixth-order anisotropy term may indeed increase the
discontinuity and the tricritical angle 6., consider the classical mean field energy

M
M,

E=—H.— +K,M*M* + MYM} + K [MS + M® + M

— L3(MAM? + MIM? + M2M? + MEME + M2M?

+ MMM
where K, and K, are phenomenological anisotropy constants. We have calculated
magnetisation curves by minimising E with respect to M for various directions of H. In

figure 3 are shown calculated magnetisation curves with K, = —1 and K, = 05, The
discontinuity for # = 01is 15%, which corresponds to the situation for DyAl, at T = 20 K.

B. Barbara et al., J. Phys. C: Solid State Phys. 11 L183 (1978)



Magnetic anisotropy Quantum electronics

eIntrinsic symmetries of the physical properties reduce the number of independent
components of anisotropy tensors.

*The energy of the system is the same for both opposite orientations of magnetic moment.
From Eq. (1) we have:

> b=, b(~a,) for all a; = b=b,=b,=0

i=1,2,3 i=1,2,3

*The magnetocrystalline anisotropy energy may not depend on odd powers of direction
cosines a. Consequently all odd rank tensors in the expansion (1) are identically null [1].

*rank of a tensor — number of its indices



Anisotropy of hysteresis — symmetry of crystals

Neumann's Principle:
The symmetry elements of any physical property of crystal must include all the symmetry
elements of the point group™ of the crystal.

*Consider a cubic crystal system with a 3-fold rotation axis [111] and the first nonvanishing
anisotropy tensor (second rank):

Transpose of a matrix — switches
b11 b12 b13 rows and column indices
by=|b, by by [MT]I-/:Mﬁ
_b31 b32 b33.

*The transformation matrix corresponding to that rotation is:

Note: isometries (angles and distances and coordinates transform

0 0 1 preserved) of R® space are described by according to the following
M=l1 0 0 square matrices for which an inverse of le:
a matrix is equal to its transpose: ruie. ,
010 M'=m"" a i:ZMijaj
J

*\oigt's Principle:

The conditions of Neumann's principle are fulfilled if the physical property of the crystal is
described by the tensor which is invariant under point symmetry operations which leave
the crystal unchanged

It follows that the physical property tensor must fulfill the condition b=M"5 M for all
symmetry operations of the point group.

*A point group is a group of symmetry operations all of which leave at least on point unmoved.



Anisotropy of hysteresis — symmetry of crystals

*From Voigt's principle it follows for tensor b:

1 0
0 1
0 0

bll

b21

.b31

b
b
b

12

22

32

S

S

13

23

33

]

S = O
_0 O
O O =

*Comparing the elements of both (identical) tensors we get:

b22

b32

I b12

b
b
b

23

33

13

b
b

, :

21

31

11

Quantum electronics

b=M"bM

rotation by 120Deg about [111] direction

effect of the rotation of
the crystal on tensor bj

by, =by,=by;=a

) b,=b,=b,=b

by =b,=b,,=c



Anisotropy of hysteresis — symmetry of crystals
b=M"bM

*\We apply the same procedure again, but this time with other symmetry element of cubic
crystal, namely 90Deg rotation around z-axis:

|
0 1 Olla ¢ b||O =1 0O} |a —=b c rotation by 90Deg about [001] direction
b,=-1 0 0||b a c||1 0 O|=|-c a —b _
o o0 1lle » allo o 1l |p —¢ 4 effect of the rotation of

the crystal on tensor bj

*Comparing the elements of the first row of both (identical) tensors we get:
c=—b, b=c = b=c=0

oIt follows that the second rank tensor consistent with the above two symmetry operations
possesses one independent component:

4 N
a 0 O
b,=|0 a 0
0 0 a
\ /)

«Similar analysis can be performed for other tensors in the expansion (1):

Ec,ysml(]\?):bﬁ Z baa; + .. (1)

i,j=123



Anisotropy of hysteresis — symmetry of crystals

Inserting tensor b into the third term of expansion (1) we get:

2 . . . .
> bya,o =ala + a,’+a;’)=a -independent of the orientation of magnetic moment
i,j=123

In cubic system there are no second order terms in the expansion of energy in directional
cosines [1].

*Using similar procedure we obtain the complete expression for the energy contribution
related to the orientation of magnetic moment in cubic system [1]:

E (M’ T):KO(T)+ Kl(T)<a12a22+ 0{220{32+ a32a12>+ Kz(T)a12a22a32

crystal

-the coefficients Ko, K1 ... are the linear combinations of tensor components b11, b1111,
b111111 etc. [4].

*For other crystal systems the similar procedure is employed to obtain the Ecrysta(M, T)
expressions.
*For hexagonal crystals the energy can be expressed as [1]:

E (M: T):KO(T)+ KI(T)(a12+ azz)"' K2<T>(O(12+ azz)z"'

crystal

which is usually expressed, using trigonometric identities, as:

M,T):KO(T)+ KI(T)sin29+ Kz(T)sin4H+... (2)

angle with respect to easy axis

E

crystal (

a’+a;=sin’0 cos’ ¢ +sin’0 sin’ p=sin’0



Anisotropy of hysteresis — symmetry of crystals

Inserting tensor b into the third term of expansion (1) we get:

2 . . . .
> bya,o =ala + a,’+a;’)=a -independent of the orientation of magnetic moment
i,j=123

In cubic system there are no second order terms in the expansion of energy in directional
cosines [1].

*Using similar procedure we obtain the complete expression for the energy contribution
related to the orientation of magnetic moment in cubic system [1]:

E (M’ T):KO(T)+ Kl(T)<a12a22+ 0{220{32+ a32a12>+ Kz(T)a12a22a32

crystal

-the coefficients Ko, K1 ... are the linear combinations of tensor components b11, b1111,
b111111 etc. [4].

*The terms of the type a;* are omitted since because of the identity [4,5]:
2Ma’a+a, e+ alal ) a o ra, =1
they can be incorporated into Kp, K1 terms.

*The terms of the type a° can be similarly replaced by Ot,-zotjz and a’a,’a; terms [6].



Anisotropy of hysteresis — symmetry of crystals

*Number of independent components
of the (second rank) tensor depends
on the crystal symmetry

*In crystals of cubic system there is
one independent component of the
tensor.

*Hexagonal systems are characterized
by two independent components of the
second rank tensors.

image source: [Ixx. Han ®usnyeckne Ceorictea Kpucrannos,
N3patenbctBo MUP 1967
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Anisotropy of hysteresis — energy surfaces

*Energy surface — the distance from origin along the given direction is proportional to
magnetocrystalline energy of the crystal with magnetization along that direction.
*\We start from the expression of the magnetocrystalline energy for cubic crystals:

E (M, T)=K,(T)+K\(T)(a, o, + o, a+ a; e )+ K,(T)a a, a+ ..

crystal

*For Ko=1, K1=0 and K>=0 we have isotropic energy surface:

*Energy does not depend on the orientation of the magnetic
moment

*The magnetization reversal (hysteresis) itself does not
depend on Kp but to show the difference between the cases
of K1>0 and K1<0 we need a reference level — the surface
of the sphere (r=Ko).

(*Mathematica6.0 code
for energy surface:*)
K0=1;K1=0;K2=0;
a1=Sin[teta] Cosfil;
a2=Sin[teta] Sin[fi];
a3=Coslteta];
Energy=K0+K1(a172 a2*2+a3"2 a2’2+a1’2 a3"2)+K2(a172 a2"2 a3"2);

xsurface=Energy a1;

ysurface=Energy a2;

zsurface=Energy a3;
obrazek=ParametricPlot3D[{xsurface,ysurface,zsurface},{fi,0,2\[Pi]},{teta,-\[Pi],\[Pi]},PlotStyle->{Orange,Specularity[White, 101},
ImageSize->600,PlotRange->{-1.2,1.2},Axes->None,AxesLabel->{X,Y,Z},BoxStyle->Directive[ Thickness[0.01],Black]];
osdiag=Line[{{0,0,0},{1,1,1}}];

osx=Line[{{0,0,0},{1.2,0,0}}];

moment=Sphere[{1,1,1},1];

obrazekwy=Show[obrazek,Graphics3D[{Blue, Thickness[0.02],0sx}],Graphics3D[{Blue, Thickness[0.02],osdiag}]]




Anisotropy of hysteresis — energy surfaces

*Cubic crystals magnetocrystalline energy surfaces™ for different anisotropy coefficients:

[111] direction

direction

—— easy axis

energy surface for Ko=1, K1=2 and K2>=0 energy surface for Ko=1, K1=-2 and K>=0

typical for bce cubic crystals (Fe) typical for fcc cubic crystals (Ni)

*both images have the same scale



Anisotropy of hysteresis — energy surfaces

*Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

[111] direction

direction

energy surface for Ko=1, K1=2 and K>=0

typical for bcc cubic crystals (Fe) <1,0,0> - easy directions

*both images have the same scale



Anisotropy of hysteresis — energy surfaces

*Hexagonal crystals magnetocrystalline energy surfaces:

E M):KO+ K sin’0+ K ,sin*@

crystal (

[001] direction

[001] direction

04

1.0 A

04l

—1.0 —0.5 Y
—-1.0 A

energy surface for Ko=0, K1=-1 and K>=0

typical for hcp cobalt crystals [0,0,1] - easy direction



Energy surfaces — the influence of the external field

*Cubic crystals magnetocrystalline energy surfaces for different values
of the external field applied along [111] direction*:

field direction

=P\ 2 2 2 2 2 2

crystal(
2 2 2
K,a,"a, a, +H(0{1/31+0{2/32+ 0‘3/9)3)

B, B, B, -direction cosines of H

energy surfaces for Ko=1, K1=2 and K2=0

*images do not have the same scale



Energy surfaces — the influence of the external field

*Cubic crystals magnetocrystalline energy surfaces for different values
of the external field applied along [111] direction*:

' ‘_‘"A

/ \ £ 7N
with increasing field H the number of local minima 0 4",.'
decreases 7, -3

-2
: : . -1
eabove saturation there is only one local minimum -2
- - H=1.5 _;
energy surfaces for Ko=1, K1=2 and K>=0 -3 -2 -1 0 1

*images do not have the same scale



Anisotropy constants of ferromagnetic elements Quantum electronics

*Bulk magnetocrystalline anisotropy constants of basic ferromagnetic elements at 4.2K [1]:

Fe (bcc) Co (hcp) Ni (fcc)
K1 [J/m3] 54800 760000 -126300

[meV/atom] 4.02x103 5.33x102 -8.63x103
Kz [J/m?3] 1960 100500 57800

[meV/atom] 1.44x10° 7.31x103 3.95x103

*Magnetocrystalline anisotropy of permalloy (Nig1Fe19):

K=0 kJ/m3

*Magnetocrystalline anisotropy of rare-earth magnets [3]:
YCos K=5.5x106J/m3

SmCos K=7.7x108 J/m3



Mixed anisotropies Quantum electronics

*Consider the crystal in which two uniaxial anisotropies are present together [3]. We limit
our discussion to second order terms [see EQ.(2)]: o

E, =K, K ;sin’0, E,=K,+ K ,sin’(90—0)=K ,+ K ,cos’0
*The total energy of the moment is:

E,,=K'+ K ;sin’0+ K ,cos 0 A A

total —

If Ka=Kg the energy is independent of O:

E, ., =K'+ K ,(sin’0+ cos’0)+ (K ,—K,)sin’0=K '+ K,
Two equal uniaxial anisotropies at right angle
are not equivalent to biaxial anisotropy.
—>
If Ka and Kg are not equal the equilibrium angle is given by:
OF . _0 : 9, 1—cos(26
aemzae (K,=Ky)sin"0==—(K ,~K ) 2( )| =
(K,—K,)sin(26)=0 _
B-axis
*Solutions are #=0", 90°, 180°
T A-axis T Polar plots of

and Eg (with Ko=0.5)



Mixed anisotropies Quantum electronics

*From the second derivative (must be positive for minimum) we obtain [3]:

O'E

total KA>KB KA<KB
pye =2(K,—K,)cos(20) =

The direction of easy magnetization is not along some axis lying between AA and BB axes
but is along the axis pertaining to higher anisotropy.

«Case of the two uniaxial anisotropies which are not perpendicular:

-in case of anisotropies of equal strength the resultant easy
axis CC lies midway between axes AA and BB

-otherwise the CC axes makes smaller angle with axis
pertaining to stronger anisotropy

angle between a_xes AA and BB is 36 Deg

B =2
/49
A A easy
axis

Polar plots of
and Eg (with Ko=0.5)




Microscopic mechanism of magnetocrystaline anisotropy

Quantum electronics

*The spin of electron interacts with the crystal structure via spin orbit coupling

*the moment of a spin (red arrow) is strongly coupled to the electron cloud (blue orbitals) — spin orbit coupling
*when external magnetic field rotates the spin the electron “attempts” cloud follows but its energy depends on the

orientation relative to neighboring atoms/orbitals

«if the orbitals overlap there is additional energy due to coulomb repulsion (on the other hand it can lower the energy
of repulsion between ions) - IT IS A QUALITATIVE DESCRIPTION!

overlap

%%%%%
%%%%%

small overlap

Higher energy

Lower energy

*Due to spin-orbit coupling
different orientations of
electron spins correspond
to different orientations of
atomic orbitals relative to
crystal structure

*As a consequence some
orientations of the resultant
magnetic moment are
energetically favorable —
easy directions.



Stoner-Wohlfarth model*

*Describes magnetization reversal in single domain magnetic particles/films
*The reversal is characterized by the orientation of single magnetic moment
*The anisotropy may be of magnetocrystalline, shape etc. origin

*For the uniaxial anisotropy case the energy can be described as (compare
magnetocrystalline anisotropy energy expression for hexagonal system) [8]:

E, =K, K ;sin®0—B-M=K+ K,sin’0—M Bcos(y—6) **
Zeeman energy

| Easy axis

total

-The energy landscape for different values of B (Ko=0,K,=1,M=1, y=309):
10 -

direction of the
applied field

*On increasing the field the minima shift
toward its direction

*The angle antiparallel to field
corresponds to absolute maximum

R
é —>
2
2
s = €
0 Q0 e 180 270 360 easy axis

*some times called macrospin model
** this expression is for a unit volume of the material: M:=MV [Am?2], K=KV [J]



Stoner-Wohlfarth model*

*The dependence angle(field) obtained from the energy landscapes of the previous slide
gives hysteresis loops:

1.0 -

For field applied along
easy-axis the reversal is
completely irreversible

0.5 - () Deg
- ig E:i «For field applied
60 Deg p_erpe_ndicularly to EA_
2"’3 0.0- — 90 Deg direction the reversal is
= completely reversible
=
For field applied in
-0.5 - arbitrary direction
magnetization is “partly
reversible and partly
irreversible” [9]

-1.0




Stoner-Wohlfarth model*

*Hard axis reversal. We can rewrite the expression for the total energy using components
of the field parallel (Bx) and perpendicular (By) to easy axis [9]:

E =K.+ K sin’0—M Bcos(y—60)=K+ K sin’0—B,M —B M =

K.+ Klsinzﬁ—BxMcos(Q)—ByM sin(6)

*Energy becomes minimum at a specific angle which can be determined setting:
OFE

89“’“” =2K sinfcosO+ B, Msin(0)—B,M cos(0)=0 Bzzﬁljl
2K
*With azvl this can be written as: Em
in0 cos0+ B sin(6)— B.cos(6)=0 B, B _, =]
aS1ino CoS LSIn yCOS = or 511’1(8) C()S(H) =
oIf field is applied perpendicularly to EA we have (Bx=0, By=B): D B

: B - .
sin ( 0 ) = o proportional to M component parallel to B

If field is applied perpendicularly to the easy axis the component of magnetization parallel
to the field is a linear function of the external field up to saturation which happens at*:

2K,
By=—

*in practical applications K[Jm-3], M[AmM]



Stoner-Wohlfarth model — astroid curve

*Depending on the value of the external field there may one or two equilibrium orientations
of magnetic moment. For a given field value the two orientations collapse to one when [9]:

azEmmz ~0 25“"“’ =asinBcosO+B,sin (6)—B, cos(6)=0=0
06’

*From the expression for derivative of energy (previous slide) we have:  rrom previous slide:
82 Etotal 2 . 2 . _ By Bx
=5 :ic(cos 0 —sin” 6 )+ Bxcos(9)+ Bysm(H):O Olt_sin(H)_cos(H)
0" E B, B,

=0

2 . 2
=cos f#sin‘ 6

00’ sin’(@)  cos’(6)
*\We are looking for the solution of the set:
B B B B B B B 1 B
=t - , Y+ ——=0 a+ — =, — s+ — =0
@ Sll’l(@) COS(Q) sin3(l9) COS3(9) cos(6) Isin(6) Sln(e)‘sin (6) cos’(0)

By a direct substitution of the first equation into the second we get:
B.=—acos’ 6, By:asin36?

X

B
eIntroducing reduced fields (5, =—-=—cos’0) it may be written as:
(04




Stoner-Wohlfarth model — astroid curve

«Stoner-Wohlfarth astroid separates region, in (hx,hy) plane, with two minima of energy
from that with only one minimum®*

*\When the external field is changed so that the astroid is crossed the discontinuous
changes of the orientation of magnetization can take place

*we start with magnetic moment pointing in negative direction(-180 Deg, —
parallel to easy axis) and zero applied field

*we increase then the field (parallel to easy axis) into positive values

and the minimum at -180 Deg becomes less deep

- «finally, at B=2 (H =1), the -180 Deg orientation ceases to be a minimum

. (first and second derivatives are zero — we cross Stoner-Wohlfart
. astroid) and we end up with a single minimum at 0 Deg — magnetic
. moment switches to that minimum

total

Plot of function: (sin(x*Pi/180))*2-B*cos((x-0)*Pi/180))

M I v I v I v I v I v I v I v I
*Y. Henry et al. PHYSICAL REVIEW B 79, 214422 (2009) O 50 100 150 200 250 300 350

0



Stoner-Wohlfarth model — astroid curve

«Stoner-Wohlfarth astroid separates region, in (hx,hy) plane, with two minima of energy
from that with only one minimum®*

*\When the external field is changed so that the astroid is crossed the discontinuous
changes of the orientation of magnetization can take place

___,__=-
= O Deg
—— 45 Deg
0 1 2

H[a.u]

*Y. Henry et al. PHYSICAL REVIEW B 79, 214422 (2009)



Stoner-Wohlfarth model — astroid curve

«Stoner-Wohlfarth astroid separates region, in (hx,hy) plane, with two minima of energy
from that with only one minimum

Temperature dependence of the switching fields of a 3 nm Co cluster
0.3

0.2

S~ 1000 -0.2 — ]

PRL 86,

0.3 | | | '
4676 (2001) 03 -02 -01 0 01 0.2 0.3

l"OHy (T)

M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon,and A. Pérez, Phys. Rev.Lett 86, 4676 (2001)




*Polycrystalline samples without a preferred orientation of the grains do not show, in
macroscopic experiments, any magneto crystalline anisotropy [9].

*If the sample is not spherical the magnetostatic energy of the system depends on the
orientation of magnetic moments within the sample (or macrospin in a simplified picture).
*The effect is of purely magnetostatic origin and is closely related to demagnetizing fields
(see my lecture 2 from 2012):

(If and only if the surface of uniformly magnetized body is of second order the magnetic
induction inside is uniform and can be written as:

B=u,(-N M+ 1)

N is called the demagnetizing tensor [5]. If magnetization is parallel to one of principle axes
of the ellipsoid N contracts to three numbers called demagnetizing (or demagnetization)
factors sum of which is one:

N+ N +N_ =1
For a general ellipsoid magnetization and induction are not necessarily parallel.

Demagnetization decreases the field inside ferromagnetic body. _ N

Demagnetizing field is just the name of the field _
produced by the body itself _




*If the sample is not spherical the magnetostatic energy of the system depends on the
orientation of magnetic moments within the sample (or macrospin in a simplified picture).

.

*The energy of the sample in its own stray field is given by the integral [9]:

demag —

| — 1 A % v
__2_f B tomag M dV:EJl u(N-M)-Mdv B jemag=—Mo N -M

*If the sample is an ellipsoid the demagnetizing field is uniform throughout the sample:

E —I—VMO(N-M)-M, V —volume of the sample

demag — 9)

*N is a diagonal tensor if the semiaxes of the ellipsoid coincide with the axes of the
coordination system.



*For the general ellipsoid sample we have [9]:

EE _lVM0<N°M)'M:;_MoMz(Naai"'Nba;"'Nca;) } M:M(apaz’a:a)

demag — 2

*For a spherical sample we have:

1/3 0 0 |
N=0 13 0 | = Eppg=5

0 0 1/3 3 T

ole—(Off"’ o+ ag):l_MOM2 no dependence on the
magnetic moment orientation

«For an infinitely long cylinder* N¢ is null: (a,,a,,ay)=(sin(8)cos(¢),sin(0)sin(¢),cos(6))
1/2 0 0 | | | |

N=0 12 0| = Egp=5ueM ~(aj+a3)==u,M" >(sin*(6)cos’(¢)+sin°(6)sin*(¢)")=
0 0 0 2 2 2 2

1 Uniaxial anisotropy-
{ I8 = tyM?sin*(6) } characteristic for elongated
4 particles (see Stoner-
Wohlfarth model)

N

ellipsoid =

OZO
ZOO

o

*polar axis is a symmetry axis




*For infinitely expanded and/or very thin ellipsoid we have [9] (8=90° — moments in-plane):

000 1 , o, 1 5 The in-plane orientation of
N=0 0 0of = Edemagzz woM O{3:EM0M COS (9> magnetic moment of thin plate is
0 0 1 energetically favorable*

*The equation can be rewritten to often used form:

1 | |

Edemagzz MOM2<1_Sin2(9)>:5MOM2_5 MOMzSin2<H):KO+ Ki/hapeSinz(g)’
: 1
with K:hape:—z— ugM?

*Magnetocrystalline and thin films shape anisotropy constants for thin films of elements at
4 K**:

Fe (bcc) Co (hcp) Ni (fcc)

Shape anisotropy in thin films
K1 [J/m3] 94 800 760 000 -126 300 usually dominates over

magnetocrystalline anisotropy

KV [J/m?3] 1910000 1290000 171000

*in case magnetocrystalline and other anisotropies favoring perpendicular orientation are absent
**magnetization data from: Francois Cardelli Materials Handbook, Springer 2008 (p.502), http://books.google.pl



Shape anisotropy Quantum electronics

2K,

*From Stoner-Wonhlfarth model we have: B.=

|
*Substituting the expression for shape anisotropy of thin films K:hape:_z u, M *we get:

By=u,Mg or Hg=M g

In macrospin approximation the perpendicular saturation field of thin film is equal to its
magnetization.

Assuming that the wire and the plate are
both thin and of the same material:
Which one is easier to saturate?

olitechnika Poznanska 2018

Maciej Urbaniak&



Shape anisotropy — purely magnetostatic interactions

Example:
» n X n magnetic moments (spins) placed in plane on a square-lattice (a=0.2 nm)
« magnetic moments interact purely magnetostatically
« each moment is a 1 Bohr magneton (=1x10-2* Am?2)

olitechnikaYo

Maciej Urbaniak&




Shape anisotropy — purely magnetostatic interactions
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Maciej Urbaniak



Shape anisotropy — purely magnetostatic interactions

1.2
mq
O 1.0-
=
c
7
0.8-
i E =F
< ik |
0.6-
5 10 15 20 25 30
N

E, is less negative than E/*

Magnetostatic interactions favor in-plane orientation of magnetic
moments (spins) in thin magnetic films

olitechnika Poznanska 2018

* E=—iii-B Maciej Urbaniake



Surface anisotropy — reorientation phase transition Quantum electronics

presence of an interface:

- orbital motion of electrons is affected by the

introduced symmetry breaking

- the asymmetry of the averaged orbital moments
defines the interface contribution to the magnetic
anisotropy

-in ultrathin magnetic films the interface part

ter layer of atoms becomes even dominating in some cases
outer lay S

(or interface)

olitechnika Poznanska 2018

Maciej Urbaniak



Surface anisotropy — reorientation phase transition Quantum electronics

*Due to broken symmetry at interfaces the anisotropy energy contains terms with lower
order in direction cosines than in the infinite crystal.

*Energy of magnetic moments of atoms
occupying lattice sites in the vicinity of the
surface is different for two shown
orientations

*Each of the magnetocrystalline anisotropy
constants can be phenomenologically
divided into two parts, one related to volume
contribution and the one to surface
contribution [9]:

KY=K"+ K[t

where t is the crystal thickness.

surface/interface

*Energy of magnetic moments of atoms
occupying lattice sites far from the outer
boundary of the crystal depends on the

intrinsic symmetry of the crystal

olitechnika Poznanska 2018

Maciej Urbaniak



Surface anisotropy — reorientation phase transition

Quantum electronics

Let us assume that volume contribution to the anisotropy favors in-plane alignment of
magnetic moments (it could be magnetocrystalline, shape, stress etc. anisotropy).

\
\
\
\
\
\
\
\
\
\

22222222

112222222
12222222
12222222
22222222
VILLLELLY

11222222
22222222
21222222
172222 2%"°

*Due to perpendicular surface anisotropy the moments close
to the surface (black arrows) are deflected out of plane

oIf the thickness of the sample/film is high the exchange
coupling of the surface moments with the bulk ones keeps the
overall moment of the sample nearly in plane

) m) m—)

—) ) =

-
— m—p m—p
— m—p =

) m—)

— m—p
— m—p =
— m—p =)
— ) m—

«If the thickness of the film is low, and the surface anisotropy
is strong enough all moments point perpendicular to plane.
*Using macrospin approximation the total energy of the
sample dependent on the orientation of magnetic moment can
be written as [10] (we assume that the energy does not
depend on azimuthal angle):

Ea:Ko—chosz(Q )—K4cos4(8)+
-positive K; favor perpendicular orientation

*

*different notations of anisotropy constants can be encountered: R. Skomski et. al, Phys. Rev. B 58, 11138 (1998)



Surface anisotropy — reorientation phase transition

*Minimizing E, with respect to 0 yields the equilibrium angle:
O’E 100°=2K,cos(0)sin(0)+ 4 K ,cos’(0)sin(6)=0 = cos(@)sin(6)(2K,+ 4K, ,cos’(0))=0

Quantum electronics

*\We have extrema for:

_K2
2K,
It can be shown that [10]:

6=0, 7/2, cos’(0)=

4_

-for K;>0 and K,>0 the magnetization is
perpendicular to the plane

-for K,>0 and 2K,<-K; the canted
magnetization is a ground state

-the region for K,<0 and 2K,>-K; is called a

coexistence

\

K, TN

perpendicular

=K, (TN)

in-plane

Fig. 50. Phase diagram in the iC%‘(T, N)flCi‘(T, N)-plane for the polar
orientation of a thin film. The ‘perpendicular’ and the ‘in-plane’ phases are
characterized by the polar angles & = 0 and § = 7 /2, and the ‘canted’ phase
by 0 < 6 < m/2. Inthe ‘coexistence’ region the perpendicular and the in-plane
phase both refer to energy minima, and are separated by an energy barrier.

canted

coexistence region — both perpendicular and
in-plane orientations of magnetization
correspond to local minimum; they are
separated by energy barrier

Image source: P.J. Jensen, K.H. Bennemann,
Surface Science Reports 61, 129 (2006)



Surface anisotropy — reorientation phase transition Quantum electronics

*Recalling the presence of surface anisotropy terms we get:
each anisotropy constant is divided into

E =K,~ (K +K:lt)cos (%iteta)—(K '+ K/t )cos' ( %iteta)+.... bulk (volume) and surface term

£ |

*Neglecting higher order terms we get the sample thickness for which the effective
anisotropy is zero (neglecting constant Ko):

K,

K,

*Usually, when considering thin films, the sample has two surfaces contributing surface
anisotropy. As a consequence the multiplier 2 is added™:

Lrpr="—"

p RPT - reorientation phase transition
_2 K2 SRT -spin reorientation transition

K,

tRPT

*For film thickness > trpt the magnetization of the film lies in-plane (if the external field is
absent.

*RPT may be caused by:

-temperature change

-change of the thickness of magnetic layer

-change of the thickness of the overlayer

*in general both surfaces can be characterized by different surface anisotropy constants.



Perpendicular magnetic anisotropy in Co based multilayers

Co based multilayers in which magnetic layer is sandwiched between noble metal spacer
possess perpendicular magnetic anisotropy (PMA) in limited thickness range — this is due
to surface anisotropy of the interfaces

above a critical thickness shape
anisotropy dominates

In the thickness range 0.3-1.4nm*
sputtered Co/noble metal MLs can
display PMA

*for Co/Au MLs the PMA range is approximately 0.5-1.2nm



Surface anisotropy — reorientation phase transition Quantum electronics

*From the expression with surface anisotropy we have:
K =K+ 2K;/t

K 1=K3t+ 2K o

. _ i glass tpyg=11A
*Plotting K, ¢ vs ¢t one can determine —
volume and surface contributions to e
anisotropy with a linear fit: =
-Ky - slope £
-Ks — VaKesf t for t=0 8
X

image source: F.J.A. Den Broeder et al.,JMMM 93, 562 (1991)

tco [A] -

Fig. 2. Dependence of Kic, on !, for polycrystalline Co /Pd
multilayers, deposited at T, = 20 and 200°C.




Surface anisotropy — reorientation phase transition

*RPT may be caused by: 4y (mm] 6 nm
10} — : B
: : 3 A
-change of the thickness of magnetic layer - ; .
-change of the thickness of the overlayer i 2
Q g
i E 9 9 \ h
7 R casy plane R
N 2 9 state V4
g \ |
TR v \
- E ao Yo W !
© o o %f_‘
o a o b \
_ g o A T
2 o8 easy axis ©
g Y state  ©
i %: , mt\sL : ?R:{ A; - ;“:4
O -I 1 | | : 1 Cl 1 1 l ] X{mm]
0 5 10
" T "'J"f&dn_co !12 nm

FIG. 1. Cobalt wedge remmnant state image P(7,j) determined for a fully
saturated sample in both Z, >0 and H, <0 directions. On the basis of
magnetometric analysis, localization of different magnetization states is
marked. Points show the coercivity wall positions registered for different
H, field pulse (A =900 ms) magnitudes (measured in Oe). Solid black lines
have been fitted to the coercivity wall data, registered at 7, =135 Oe, using
H¢(x,y) function with /¢ =0.8 nm as the best fitting parameter. Below the
horizontal dashed line in the gold region growth imperfections are clearly

Kisielewski et al., J. Appl. Phys. 93, 7628 (2003) visible.



Surface anisotropy — reorientation phase transition
*RPT may be caused by: | ]
-temperature change r 2

-change of the thickness of magnetic layer N
-change of the thickness of the overlayer

M (arb. units)

Image source: C. Chappert, P. Bruno, J. Appl. Phys. 64, 5736 (1988)

HikOe)

FIG. 4. Hysteresis loop with & perpendicular (L) and parallel (/) to the
film plane, for Au/Co/Au sandwiches with 7= 5.4, 9.5, and [5.4 A, at
'=10K.



Stress anisotropy and magnetostriction Quantum electronics

*Magnetostriction is a change of materials physical dimensions as a result of the change of
the orientation of magnetization

*The direction of magnetization changes under the influence of external field or
temperature.

The relative deformation is usually small; of the order of 106 to 10-° [6]; in Tb A is approx.
0.002 at RT.

*The typical strain versus field dependence shows saturation which is expressed by the

o

o

. . o

value of magnetostriction constants A: 0 — 1 : . )
[ Fe,Pt Single Crystal \ (D) S

* R | T=42K -~
61 = | H/[001] ~
1 X sl AV//[001] 1 =
S i 3

s | £

2 I £

E -10 =

A i :

o - B

2 c

L ()

= -15E 8

L <

[%)]

-4 . %

v Magnetic Field (T X

v > g (T) <

FIG. 4. Magnetostriction of an ordered Fe,Pt. Strain of 1.5X 1072 is ob-

tained by application of a magnetic field of 4 T, which is indicated by (I).

ol iant tostricti terials th The total strain comes to about 2.0X 10~2 including the strain due to the
n glant magnetostriction materials the thermally induced martensitic transformation shown in Fig. 3. The revers-

strain exceeds 0.5% ible strain is 5 X 10~ 3 by applying and removing the magnetic field, which is
indicated by (II) and (III).



Stress anisotropy and magnetostriction Quantum electronics

*Magnetostriction is a change of materials physical dimensions as a result of the change of
the orientation of magnetization

*The direction of magnetization changes under the influence of external field or
temperature.
The relative deformation is usually small; of the order of 106 to 10-° [6]; in Tb A is approx.
0.002 at RT.
*The typical strain versus field dependence shows saturation which |s expressed by the
value of magnetostriction constants A:

(®))
™
(o)}
£
o
m
o
()]
£
g A
[ |] i | : g
514 TR :
2 7’[? %_h___ A — 2
A ! '
1 { [ DJ 1 s, \ | | g
y/ /) SR E——— + SN S— (@)}
| ffﬂﬂ] . '\: (_E
e/ \\ | S
-I; ’f ! !'\_:\\ l (D"
' %“'+--"j+ I ‘}MK =)
-0} SN
A N
{ i c
—> 20 —1 X A\ >
| ‘\\ \i =
21 +—\- =
. “.\ LL
v 4| — -\ 2
H 59 ; ! | o
k) &g 50 & i 8z a0 7007% ;
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*The dependence dl/I(H) is different for Abb. 186, Sittigungsmagnetostriktion von Ein- g
. . . . . . kristallen dn:r Nickel - Eisen - Legierungen zwischen (&)
different orientations of applied field relative 30% und 100% Nickel fiir die drei kristallographischen 2
Hduptrlrhtlmgen [Nach F. LICHTENBERGER: Ani. )
to crystal axes Phys., Lpz. V, Bd. 10 (1932) S. 45.] Y




Stress anisotropy and magnetostriction

In most practical applications the saturation distortion can be described by expression

with small number of constants [11]:

3 1
/1:2_/1100(055/3?"' O‘;ﬁ;"’ aiﬁg_g)"' 31111(“10‘2/31/3}2"' a5 5,5+ 0{3051/3’3/31),
where a1, a2 , az — direction cosines of magnetic moment direction;[31,B2, B3- direction
cosines of the direction along which the deformation is measured.

In amorphous and polycrystalline materials (without the texture) the above expression
simplifies to:
3 1

_2 29_ L A>0
A 2)LS(cosl9 3)

JUUROR X E] SEER

Distortion along the external magnetic field 0.5}

direction is twice that observed for plane
perpendicular to the field (see the
drawing—)

field directions

Quantum electronics

*Below Curie temperature the spontaneous
magnetization leads to spontaneous
distortion of lattice [9]: cubic cell deforms

to tetragonal system »

10 5 —

—0.5}

PolarPlot[{1+0.4 (Cos[t]*2-(1/3)),1},{t,0,2 Pi}]



Stress anisotropy — magnetomechanical effect” Quantum electronics

*Stress applied to a ferromagnetic body will affect the orientation of magnetization through
magnetostriction [6].

*The applied stress changes the magnetization reversal characteristics:

i4 — +2 kg/mm? (+ 2840 Ibfin?)

10 |""

No stress

B (kilogauss)

H(Oe)

Fig. 8.16 Effect of applied tensile stress on the magnetization of
68 Permalloy. After Bozorth [G.4].

image from: B. D. Cullity, Introduction to magnetic materials,

Addison-Wesley, Reading, Massachusetts 1972

*called inverse magnetostrictive effect, too



Stress anisotropy — magnetomechanical effect* Quantum electronics

*The part of the energy of a cubic crystal depending on magnetic moment orientation and
the stress applied to crystal can be shown to be [3]:

_ 2 2, 2 2, 2 2 3 2 2, 2.2, 2.2
E—K1<0‘10‘2+O‘20‘3+ 0‘30‘1)"' ---_2_/11000<O‘13/1+ 0‘23’2"'0‘33/3)
_3%110(0510‘2)/13/2"' Cr,03),Ys3t 0‘30‘13/3)/1)’ Y1, Y2, Y3 -direction cosines of

the external stress o

magnetocrystalline anisotropy

*\When the magnetostriction is isotropic (4,,,=4,,,=4,, ) the last two terms reduce to*:

3 .
EEmss:—z—%siO cos’ 0 ] where 0 is the angle between macrospin (magnetization)
and the the stress directions

*The effect of stress on isotropic sample depends on the sign of the Asjo product

E-The effect of stress is to introduce additional anisotropy to the ferromagnetic system}

*with (o, a,, a,;)=(sin(0)cos(¢), sin(8 )sin(¢), cos(0))



Stress anisotropy — magnetomechanical effect* Quantum electronics

*The effect of the stress on magnetization reversal for positive Asio product [3]:

1) the magnetic moments within the specimen point in one of four easy directions

2) the application of tensile stress causes domains with magnetic moment perpendicular to
the stress to dwindle

3) still higher stress leaves only magnetic moments parallel to the stress

4) Application of the weak magnetic field is sufficient to move 180 Deg domain wall and

saturate the specimen
0] O

i M 1N

1 X1 ‘€><}‘ 1 1 1 H
nd Q@ E, .= —% A0 Cos 0

LI
o) l l l 1 l 1 l 1 lower energy under stress

0] O |

1
1

!

oIf compressive stress was applied instead “vertical domains” would disappear and the
field would initially (for small H) be perpendicular to magnetic moments.

In Ni samples the stress of 6.4 x 108 Pa [3] causes stress anisotropy to be roughly equal to
magnetocrystalline anisotropy.



Quantum electronics
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