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Magnetization reversal

● Beyond Stoner-Wohlfarth model

● Landau-Lifshitz-Gilbert equation

● Micromagnetism



  

Landau-Lifshitz-Gilbert (LLG) equation of spin motion
●The change of angular momentum of a rigid body under the influence of the torque is 
 given by:

τ⃗ =
d J⃗
dt

●With gyromagnetic ratio defined as               we get:γ=
∣m⃗∣
∣ J⃗ ∣

●The torque acting on magnetic moment in magnetic field is: τ⃗ =m⃗× B⃗

d m⃗
dt

=γ m⃗× B⃗ This equation can be used to describe motion of the electron's 
magnetic moment. The electron itself is fixed in space.

m⃗e=−g e
e

2m
S⃗

For an electron we have:

●Larmor precession [3]
Vector rotating with angular velocity Ω changes according to the formula:

d A⃗
dt

=Ω⃗× A⃗

●From equation for time change of m we get:

d m⃗
dt

=γ m⃗×B⃗=−γ B⃗×m⃗=−ωL×m⃗



  

Landau-Lifshitz-Gilbert (LLG) equation of spin motion

●The velocity is called Larmor angular velocity 
and is given by:

Ω⃗ L=γ B⃗

●The corresponding Larmor frequency is:

f L=
1

2π
γ B

●For electron Larmor frequency is approximately 1.761×1011 rad s-1T-1  *

*http://physics.nist.gov/cgi-bin/cuu/Value?gammae    retrieved 2012.05.16

http://physics.nist.gov/cgi-bin/cuu/Value?gammae


  

Landau-Lifshitz-Gilbert (LLG) equation of spin motion
●Landau and Lifshitz have introduced a damping term to the precession equation:

dm⃗
dt

=γ m⃗×B⃗−
α L

∣m⃗∣
(m⃗×(m⃗×B⃗)) , (1)

where αL is a dimensionless parameter [5].

●As can be seen the damping vector
 is directed toward B and vanishes when m and B 
 become parallel.
 

●As can be seen from Eq. (1) the acceleration of m  
 towards B is greater the higher the damping 
 constant αL. Gilbert [6] pointed out that this is 
 nonphysical and that Eq. (1) can be used for small 
 damping only [5].

−m⃗×(m⃗×B⃗)

●He introduced other phenomenological form of equation which can be used for arbitrary 
 damping. Damping is introduced as dissipative term [7] of the effective field acting on the 
 moment:

B⃗→ B⃗−η
d m⃗
dt

(2)



  

Landau-Lifshitz-Gilbert (LLG) equation of spin motion
●Inserting Eq. (2) into precession equation (3 slides back) we obtain:

d m⃗
dt

=γ m⃗×B⃗

B⃗→ B⃗−η
d m⃗
dt

dm⃗
dt

=γ m⃗× B⃗=γ m⃗×( B⃗−η d m⃗dt )=γ m⃗×B⃗=γ m⃗×B⃗−γη m⃗×d m⃗dt =

γ m⃗×B⃗−
α

∣m⃗∣
m⃗×

d m⃗
dt

α=γ η∣m⃗∣,   with 

●The equation can be transformed by substituting itself into righ-hand side:

dm⃗
dt

=γ m⃗×B⃗−
α

∣m⃗∣
m⃗×

d m⃗
dt

=γ m⃗× B⃗−
α

∣m⃗∣
m⃗×(γ m⃗×B⃗− α

∣m⃗∣
m⃗×

d m⃗
dt )

●Multiplying out we get:

dm⃗
dt

=γ m⃗×B⃗−
α γ

∣m⃗∣
m⃗×m⃗× B⃗+

α 2

∣m⃗∣
2 m⃗×m⃗×

d m⃗
dt

(3)

●Using vector identity                                           we have:a⃗×( b⃗× c⃗)=b⃗ (a⃗⋅⃗c)− c⃗ (a⃗⋅⃗b)

m⃗×m⃗×
dm⃗
dt

=m⃗(m⃗⋅
dm⃗
dt

)−
d m⃗
dt

∣m⃗∣
2

●Since the magnitude of m is assumed to be constant* there can be no component of
 which is parallel to m; we get then:

m⃗×m⃗×
dm⃗
dt

=−
dm⃗
dt

∣m⃗∣
2

(4)

dm⃗
dt

*if the system consists of a number of individual 
moments, each of which is damped slightly 

differently, the magnitude of the total magnetic 
moment may not be conserved; one should use 

Bloch equation then.



  

Landau-Lifshitz-Gilbert (LLG) equation of spin motion
●Inserting Eq. (4) into Eq. (3) we obtain:

dm⃗
dt

=γ m⃗×B⃗−
α γ

∣m⃗∣
m⃗×m⃗× B⃗−α 2 dm⃗

dt

d m⃗
dt

(1+ α 2
)=γ m⃗×B⃗−

α γ

∣m⃗∣
m⃗×m⃗×B⃗

α=γ η∣m⃗∣

●And finally:

dm⃗
dt

=
γ

(1+α 2)
m⃗×B⃗−

α

(1+ α 2)

γ

∣m⃗∣
m⃗×m⃗×B⃗

Landau-Lifshitz-Gilbert equation

●In general the magnetic induction should be replaced by the effective field Beff [9, p. 178]:

B⃗eff=μ 0( CM 2 [ (∇M x)
2
+ (∇M y)

2
+ (∇M z)

2 ]+ H⃗+
∂

∂ m⃗
E anisotropy)

exchange energy 
density

– see later in the 
lecture

to be read as                                                           [9, p.178]
∂

∂ m⃗
f =x̂

∂

∂mx

f + ŷ
∂

∂m y

f + ẑ
∂

∂mz

f



  

Landau-Lifshitz-Gilbert (LLG) equation of spin motion

●With the replacement                                      both equations have similar form but...

dm⃗
dt

=
γ G

(1+ αG
2 )
m⃗×B⃗−

αG

(1+ αG
2)

γ G

∣m⃗∣
m⃗×m⃗×B⃗

Landau-Lifshitz-Gilbert equation

dm⃗
dt

=γ L m⃗×B⃗−
α L

∣m⃗∣
(m⃗×(m⃗×B⃗))

Landau-Lifshitz equation

γ L=
γ G

1+α G
2
, α L=

αGγ G

1+αG
2

the dependencies of precessional and relaxation terms on damping constant are quite 
different [8]:

●According to LL equation the 
 relaxation becomes faster with 
 increasing damping αL  (red 
dashed  curve) which is  counter 
intuitive.
 
●In case of LLG equation the 
 behavior of both terms agree with 
 the expectations for the dynamics 
 of damped precession [8].
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Magnetic moment reversal
●Let us consider the LLG equation describing the orientation of a single moment 
 (monodomain state) of magnetized sphere fixed in space (no translational motion):
d M⃗
dt

=
γ μ0

(1+α 2)
(M⃗× H⃗−α

M
[ M⃗×(M⃗×H⃗ )])

●For simplicity the time scale is changed:

M 2d M⃗
dτ

=M M⃗× H⃗−α [ M⃗×( M⃗×H⃗ )]

τ =
t M γ μ0

(1+ a2
)

●We assume that the external field is applied along z-direction [Ba/μ0=(0,0,Hz)]. The 
 demagnetizing field inside the sphere is (Hd=-1/3 Hz). With H=Ha -Hd we obtain:

M 2dM x

dτ
=−α H zM xM z+ H zM yM

M 2dM y

dτ
=−α H zM yM z−H zM xM

M 2dM z

dτ
=α (H zM x

2
+ H zM y

2
)

●Verifying that dM is perpendicular to M  [                                   ]  we see that the length of 
 the magnetization is preserved as expected.

(dM x , dM y , dM z)⋅M⃗=0

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)

(-α Hz Mx Mz +Hz My M,-α Hz My Mz -Hz Mx M, α (Hz Mx Mx +Hz My My)).(Mx,My,Mz)=0



  

Magnetic moment reversal
●We can then rewrite the equation for Mz obtaining the equation of motion that does not 
 depend on Mx and My:

●Integrating between the final and the initial values of Mz we have:

M 2dM z

dτ
=α H z(M

2−M z
2)

α H z τ =∫
M z

i

M z
f

M 2

(M 2
−M z

2
)
dM z=M ArcTanh [M z

M ]
M z

i

M z
f

=M ln∣√−1−M z /M

√−1+ M z /M ∣
M z

i

M z
f

=

M ( ln∣√−1−M z
f
/M

−1+ M z
f /M ∣−ln∣√−1−M z

i
/M

−1+ M z
i /M ∣)=M ( ln∣√−1−M z

f
/M

−1+ M z
f /M

−1+ M z
i
/M

−1−M z
i /M ∣)=

1
2
M ln∣(M+ M z

f
)(M−M z

i
)

(M−M z
f
)(M + M z

i
)∣

●Going back to the actual time we get for the time for Mz to change from the initial to final 
 value:

τ =
t M γ μ0

(1+ a2)
tF=

1
2γ H z

1+α 2

α
ln∣(M+ M z

f
)(M−M z

i
)

(M−M z
f
)(M+ M z

i
) ∣

M 2dM z

dτ
=α (H zM x

2+ H zM y
2 )

∣M⃗ ∣=const

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

Magnetic moment reversal

●If at t=0 the magnetization/moment points exactly along z-axis (Mz=-M) then tF would be 
 infinite – no switching.
●If there is no damping (α=0) then tF would be infinite – the moment of the sample would 
 precess around the external field direction.

●The shortest switching time is obtained for 
 finite value of damping coefficient (α=1).
 

●The value of the critical damping constant 
 depends on the shape of the sample.
 

●For single domain thin film the critical α is 
 about 0.013.
 

●For permalloy films the minimum switching 
 time, as obtained from the similar calculations 
 is about 1 ns.

tF=
1

2γ H z

1+α 2

α
ln∣(M+ M z

f
)(M−M z

i
)

(M−M z
f
)(M+ M z

i
) ∣

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)
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Magnetic moment reversal
●Time evolution of magnetic moment orientation for low and high damping:
➢initial orientation of magnetic moment: (0,0.001,1)
➢magnetic field instantaneously switched on to value: (0,0,-1)

●α=0.1
 

●blue dots mark the same time 
 intervals
 

●the end of moment moves from top to 
 bottom 
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ilepunktow=9000;
orientacjamomentu=Table[{0,0,0},{i,1,ilepunktow-1}];
dt=0.025;
alfa=0.1;
Hz=-1;
Mi={0,0.001,1};(*initial moment orientation*)
moment=Sqrt[Mi.Mi];(*moment's length*)
licznik=0;
gamma=2;
timemultiplier=1/(moment gamma (1+alfa^2));

coile=50;(*co ile punktow stawiac marker*)
macierzznacznikow=Table[{0,0,0},{i,1,Floor[ilepunktow/coile]-1}];
licznik=1;
l=1;
For[k=1,k<ilepunktow,k++,

Mi[[1]]=Mi[[1]]+dt timemultiplier  Hz(moment Mi[[2]] -alfa Mi[[1]] Mi[[3]])/moment^2;
Mi[[2]]=Mi[[2]]+dt timemultiplier  Hz(-moment Mi[[1]] -alfa Mi[[2]] Mi[[3]])/moment^2;
Mi[[3]]=Mi[[3]]+dt timemultiplier Hz alfa (Mi[[1]]^2+ Mi[[2]]^2)/moment^2;
orientacjamomentu[[k,1]]=Mi[[1]];orientacjamomentu[[k,2]]=Mi[[2]];orientacjamomentu[[k,3]]=Mi[[3]];

(*matrix of markers*)
If[licznik<coile,licznik=licznik+1,{licznik=1;
macierzznacznikow[[l,1]]=orientacjamomentu[[k,1]];
macierzznacznikow[[l,2]]=orientacjamomentu[[k,2]];
macierzznacznikow[[l,3]]=orientacjamomentu[[k,3]];

l++}
]

]
wy1=ListPointPlot3D[orientacjamomentu, PlotRange->{{-1.1,1.1},{-1.1,1.1},{-1.1,1.1}},
BoxRatios->{1,1,1},PlotStyle->{Red},AxesLabel->{X,Y,Z},ViewPoint->{0,Pi,0},BoxStyle->Directive[Thickness[0.004]]];

wy4=ListPointPlot3D[macierzznacznikow, PlotRange->{{-1.1,1.1},{-1.1,1.1},{-1.1,1.1}},
BoxRatios->{1,1,1},PlotStyle->PointSize[Large],AxesLabel->{X,Y,Z},ImageSize->600,ViewPoint->{Pi,Pi/2,2}];
wy2=Graphics3D[{Opacity[0.5],Sphere[{0,0,0},1]}];
wy3=Graphics3D[{AbsoluteThickness[2],Line[{{0,0,0},{0,0,1}}]}];
wy3=Show[wy1,wy2,wy3,wy4,ImageSize->600,ViewPoint->{Pi,Pi/2,2},ImageMargins->20]

Wolfram Mathematica 6.0 code to obtain these curves:

H||z axis

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

Magnetic moment reversal
●Time evolution of magnetic moment orientation for low and high damping:
➢initial orientation of magnetic moment: (0,0.001,1)
➢magnetic field instantaneously switched on to value: (0,0,-1)
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●α=0.1
 

●blue dots mark the same time 
 intervals
 

●the end of moment moves from top to 
 bottom 

H||z axis

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

Magnetic moment reversal
●Time evolution of magnetic moment orientation for low and high damping:
➢initial orientation of magnetic moment: (0,0.001,1)
➢magnetic field instantaneously switched on to value: (0,0,-1)
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●α=0.05
 

●blue dots mark the same time 
 intervals
 

●the end of moment moves from top to 
 bottom
 

●the total time of movement is the 
 same as on the previous page
 

●note that due to weaker damping the 
 moment did not change its orientation 
 to -z – the switching is delayed

H||z axis

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

Magnetic moment reversal
●Time evolution of magnetic moment orientation for low and high damping:
➢initial orientation of magnetic moment: (0,0.001,1)
➢magnetic field instantaneously switched on to value: (0,0,-1)
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●α=1 – minimal switching time
 

●blue dots mark the same time 
 intervals
 

●the end of moment moves from top to 
 bottom 

H||z axis

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

Magnetic moment reversal
●Note that further increase of damping constant α slows down the switching of magnetic 
 moment (more blue dots)
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●α=10●α=1 – minimal switching time

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

Magnetic moment reversal – thin film
●Time evolution of magnetic moment orientation for low and high damping:
➢initial orientation of magnetic moment: (-1,0.001,0) – in plane of the sample
➢magnetic field instantaneously switched on to value: (+1,0,0)

●α=0
 

●the end of moment moves from behind 
 to the front
 

●blue dots mark the same time 
 intervals
 

●in thin films, contrary to the case of the 
 single domain sphere, the 
 demagnetizing field is, in general*, not 
 parallel to magnetic moment and 
 exerts a torque on it ⇒ the switching 
 time depends on the magnetization
●for large α:  
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*it is parallel when M is along the film normal

initial orientation of the moment

tF∝
α
M

H⃗ demag=− ẑ M z

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

Magnetic moment reversal – thin film
●Time evolution of magnetic moment orientation for low and high damping:
➢initial orientation of magnetic moment: (-1,0.001,0) – in plane of the sample
➢magnetic field instantaneously switched on to value: (+1,0,0)

●α=10
 

●the end of moment moves from behind 
 to the front
 

●If damping is high the moment rotates 
 almost within xy plane and approaches 
 field directions monotonically without 
 oscillations  
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initial orientation of the moment

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

Magnetic moment reversal – approach to saturation
●Trajectory of the moment depends on the field value:
➢initial orientation of magnetic moment: (-1,0.001,0) – in plane of the sample
➢magnetic field instantaneously switched on to value: (+1,0,0) (red line) or (+3,0,0) (green 
 line)

●α=0.009
 

●the component of magnetization 
 parallel to the external field oscillatorilly 
 approaches saturation 
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blue dots mark the same time  intervals

initial orientation of
the moment

Hx=3

Hx=1

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)
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Element-resolved precessional dynamics
●Sputtered, 0.35 mm wide Cu(75nm)/Py(25nm)/Cu(3nm) trilayer
●Current pulses through thick Cu layer (10ns duration)  create 
field pulses (Oersted field) perpendicular to the film stripline (in 
plane of the film)
●A bias field Hb can be applied parallel to the stripline in  order to 
align the initial magnetization prior to excitation.
●Element-selective x-ray resonant magnetic scattering (XRMS)

S. Buschhorn, F. Brüssing, R. Abrudan and H. Zabel, J. Phys. D: Appl. Phys. 44 ,165001 (2011)

Figure 5. Comparison of the magnetization dynamics 
measured at the Fe (full) and Ni (open symbols) 
resonant edges for a set of different bias fields. The 
detected intensity is converted into opening angle φ 
according to the hysteresis curves.

authors' “data show that Fe and Ni 
moments are aligned parallel to each 
other at all times, while they oscillate 
around the effective field direction 
given by the step field pulse and 
applied bias field”



Spin coupling

The magnetic interactions between magnetic ions in a solid depend on numerous factors 
(neighboring ions, temperature, external fields etc.)
In some case to describe the system one uses Hamiltonian involving simultaneous 
interaction between several spins [10,11]: 

E4 s=−∑
ijkl

K ijkl [( S⃗i⋅S⃗ j)( S⃗k⋅S⃗l)+( S⃗i⋅S⃗l)( S⃗ j⋅S⃗ k)−( S⃗i⋅S⃗k )( S⃗ j⋅S⃗l)]
the energy term involves orientations of 
all four spin

In some other cases it is not enough to use bilinear forms* and biquadratic forms are 
introduced in addition

E4 s=−∑
ij

K ij( S⃗i⋅S⃗ j)
2

θ

S1 S2
r12

*"Form refers to a polynomial function in several variables where each term in the polynomial has the same degree. 
The degree of the term is the sum of the exponents." - K.C Border [12]

In most relevant cases however it is enough to use only two spin 
terms that are bilinear [13]

Ebilinear=−∑
ij

K ij S1
i S2

j
=K xx S1

x S2
x
+K xy S1

x S2
y
+ .. .

Kij is a coupling 3×3 matrix, and in matrix notation we have

Ebilinear= S⃗1[K ] S⃗2



Spin coupling

The interaction matrix, like any 3×3 matrix [13], may be decomposed into a multiple of the 
identity matrix, an antisymmetric part (three different coefficients), and traceless* symmetric 
part:

*trace of a matrix – a sum of diagonal elements

K ij=[
K11 K12 K13

K21 K22 K23

K31 K32 K33
]=J [

1 0 0
0 1 0
0 0 1 ]+[

0 D1 D2

−D1 0 D3

−D2 −D3 0 ]+[
A1 A4 A5

A 4 A 2 A 6

A5 A6 A3
]

J S⃗1[
1 0 0
0 1 0
0 0 1] S⃗2=S1

x S2
x
+S1

y S2
y
+S1

zS2
z
=J S⃗1⋅S⃗2 Ebilinear= S⃗1[K ] S⃗2exchange coupling

S⃗1[
0 D1 D2

−D1 0 D3

−D2 −D3 0 ] S⃗2=−D1S1
y S2

x
−D2S1

z S2
x
+D1S1

x S2
y
−D3S1

z S2
y
+D2S1

x S2
z
+D3 S1

y S2
z

=D1(S1
x S2

y
−S1

y S2
x
)−D2(S1

z S2
x
−S1

x S2
z
)+D3(S1

y S2
z
−S1

zS2
y
)

=( î D3 ,− ĵ D2 , k̂ D1)⋅S⃗1× S⃗2=D⃗⋅( S⃗1×S⃗2)
Dzyaloshinskii-Moriya 
interaction



Spin coupling

The interaction matrix, like any 3×3 matrix [13], may be decomposed into a multiple of the 
identity matrix, an antisymmetric part (three different coefficients), and traceless* symmetric 
part:

*trace of a matrix – a sum of diagonal elements

The matrix of the dipole-dipole interaction

Edipole−dipole=
−μ0

4 π | r |3
[3( ^r12⋅S⃗1)( ^r12⋅S⃗2)− S⃗1⋅S⃗2 ] , ^r12 - unit vector along the vector connecting two spins

reads

M dipole−dipole=
−μ0

4 π | r |3 [
3 r̂x

2
−1 3 r̂ x r̂ y 3 r̂ x r̂z

3 r̂ x r̂ y 3 r̂ y
2
−1 3 r̂ y r̂ z

3 r̂ x r̂ z 3 r̂ y r̂ z 3 r̂ z
2
−1] , r̂x

2
+ r̂ y

2
+ r̂ z

2
=1

K ij=[
K11 K12 K13

K21 K22 K23

K31 K32 K33
]=J [

1 0 0
0 1 0
0 0 1 ]+[

0 D1 D2

−D1 0 D3

−D2 −D3 0 ]+[
A1 A4 A5

A 4 A 2 A 6

A5 A6 A3
]

Mathematica 9.0.1.0 code to get dipole-dipole matrix:
n =3;
wer={"x","y","z"};
r =Table[ ToExpression [StringJoin ["r",wer[[ i]]]],{i,1,n}];
S1 =Table[ ToExpression [StringJoin ["S1",wer[[ i]]]],{i,1,n}];
S2 =Table[ ToExpression [StringJoin ["S2",wer[[ i]]]],{i,1,n}];
macierz=Table[ToExpression[StringJoin["S1", wer[[i]],"*S2",wer[[j]]]],{i,1,n},
{j,1,n}];
m= Expand[ 3( r.S1)( r.S2)-S1.S2];(*write in here the spin hamiltonian (two 
spin interaction), example dipole-dipole:
m= Expand[ 3( r.S1)( r.S2)-S1.S2];
*)
macierz2 =Table [Coefficient [m,macierz[[ i,j]]],{i,1,n},{j,1,n}] ;(*macierz2 is 
the interaction matrix*)
TraditionalForm[macierz2]

symmetric, traceless



Spin coupling

Anisotropic spin-spin interactions – those terms of the spin Hamiltonian that are not 
invariant under rotation in spin space (unaccompanied by rotation in real space) [13]

Compare two states:
●one spins point in +z direction and the other one in -z direction; both spins are on y-axis:

●as above but both spins (not spinors) are rotated by 90 Deg about x-axis

S1
x
=0, S1

y
=0, S1

z
=1; S2

x
=0, S2

y
=0, S2

z
=−1 ; r̂ x=0, r̂ y=1, r̂ z=0

S1
x
=0, S1

y
=1, S1

z
=0 ; S2

x
=0, S2

y
=−1, S2

z
=0 ; r̂ x=0, r̂ y=1, r̂ z=0

The energies obtained in both cases are different – dipole-dipole interaction is anisotropic

Edipole−dipole=
−μ0

4 π |r |3
Edipole−dipole=

μ0

2π | r |3

before rotation after rotation



  

Micromagnetism

●Micromagnetism*, as a refinement of domain theory, begins in 1930ies (Landau, Lifshitz) 
 [9].
●In most cases of interest the use of atomistic description is too computationally 
 demanding.
●In micromagnetism microscopic details of the atomic structure are ignored and the 
 material is considered from the macroscopic point of view as continuous [9].
●Spins are replaced by classical vectors motion of which is described by LLG equation

*the term micromagnetism was coined by William Fuller Brown



  

Continuous form of exchange energy

●The exchange energy among spins*, assuming that coupling is non-zero between nearest 
  neighbors only, can be written as [9]:

Eex=−J S
2 ∑
neighbours

cosϕ i , j

●The angles between the magnetic moments of neighboring spins are always small due to 
 high strength of exchange coupling [8]. The angle between spins can be expanded in 
 series coefficients**. In one dimensional case we have: 

Eex=−J S
2 ∑
neighbours

cosϕ i , j=−J S
2 ∑
neighbours

(1−1
2
ϕi , j

2
+ ...)≈−J S 2 ∑

neighbours

1+ J S 2 ∑
neighbours

1
2
ϕi , j

2

●If we use the state with all spins aligned (φij=0) as a reference state we get:

*this section is taken mainly from A. Aharoni, Introduction to the Theory of Ferromagnetism, Clarendon Press, Oxford 1996
**compare Bloch wall profile calculation in lecture 6

Eex≈
1
2
J S2 ∑

neighbours

ϕ i , j
2



  

Continuous form of exchange energy

●If the angle between neighboring magnetic moments is small it can be expressed as:

∣ϕ i , j∣≈∣m⃗i−m⃗ j∣

●If M (magnetization vector) is a continuous variable we can use first-order expansion in 
 Taylor series [9] to get Δm dependence on r :

m⃗:=
M⃗
∣M⃗ ∣

∣m⃗i−m⃗ j∣=∣ ( drx ∂∂x + dr y
∂

∂ y
+ drz

∂

∂z ) m⃗ ∣=∣(d⃗r⋅∇) m⃗∣
ϕi , j

●The exchange energy then becomes:

Eex≈
1
2
J S2 ∑

neighbours

ϕ i , j
2
≈

1
2
J S2∑

i
∑⃗
dr i

(( d⃗r⋅∇)m⃗ )
2 If φij is small the vector mi-mj 

is approximately of the same 
length as arc.

summation from lattice 
point to all its neighbors



  

Continuous form of exchange energy

●As an example consider a simple cubic lattice with following six vectors to the nearest 
 neighbors:

d⃗r : (1,0,0) , (0,1,0) , (−1,0 ,0) , (0,−1,0) , (0,0 ,1) , (0,0 ,−1)

●We substitute the above vectors into the sum from previous page. We have:

∑⃗
dr i

(( d⃗r⋅∇) m⃗)
2
=2(

∂

∂ x
mx)

2

+ 2(
∂

∂ y
mx)

2

+ 2(
∂

∂ z
mx)

2

+ 2(
∂

∂ x
m y)

2

+ 2(
∂

∂ y
my)

2

+ 2(
∂

∂ z
m y)

2

+

2(
∂

∂ x
m z)

2

+ 2(
∂

∂ y
m z)

2

+ 2(
∂

∂ z
m z)

2

(
∂

∂ x
m y)

2

+ 2(
∂

∂ y
m y)

2

+ 2(
∂

∂ z
m y)

2

=(∇m y)⋅(∇m y)

1
2 ∑⃗dr i

(( d⃗r⋅∇)m⃗ )
2
=(∇ mx)

2
+ (∇ my)

2
+ (∇ m z)

2

●Changing the summation to integration over the ferromagnetic body we obtain for cubic 
 systems [9,14 p. 134]:

E ex=
1
2
C∫ [ (∇mx)

2
+ (∇m y)

2
+ (∇ mz )

2 ] dV C

●For lower symmetries of crystal lattice the expression for exchange energy density has 
slightly different forms . “But for most cases of any practical interest this equation can be 
taken as a good approximation for the exchange energy, in as much as the assumption of 
the continuous material is a good approximation to the physical reality.”-A. Aharoni [9]

- constant



  

Continuous form of exchange energy

●Constant C depends on lattice type [9]:

E ex=
1
2
C∫ [ (∇mx)

2
+ (∇m y)

2
+ (∇ mz)

2 ] dV C=
2 J S 2

a
c

J- exchange integral, S – spin,
a-lattice constant, c- constant

lattice c

sc 1

bcc 2

fcc 4

●For hexagonal crystal, such as cobalt, one obtains the 
 same form of expression but the value of constant  C is 
 different:

C=
4 √ 2 J S 2

a
, where a is nearest neighbors' distance

●It is common ([8] for example) to write the expression 
 for exchange energy density without the factor ½; a 
 different constant  A= ½ C is defined then.
●Both A and C are referred to as “exchange constant of 
 the material” [9] or exchange stiffness constant (A) [8].
●Constant A is of the order of 10×10-12 Jm-1 in 
 ferromagnetic materials.
●The exchange constant is roughly proportional to Curie  
 temperature [15]:

A[pJ m-1]*

α-Fe 21

Co 31

Ni 7

Ni80Fe20 [7] 11

*f
ro

m
  

H
. 

K
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n
m

ü
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r, 
M
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n
le

,
 M

ic
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[8

] 

A≈
k BT C

2a0

, a0 -lattice parameter in
 a simple structure



  

Equilibrium condition

●From lecture 7/2012 we have the expression for the effective field [7, 9]:

H⃗ eff=
2 A

M 2 [ (∇ M x)
2
+ (∇ M y)

2
+ (∇ M z)

2 ]+ H⃗ app+ H⃗ d+
∂

∂ m⃗
E anisotropy Emagn=−M⃗⋅B⃗

H⃗ eff=−
1

μ 0M S

∂

∂ m⃗
E total

to be read as                                                           ([9, p.178], [14, p. 126])
∂
∂ m⃗

f = x̂
∂
∂mx

f + ŷ
∂

∂m y

f + ẑ
∂
∂mz

f

Effective field is an extension of 
magnetostatic energy terms of 
different origin:

●If one is interested in magnetization distribution static equilibrium 
 the only condition that must be satisfied is [7,14]:

m⃗×H⃗ eff=0

●Symmetry breaking of exchange interactions at outer surfaces brings additional so called 
 free boundary conditions [7,14 p.135]:

∂ m⃗
∂ n⃗

=0

M must point at each point along the direction of the effective field



  

Finite difference micromagnetism

●In the so called field based approach [7] one is seeking a numerical solution to LLG 
equation by first calculating the effective field and then inserting it into LLG equation.

H⃗ eff=−
1

μ0M S

∂

∂ m⃗
E total

●The most difficult task is the calculation of long range magnetostatic interactions
● Exchange interactions and magnetocrystalline anisotropy are calculated locally:
- exchange energy depends on the magnetic moment orientation of nearest neighbors  
  (nn) (6-neighbor exchange in simple cubic crystals) or nnn
- magnetocrystalline energy depends only on the orientation of the moment itself



  

Finite difference micromagnetism – demagnetizing field 
evaluation
●Demagnetizing field evaluation can be calculated in formalism of volume and surface  
 charges (lecture 2).
●The volume of magnetic body is divided into a number of discretization cells.
●It can  be assumed that each cell has constant magnetization divergence within its volume 
 and surface tiles with magnetic charge density [14].
●The demagnetizing field in a given cell is averaged across its volume for integrating LLG 
  equation.
●It can be assumed too that 
the  magnetization within 
each  cell  is homogeneous 
[8].
●The discretization cell must 
 not necessarily be a cube 
 [16]. 



  

Finite difference micromagnetism – exchange lengths

●The required resolution of discretization (the maximum sizes of cells) is determined by the 
 smallest features which may appear in the solution of micromagnetic problem [17].
●In micromagnetism there are three typical length scales [7,8]:
 

-magnetocrystalline exchange length – related to the width of the Bloch wall (π lk)

-magnetostatic exchange length* [10] – related to the width of the Néel wall (π ls)

 

-thermal exchange length [13]

● The discretization cell should be smaller than the smallest of three lengths defined         
above [17].

●The magnetostatic exchange length rarely exceeds a few nanometers in 3d ferromagnetic 
  metals or alloys; it imposes a severe constraint on the mesh size in numerical simulations 
  [7].

l k=√ A /K 1

l k=√ 2A

μ0 M s
2

l k=√ A
μ 0 M sH th

, H th=√ 2α k bT

Δ γ μ0 M s l
3

*that length is sometimes defined without ,,2” under square root [7].



  

Finite difference micromagnetism – exchange lengths

●The magnetostatic exchange length rarely exceeds a few nanometers in 3d ferromagnetic 
  metals or alloys; it imposes a severe constraint on the mesh size in numerical simulations 
  [7].

●At a distance roughly equal to the appropriate exchange length the spin configuration is that of 
unperturbed state:
- the local perturbation can be a grain with high magnetocrystalline anisotropy with easy direction 
 perpendicular to the applied field (here, on the drawing, directed to the right)
-it can be laser-heated region of the sample in which magnetocrystalline anisotropy vanishes and the 
 spin is directed along the external field (this time directed upward), etc.

lk[nm] ls[nm]

α-Fe 21 3.3

Co 8.3 4.9

Ni 7 8.7

SmCo5 0.84 5.3

table data from:
H. Kronmüller, M. Fähnle, 
Micromagnetism and the 
Microstructure of 
Ferromagnetic Solids,
Cambridge University Press, 
2003



  

Finite difference micromagnetism – exchange lengths

●In micromagnetic simulation every discretization cell interacts with every other cell by 
 magnetostatic interactions .
●The shortest exchange length determines which energy term contributes the largest 
 amount to the total energy [8].
●In soft magnetic materials the spin arrangements are more or less divergence free – pole 
 avoidance principle [9].

●each cell is a source of magnetic field either 
 due to volume or to surface magnetic 
 charges
●to compute the average field through the cell 
 the demagnetizing factors for 
rectangular  ferromagnetic prisms are 
used.



  

Finite difference micromagnetism – calculation scheme

●In dynamic micromagnetic simulation the effective field is calculated as the input of LLG 
 equation (for example OOMMF) [18].
●The magnetic moments of the cells are then updated according to angular velocities 
 obtained from LLG equation.
●The time step is adjusted so that the “the total energy of the system decreases, and the 
 maximum error between the predicted and final M is smaller than a nominal value” [18]

dm⃗
dt

=
γ

(1+α 2
)
m⃗×B⃗−

α

(1+ α 2
)

γ

∣m⃗∣
m⃗×m⃗×B⃗



  

Finite difference micromagnetism – an example

●Remanent state of thin 900×900nm NiFe film; discretization cell 3×3×1nm3

●Simulation time – 6ns (simulated with OOMMF [18])

●Magnetization tends to be align along outer 
 edges of the specimen – minimization of 
 surface charges
●Exchange anisotropy forces moments to 
 be parallel to each other – central part of 
 the specimen

each arrow corresponds to 11×11 discretization cells



Spintronic devices

Spin-torque wave generators*
In 1996 J. Slonczewski predicted that the current flowing between two ferromagnetic layers 
may induce a steady precession of the moments or novel form of switching of 
magnetization [20]. The latter effect has already found application in STT-MRAM. The first 
effect is, among others, being investigated with a hope of fabricating novel microwave 
generators [21]. 

 

*STO – Spin Torque Oscillator

current that is 
not spin 
polarized

precessing moment



Spintronic devices

Landau-Lifshitz-Gilbert (LLG) equation with spin torque
● by including an additional term LLG equation can be extended to fenomenologically 

describe the influence of spin polarized current on magnetization dynamics [20,22,23]
● in the simplest case of two magnetic layers, with magnetic moment of one of them fixed 

the motion of magnetic moment can be approximately given by the equation [22]:

 
dm⃗ free

dt
=−μ0γ m⃗ free× H⃗ eff−μo γα m⃗ free×( ⃗m free×H⃗ eff ) +

ε J injected ℏ

e l z 2
γ

M s1

m free×( ⃗m free×m⃗ fix)

ε J injected
l z M s1

-current density (of the order of 1010-1011 Am-2)

-magnetization of the free layer

-current polarization

-thickness of the free layer

Note that spin-current injection can result in the spin-waves generation especially in 
nanocontact configuration where the area into which spin current is being pumped is 
coupled by the exchange interaction with the rest of the film [22]

 

nanocontact [22]
● spin waves
● lower FWHM of 

emitted power
● edge deffects 

associated with 
patterning are 
mitigated

● no parasitic 
dipolar coupling 
between free and 
fixed layer

nanopillar



Spintronic devices

Switching of thin film magnetic moment  - macrospin approximation
● one magnetic moment under combined influence of magnetic field and spin-polarized 

currrent [19]

 z

y

x

● the magnetic moment (red line) points 
initially in (-0.95,-0.05,0) direction (if it 
pointed exactly in -x direction it would 
not reverses under the action of the 
field directed in +x direction*)

● thin film is infinite in the x,y-plane so 
the moment experiences shape 
anisotropy with demagnetizing field, 
equal to z-component of magnetization, 
which tends to keep the moment in the 
plane of the film

*in real films thermal fluctuations and spin deviations due to magnetostatic fields are enough to initiate the reversal



Spintronic devices

Switching of thin film magnetic moment  - macrospin approximation

 

z

y

x

● after (instantaneous) application of the 
field in +x direction the moment 
precesses to its final position (blue line)

*after which time step (all steps equal) the magnetic moment for the first time points along the field direction
 to within 1 deg of arc 

final position of the moment

● blue dots mark equal time intervals dt
● parameters:

initial moment direction: (-0.95,-0.05,0)  
H=(1,0,0)
damping =0.1
current=0
saturation reached* after 13436 dt

a sphere of radius r=1 equal to 
the moment's length



Spintronic devices

Switching of thin film magnetic moment  - macrospin approximation

 

z

y

x

● after (instanteous) application of the 
field in +x direction the moment 
precesses to its final position (blue line)

final position of the moment

● blue dots mark equal time intervals
● parameters:

initial moment direction: (-0.95,-0.05,0)  
H=(1,0,0)
damping =0.1
current=0
saturation reached* after 13436 dt

a sphere of radius r=1 equal to 
the moment's length

 ClearAll[Mi,Hx,Hy,Hz,Current,alfa,anizo,S];
M={Mi[[1]],Mi[[2]],Mi[[3]]};
Spin={S[[1]],S[[2]],S[[3]]};
He={Hx,Hy,Hz-anizo Mi[[3]]};(*thin film-arbitrary field direction*)(*anizo=1 - cienkawarstwa; anizo=0 - isotropic sphere - no magnetic anisotropy*)

Md=Sqrt[M.M];
 dMtodt=- Cross[M,He] - alfa  Cross[M, Cross[M, He]]+Current  Cross[M,Cross[M,Spin]];(*this gives the set of equation describing time evolution of the magnetic moment orientation
which I have inserted into the k-loop below*)
____________________________________________________________________

 ilepunktow=14000;(*number of points- time intervals*)

orientacjamomentu=Table[{0,0,0},{i,1,ilepunktow-1}];
dt=0.01;(*time step*)
alfa=0.1;
anizo=1; (*anizo=0;-sphere*)
Hvalue=1;(*field value*)
Hx=1;(*components relative*)
Hy=0;
Hz=0;
Ha=Sqrt[Hx^2+Hy^2+Hz^2]/Hvalue;
Hx=Hx/Ha;
Hy=Hy/Ha;
Hz=Hz/Ha;

Mi={-0.95,-0.05,0};(*initial moment orientation*)
moment=Sqrt[Mi.Mi];(*moment's length*)
Mi=Mi*(1/moment);
Current=0; (*current*)
(*spin-current orientation:*)
S={-1,0,0};

wy3=Graphics3D[{RGBColor[1,0,0],Cylinder[{{0,0,0},1*{Mi[[1]],Mi[[2]],Mi[[3]]}},0.01]}];(*line of initial moment orientation*)

licznik=0;

gamma=2;
timemultiplier=1/(moment gamma (1+alfa^2));

coile=10;(*co ile punktow stawiac marker*)
macierzznacznikow=Table[{0,0,0},{i,1,Floor[ilepunktow/coile]-1}];
licznik=1;
l=1;
pp=0;(*print only once*)
For[k=1,k<ilepunktow,k++,
 
 Mi[[1]]=Mi[[1]]+dt timemultiplier dMtodt[[1]];
 Mi[[2]]=Mi[[2]]+dt timemultiplier dMtodt[[2]];
 Mi[[3]]=Mi[[3]]+dt timemultiplier dMtodt[[3]];
 
 (*adjust the M length - to take care of numeric errore:*)
 temp=Sqrt[Mi.Mi];
 Mi[[1]]=Mi[[1]]/temp;Mi[[2]]=Mi[[2]]/temp;Mi[[2]]=Mi[[2]]/temp;
 
 
 
 orientacjamomentu[[k,1]]=Mi[[1]];orientacjamomentu[[k,2]]=Mi[[2]];orientacjamomentu[[k,3]]=Mi[[3]];
 
 (*angle A between the moment and the field direction*)
 kos=(Mi[[1]]*Hx+Mi[[2]]*Hy+Mi[[3]]*Hz)/Hvalue;
 If[Abs[kos]>=0.999847 && pp==0,(*about 1 degree of arc*)
   {Print["Field direction reached after ",k, " dt"];
    pp=1;}
   ]
  
  
  (*the markers on the orbit are placed every coile-th iteration of k*)
  If[licznik<coile,licznik=licznik+1,{licznik=1;
    macierzznacznikow[[l,1]]=orientacjamomentu[[k,1]];
    macierzznacznikow[[l,2]]=orientacjamomentu[[k,2]];
    macierzznacznikow[[l,3]]=orientacjamomentu[[k,3]];
    
    l++}
   ]
 
 
 ]

wy1=ListPointPlot3D[orientacjamomentu, PlotRange->{{-1.1,1.1},{-1.1,1.1},{-1.1,1.1}}, BoxRatios->{1,1,1},AxesLabel->{x,y,z},PlotStyle->{Red},BoxStyle->Directive[Thickness[0.004]]];

wy4=ListPointPlot3D[macierzznacznikow, PlotRange->{{-1.1,1.1},{-1.1,1.1},{-1.1,1.1}},AxesStyle->{Thick}, BoxRatios->{1,1,1},PlotStyle->PointSize[Large],AxesLabel->{X,Y,Z},ImageSize->600,ViewPoint->{Pi,Pi/2,2}];
wy2=Graphics3D[{Opacity[0.3],Sphere[{0,0,0},1]}];
warstwa=Graphics3D[{Opacity[0.5],Cuboid[{1,1,0-0.05},{-1,-1,0.05}]}];
wy5=Graphics3D[{RGBColor[0,0,1],Cylinder[{{0,0,0},1*{Mi[[1]],Mi[[2]],Mi[[3]]}},0.01]}];(*final moment direction*)
wy3=Show[wy1,wy4,wy3,wy2,wy5,warstwa,ImageSize->800,ViewVector->{2,-7,2}(*relative to the center*),ViewCenter->{0.5,0.5,0.5},ImageMargins->20,BoxStyle->{AbsoluteThickness[4],RGBColor[0,0,0]}]
(*Export["D:\\yourfolder\\image.jpg",wy3,ImageResolution->300]*)

Mathematica 6 code to get the previous and following graphs:

first evaluate the first cell and do not worry about "Part specification 
Mi[[1]] is longer than depth of object." etc. 

then evaluate the second cell; to get the graph for other parameters 
(damping, field direction, current etc.) the first cell needs not to be 
evaluated again

cell border



Spintronic devices

Switching of thin film magnetic moment  - macrospin approximation

 

z

y

x

●after (instantaneous) application of the 
field in +x direction the moment 
precesses to its final position (blue line)

final position of the moment

●blue dots mark equal time intervals dt
●parameters:

initial moment direction: (-0.95,-0.05,0)  
H=(1,0,0)
damping =0.5
current=0
saturation reached* after 3140 dt – note 
that the moment switched in a shorter     
time in spite of higher damping constant

*after which time step (all steps equal) the magnetic moment for the first time points along the field direction
 to within 1 deg of arc 



Spintronic devices

Switching of thin film magnetic moment  - macrospin approximation

 

z

y

x

●after (instantaneous) application of the 
field in +x direction the moment 
precesses to its final position (blue line)

final position of the moment

●blue dots mark equal time intervals dt
●parameters:

initial moment direction: (-0.95,-0.05,0)  
H=(-1,0,0)
damping =0.5
current=0.1 with spin orientation 
favoring the reversal of the moment to 
+x direction
note that the current is too low to 
influence the reversal 

“minus”



Spintronic devices

Switching of thin film magnetic moment  - macrospin approximation

 

z

y

x

●action of the current exceeds the 
influence of the field and the moment 
reverses

final position of the moment

●blue dots mark equal time intervals dt
●parameters:

initial moment direction: (-0.95,-0.05,0)  
H=(-1,0,0)
damping =0.5
current=0.5 with spin orientation favoring 
the reversal of the moment to +x 
direction
saturation reached* after 3846 dt

*after which time step (all steps equal) the magnetic moment for the first time points along the field direction
 to within 1 deg of arc 



Spintronic devices

Switching of thin film magnetic moment  - macrospin approximation

 

z

y

x

●blue dots mark equal time intervals
●parameters:

initial moment direction: (-0.95,-0.4,0)  
H=(-1,0,0)
damping =0.5
current=0.149 with spin orientation 
favoring the reversal of the moment to 
+x direction
action of the current balances the   
damping and the moment performs 
steady precession

●the precession of magnetic moment can 
be used to generate microwaves through 
the effect of GMR [19]



Spintronic devices

Spin-torque generators*
In 1996 J. Slonczewski predicted that the current flowing between two ferromagnetic layers 
may induce a steady precession of the moments or novel form of switching of 
magnetization [20]. The latter effect has already found application in STT-MRAM. The first 
effect is, among others, being investigated with a hope of fabricating novel mocrowave 
generators [21]. 

 

groundimage from: P.M. Braganca, K. Pi, R. Zakai, J.R. Childress, B.A. Gurney, Applied Physics Letters 103, 232407 (2013)

sputter-deposited multilayer
stacks consisting of 2 nm 
CoFe (FM1)/4 nm Cu/4 nm
CoFe (FM2)

●bias current ~0.7mA
●both magnetic 
layers precess
●the precession and 
power generation is 
observed in zero 
external magnetic 
field

*STO – Spin Torque Oscillator



Magnetoresistive memory

Everspin Spin Torque MRAM Technology

From company’s press release* (2016, August):
●“Everspin Technologies strengthens its leadership position in 
MRAM by shipping the world’s first product using 
perpendicular magnetic tunnel junction (pMTJ) based ST-
MRAM to customers.”

●256Mb

Example Data Sheet information (Everspin MR4A08B):

●Fast 35 ns read/write cycle

●Unlimited read & write endurance

●Data always non-volatile for >20-years at temperature (?)

*https://www.everspin.com/news/everspin-256mb-st-mram-perpendicular-mtj-sampling
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