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Electrical measurements in nanoelectronics

● Basics of resistance measurements

● Resistance measurements in thin films



  

Why do we care about resistance measurements?

● device testing (continuity of a conductor,...)

● direct measurement of conductivity (versus temperature, 

  pressure etc.) - material characterization

● indirect measurement of non-electrical quantities – electrical

  transducers (temperature, pressure, …)



  

Why do we care about resistance measurements?

● device testing (continuity of a conductor,...)

● direct measurement of conductivity (versus temperature, pressure etc.) - material characterization

● indirect measurement of non-electrical quantities – electrical transducers (temperature, pressure, …)

● inferring intrinsic properties of materials

image from:  I.A. Campbell, A. Fert, in “Ferromagnetic Materials” 1982 

Dependence of resistivity on temperature in magnetic metals:

● below Curie temperature T
c
 

resistivity of a magnetic metals 
increases with temperature faster 
than above it

● below T
c
 temperature increase 

leads to increased magnetic 
disorder

● resistivity and magnetic order 
correlate

TCurie:
Fe 1044 K
Co 1388 K
Ni  627 K



  

Why do we care about resistance measurements?

● device testing (continuity of a conductor,...)

● direct measurement of conductivity (versus temperature, pressure etc.) - material characterization

● indirect measurement of non-electrical quantities – electrical transducers (temperature, pressure, …)

● Inferring intrinsic properties of materials

● read out of information in devices

racetrack memory – S.S. Parkin, IBM

● the memory is of the shift register 
type – no direct access to bit

● the information is written into the 
“racetrack” by the stray fields of 
the domains controlled by the 
writing current

● to read the data the consecutive 
bits are moved by the shifting 
current to be detected by the 
resistive sensor (GMR, TMR)

● the resistive sensor detects stray 
fields of the domain walls

● the domain walls are pinned with 
the notches in the track (the wall 
stays preferentially between the 
notches because its length, and 
energy, is lower there)

● the memory needs one transistor  
for some 100 bits [22]



  

Basics of resistance measurements

●The practical applications of most 
nanoelectronics devices/materials 
require electric connections to parts of 
external circuits

●Electric conductivity experiments are 
used to characterize materials

●Many magnetic materials can be 
investigated using galvanomagnetic 
phenomena or with giant 
magnetoresistance

sample (nanodevice) 

electrodes provide contacts to external
parts of the circuit* and define the potential 

of the surface of the sample

*there are devices having more electrodes- for example transistor



  

Basics of resistance measurements

Ohm (unit of electric resistance) — The ohm is the electric resistance between two points
of a conductor when a constant potential difference of 1 volt, applied to these points, 
produces in the conductor a current of 1 ampere, the conductor not being the seat of
any electromotive force. [1]

[1] The International System of Units (SI) NIST SPECIAL PUBLICATION 330 2008 EDITION

●The definition of Ohm involves 
knowledge of Volt

Volt (unit of potential difference 
and of electromotive force) — 
The volt is the potential
difference between two points of 
a conducting wire carrying a 
constant current of 1 ampere, 
when the power dissipated 
between these points is equal to 
1 watt. [1]

lines of current flow



  

Basics of resistance measurements

bound polarizable particles

free charges (electrons, mobile ions)

bound ions (atom cores)

in the mesoscopic 
scale the conductor 
is everywhere 
electrically neutral

Field free electric conductor:

E



  

Basics of resistance measurements

If the externally imposed electric field is present:

E

free charges acquire drift velocity

polarization charges appear

∇⋅E⃗=
1
ε0
(δ0+δb) δ0 -free charges δb -bound charges

P⃗=α E⃗ δ0=∇⋅D⃗ δb=−∇⋅P⃗

*A.A. Kaufman, B.I. Anderson,….. [5], p. 73



  

Basics of resistance measurements

●Electric charge is conserved and current density satisfies charge conservation equation*:

●We assume the steady state (long time after the
the electrodes established definite potential on
the conductor surface – charge density every-
where is constant). We have thus**:

 
●Assuming for now that the conductor is isotropic we can obtain j knowing conductivity σ 
and electric field E:

         , where Φ is a electric potential

●Combining the above two equations gives [2]:

∂ρ

∂ t
+∇⋅⃗ j=0 Current density j:

, where ni is the number of charges qi in the unit 
volume that move with velocity vi. The total 
charge crossing oriented surface element ds in 
unit time is given by:

j⃗=∑
i

ni qi v⃗i

I=
d Q
d t

=d⃗s⋅⃗j
∇⋅⃗ j=0

j⃗=σ E⃗=−σ∇Φ E⃗=−∇Φ

**fields with a property that divergence vanishes are called solenoidal, they have neither sources nor sinks [3]

i.e. divergence is zero

∇⋅σ∇Φ=0

* this part taken from: 6.013 Electromagnetism, H. A. Haus and J. R. Melcher, 
   Massachusetts Institute of Technology, 1998 [2]



  

Basics of resistance measurements

● If conductivity is constant in the whole conductor we have:

●Case of nonuniform, isotropic conductivity (                   )

∇ 2Φ=0 electric potential in a uniform conductor
satisfies Laplace's equation

σ( r⃗ )≠const

∇⋅⃗ j=0

∇⋅σ E⃗=0

σ∇⋅E⃗+ E⃗⋅∇σ=0 (1)

conductivity does depend on position and thus cannot be moved before nabla, 
we use formula for the derivative of the product of two functions [4]:

∇⋅σ E⃗=(i ∂
∂ x

+ j ∂
∂ y

+k ∂
∂ y

)⋅σ(i E x+ j E y+k E z)=
∂
∂ x

σE x+
∂
∂ y

σ E y+
∂
∂ z

σE z=

σ∂
∂ x

Ex+E x
∂
∂ x

σ+σ∂
∂ y

E y+E y
∂
∂ y

σ+σ∂
∂ z

E z+E z
∂
∂ z

σ=

σ(∂
∂ x

E x+
∂
∂ y

E y+
∂
∂ z

E z)+E x
∂
∂ x

σ+E y
∂
∂ y

σ+E z
∂
∂ z

σ=σ∇⋅E⃗+E⃗⋅∇σ

●We have Gauss' law for polarizable media:

, where d0 is charge density and D  is electric displacement vector 

∇⋅D⃗=d 0
d0 - free chargesd0 - free charges

∇⋅σ∇Φ=0

∂ρ

∂ t
 is still zero



  

Basics of resistance measurements

●Recalling that D=εrε0E we get (transforming in the same way as            on the previous 
slide) for the density of unpaired charges [2]: 

●Substituting divergence of E from eq.(1) into eq.(2) we get for the density of unpaired 
charges [2, 5]:

d0=εr ε0∇⋅E⃗+ E⃗⋅∇ εr ε0 (2)

∇⋅σ E⃗

∇⋅E⃗=−
1
σ E⃗⋅∇σ ε=ε rε 0d 0=−

ε
σ E⃗⋅∇σ+ E⃗⋅∇ε (2a)

● In an electrically uniform conductor (σ,ε =const) there are no unpaired free charges [2].

● We can rewrite the above equation (assuming constant εr) using the resistivity ρ [5]:

ρ=
1
σ

d0=−ερ E⃗⋅∇
1
ρ=−ερ E⃗⋅(i ∂

∂ x
+ j ∂

∂ y
+k ∂

∂ y
)

1
ρ=−ερ E⃗⋅

−1
ρ

2 (i
∂
∂ x

ρ+ j ∂
∂ y

ρ+k ∂
∂ y

ρ)

d0= ε E⃗⋅
1
ρ ∇ρ

note the dot product

∇⋅σ E⃗=σ∇⋅E⃗+ E⃗⋅∇σ



  

Basics of resistance measurements

● Volume charges arise in places where resistivity/conductivity gradient is not 
perpendicular to the electric field [5, p.102]: 

d0=ε E⃗⋅
∇ρ
ρ (3)

E
Point defect – increased resistivity Point defect – induced charge

+ -

Examples – no z-dependence:



  

Basics of resistance measurements

● Volume charges arise in places where resistivity/conductivity gradient is not 
perpendicular to the electric field [5, p.102]: 

d0=ε E⃗⋅
∇ρ
ρ (3)

E
Linear defect – increased resistivity Linear defect – induced charge

+ -

Examples – no z-dependence:



  

Basics of resistance measurements

● Volume charges arise in places where resistivity/conductivity gradient is not 
perpendicular to the electric field [5, p.102]: 

d0=ε E⃗⋅
∇ρ
ρ (3)

E
Linear defect – increased resistivity Linear defect – no induced charge

Examples – no z-dependence:
electric field is now perpendicular 
to resistivity gradient



  

Basics of resistance measurements

Surface charges at the interfaces where the conductivity changes [5]:

● In steady state (some time after the electric field was switched on) the normal 
component of current across any surface is continuous 

● From Gauss law we have:

jn
(2)
− j n

(1)
=σ2E n

(2)
−σ1E n

(1)
=0

E⃗(2)
− E⃗(1)

=
d s
ε0

● Rewriting the first equation from the page:

and substituting the second one yields:

σ2E n
(2)
−σ1E n

(1)
=

1
2
[(σ1+σ2)(E n

(2)
−E n

(1)
)+(σ2−σ1)(E n

(2)
+E n

(1)
)]=0

1
2
[(σ1+σ2)

d s
ε0

+(σ2−σ1)(E n
(2)
+E n

(1)
)]=0

d s=−ε0

(σ2−σ1)

(σ1+σ2)
(E n

(2)
+E n

(1)
) sum of unpaired free and bound (polarization) charges



  

Basics of resistance measurements

● The surface charge density can be calculated knowing the current density crossing the 
boundary:

d s=−ε0

(σ2−σ1)

(σ1+σ2)
(E n

(2)
+E n

(1)
)=−ε0

(σ2−σ1)

(σ1+σ2)
( j n

(2)

σ 2
+
j n
(1)

σ1
)=

−ε0

(σ2−σ1)

(σ1+σ2)
jn ( 1

σ 2
+

1
σ1 )

d s=ε0 j n(
1
σ1

−
1
σ1

)

continuity of the current through the
interface:

jn
(2)= j n

(1):= jn

sum of unpaired free and bound  (polarization) charges



  

Basics of resistance measurements

● Total charge in steady flow [5, p. 113]*. In polarizable medium we have (eq. (2)):

and for electric field vector:

* this part taken almost literally from: Methods in Geochemistry and Geophysics,
   A.A. Kaufman, B.I. Anderson, Elsevier 2010 [5]

d 0=ε ∇⋅E⃗+ E⃗⋅∇ε

∇⋅E⃗=
(d 0+d b)

ε0

● db denotes density of bound charges, i.e., those originating from polarization 
(not the ones of resting atom ions providing conduction electrons)

● d0 denotes the sum of local charge density of conducting particles (in our 
case usually electrons) and resting atom ions

● db denotes density of bound charges, i.e., those originating from polarization 
(not the ones of resting atom ions providing conduction electrons)

● d0 denotes the sum of local charge density of conducting particles (in our 
case usually electrons) and resting atom ions

● Substituting the second equation into the first one we get:

d 0=ε
(d0+d b)

ε0
+ E⃗⋅∇ε → d b=d 0( 1−εr

εr )− 1
εr
E⃗⋅∇ ε (4)

● Equation (2a) reads:

d 0=−
ε
σ E⃗⋅∇σ+ E⃗⋅∇ε (2a)

these expressions give the density
of bound and free charges in polarizable 
conducting medium

shown previously



  

Basics of resistance measurements

● We collect volume charge expressions from previous slide

and consider three cases [5, p.113]:

1. Medium is homogeneous (both permittivity and conductivity are constant):

There are neither free nor bound charges

2. Permittivity (polarizability) varies and conductivity is constant:

Both free and bound charges appear and they compensate each other  (d0+db=0).

d b=d 0( 1−εr
εr )−1

εr
E⃗⋅∇ε (4)d 0=−

ε
σ E⃗⋅∇σ+ E⃗⋅∇ε (2a)

d 0=−
ε
σ E⃗⋅∇σ+ E⃗⋅∇ε=0 d b=d 0( 1−εr

εr )− 1
εr
E⃗⋅∇ε=0

0 0 0

d 0=−
ε
σ E⃗⋅∇σ+ E⃗⋅∇ε=E⃗⋅∇ε d b=d 0( 1−εr

εr )− 1
εr
E⃗⋅∇ε=−E⃗⋅∇ε

0
the sum is zero



  

Basics of resistance measurements

● We collect volume charge expressions from previous slide

and consider three cases [5]:

2.  Permittivity (polarizability) varies and conductivity is constant:

Both free and bound charges appear but they compensate each other (d0+db=0).

3.  Polarizability is constant and conductivity varies:

Both free and bound charges appear but their sum does not depend on permittivity.

d b=d 0( 1−εr
εr )−1

εr
E⃗⋅∇ε (4)d 0=−

ε
σ E⃗⋅∇σ+ E⃗⋅∇ε (2a)

d 0=−
ε
σ E⃗⋅∇σ+ E⃗⋅∇ε=E⃗⋅∇ε d b=d 0( 1−εr

εr )− 1
εr
E⃗⋅∇ε=−E⃗⋅∇ε

0

d0=−
ε
σ E⃗⋅∇σ+E⃗⋅∇ ε=− ε

σ E⃗⋅∇ σ db=d0(1−εr
εr )− 1

εr
E⃗⋅∇ ε= ε

σ E⃗⋅∇σ (1− 1
εr )

d0+db=−
ε
σ E⃗⋅∇ σ+εσ E⃗⋅∇σ (1−1

εr )=ε0

E⃗⋅∇σ
σ

0 0

the sum is zero



  

Basics of resistance measurements

● Boundary conditions [2]*
From the solenoidity of the current vector (            ) and divergence theorem we have:

● If one region is insulating (σ≈0) the normal 
   component of E in the conductor is negligible
   and the current flows parallel to the boundary:

In quasi-static approximation (no time changing fields) we have from Maxwell's equations:

 

which together with Stokes' theorem leads to:

∇⋅σ E⃗=0 → n⃗⋅(σ1 E⃗1−σ2 E⃗ 2)=0 (5)

∇⋅⃗ j=0

To get eg. (5) we integrate the product 
 σ E only over the yellow surfaces as 
d tends to zero.

∇×E⃗=0

n⃗×( E⃗1−E⃗ 2)=0

* this part taken from: 6.013 Electromagnetism, Herman A. Haus and James R. Melcher,
 Massachusetts Institute of Technology, 1998 [2]

n⃗⋅(σ1 E⃗1−0)=0 → E⃗1=0

the integral of E along the border of the rectangle 
must be zero since the curl of E is zero



  

Basics of resistance measurements

● One dimensional conductor [2]*. From previous 
slides we have:

● Since, as assumed, the properties of the conductor 
do not depend on y and z coordinates we have:

● It follows from the above equation that (C1 is some 
constant):

● Integrating we get:

● If conductivity is constant we have:

∇⋅σ∇Φ=0

d
dx (σ

d
dx

Φ )=0

∫dΦ=∫
C1

σ dx → Φ+C 2=∫
C1

σ dx → Φ=C3+∫
C1

σ dx

Φ=C3+
C1

σ x

* this part taken from: 6.013 Electromagnetism, Herman A. Haus and James R. Melcher,
 Massachusetts Institute of Technology, 1998 [2]

σ
d
dx

Φ=C1 ←
d
dx

C1=0

C3=−C 2

← potential within the conductor



  

Basics of resistance measurements

● From boundary conditions (potentials at the 
electrodes) we have:

● It follows that constants are:

 

and the potential inside the conductor
is give by:

● Thus the electric field inside the conductor is 
constant and given by:

 

● The associated current density is:

Φ (x=0)=U Φ (x=d )=0 Φ=C3+
C1
σ x :

U=C3+
C1
σ ×0

0=U +
C1
σ dC1=−U

σ
d

C3=U

Φ=U ( 1−
x
d )

E x=−
d
dx

Φ=
d
dx
U (1− x

d )=
U
d

j x=σ E x=σ
U
d

If cross section area of the conductor is 
S then its resistance is:

R=
U
I
=

U
j x S

=
1
σ
d
S
=ρ

d
S

Φ=C3+
C1

σ x



  

Basics of resistance measurements

● Piece-wise uniform one dimensional conductor [2]*
We can write for uniform pieces of the conductor:

● In steady state both current densities must be equal 
and the sum of potential drops within both pieces 
must be equal to external voltage U. We get thus a 
set of equations:

 
 

● Solving for U1 and U2 we have:

 

and for electric filed within the regions (

j1=σ1E x
(1)
=σ1

U 1

a
j2=σ2 E x

(2)
=σ2

U 2

b

σ1

U 1

a
=σ2

U 2

b
U 1+U 2=U

U 1=U
aσ2

bσ1+aσ2

U 2=U
bσ1

bσ1+aσ2

                                                             ( which is uniform in a uniform conductor):

E1=U
σ2

bσ1+aσ2

E 2=U
σ1

bσ1+aσ2
Note that in the region with higher conductivity the 
electric field is weaker than in the one with lower 
conductivity

* this part taken from: 6.013 Electromagnetism, Herman A. Haus and James R. Melcher,
 Massachusetts Institute of Technology, 1998 [2]
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● Notice too, that the difference in electric field value 
on both sides of the interface comes from the 
charge accumulation there.

 

From Gauss law we have, for the electric field of a 
uniformly charged plane:

And the field jump associated with crossing the 
interface is:

 

● Comparing this with the electric field jump in our 
composite conductor we get:

E=
d

2ε0

Δ E=
d
ε0

E 2−E1=U
σ1−σ2

bσ1+aσ2

=
d
ε0

→ d=ε0U
σ1−σ2

bσ1+aσ 2

surface density of charges 
accumulated at the interface

● From the previous slide we have:

j= j 2= j1=σ1 E1=U
σ1σ2

bσ1+aσ 2

d=ε0 j
σ1−σ2
σ1σ 2

E

+
+
+
+
+
+



  

Basics of resistance measurements

● Let us calculate the surface density of the charges accumulated at the junction between 
1mm diameter copper (very good conductor) and aluminum* wires (good conductor) if a 
1 A current flows through.

● Current surface density is: 
 

   and using the expression from the previous slide we have:

, i.e., some 1 million electrons per square meter which really is negligible.

● Even in nanodevices where current densities can be significantly higher (of the order of 
1014 A/m2) the charge accumulation plays no important role in the interconnects between 
conductors.

σCu≈6×107S /m σAl≈3.5×107S /m

* both copper and aluminum are used in interconnects in integrated circuits

j= I / π r2
≈1.27×106 A /m2

ε0=8.854187817...×10−12 F m−1

e−=1.602 176565×10−19C

d=ε0 j
σ2−σ1
σ1σ2

≈−1.342×10−13 C m−2

constant value from NIST (http://physics.nist.gov/cuu/Constants/index.html)



  

Basics of resistance measurements

● In many practical applications the size and the shape of the samples restricts the choice 
of positions where the electrodes can be placed 

sometimes the samples are really

...and its better to drive 
over your sample

* image from P.A. Bedrosian, B.L. Burton, M.H. Powers, B.J. Minsley,J.D. Phillips, L.E. Hunter, Journal of Applied Geophysics 77, 7 (2012)

*
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Basics of resistance measurements

● In many practical applications the size and shape of the samples restricts the choice of 
positions where the electrodes can be placed 

S.Yoshimoto et al., NANO LETTERS  7,  956 (2007) [7]

sometimes the samples are really small

● Electrodes: PtIr-coated carbon nanotube tips, 4 point probe (see later in the lecture)

● Sample: CoSi2 nanowire with width no more than 160±20 nm

● The minimum probe spacing on the NW  was 30±20 nm
 

● Commercially available probes have about 5 μm probe spacing but the are much more 
robust (see for example M4PP Micro Four-Point Probe from Kleindiek).

www.nanotechnik.com



  

Basics of resistance measurements

electrode

conductor (sample)

wire

resistivities of the electrode and the sample
are different

Four point probe
● let us consider the isotropic spherical current electrode in a uniform and isotropic 

conducting medium (p.104 of [5])
● the electrode is connected with an isolated wire to the outside world (we neglect the 

contact surface of the wire with the electrode)

insulation



  

Basics of resistance measurements

Four point probe
● let us suppose we are feeding a current I from the electrode to the conductor
● we know from previous slides that the charges appear where there is a change in 

conductivity; in our case on the surface of the electrode

charge on the electrode

resistivities of the electrode and the sample
are different
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Four point probe
● neglecting the cross section of the wire and using a symmetry of the problem we find 

that electric field has only radial components and that its discontinuity at the surface of 
the electrode is given by:

E r
(1)−E r

(2)=
d
ε0

(1) - inside the electrode, (2) - inside the probe
● From the continuity of the current across 

the surface of the electrode we have:

jr
(1)= jr

(2) := jr j⃗=E⃗σ=
E⃗
ρ

jrρ1− jrρ2=
d
ε0

d=ε0 jr(ρ1−ρ2)

● The total charge on the electrode is:

Q=∮s d ds=∮s ε0 j r(ρ1−ρ2)ds

Q=ε0(ρ1−ρ2) I

total current

E(2)



  

Basics of resistance measurements

Four point probe
● neglecting the cross section of the wire and using a symmetry of the problem we find 

that electric field has only radial components and that its discontinuity at the surface of 
the electrode is given by:

Er
(1)−Er

(2)=
d
ε0

E(2)

● From Gauss law we have for the field due 
to the charge on the electrode:

∮s E⃗⋅ds=
Q
ε0

→ 4 π R2 E r=
ε0 (ρ1−ρ2) I

ε0

E r=
(ρ1−ρ2)

4π R 2 I

R

additional field due to the 
current flowP

note that R is the distance from the electrode center to 
the observation point and not the radius of the 
electrode



  

Basics of resistance measurements

Four point probe
● consider an electrode driven into the conductor, as shown below [8]
● symmetry of the problem and the high resistivity of the upper half-space results in 

current flowing radially out of the electrode
● Equipotential lines form a set of concentric hemispheres
● We assume the conducting medium to be isotropic so the density of a current crossing 

a hemisphere with radius R is:

j⃗=
E⃗r
ρ

● The total current flowing through the 
hemisphere is:

I=
1
2

4πR 2 j=
1
2

4πR 2Er
ρ

● It follows that the electric field at R is:

Er=
ρ

2πR 2
I
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● … and potential at R (potential at infinity is assumed to be zero): 

U=∫
R

∞

E r (R)dR=∫
R0

∞
ρ

2π R2 I dR=
ρ

2π R0

I

U=
ρ

2πR
I potential of a source electrode (feeds current into a conductor)       (6a)

U=−
ρ

2πR
I potential of a sink electrode (6b)
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● We have now two point electrodes* resting on a homogeneous and isotropic conductor 
occupying a half-space (the rest is insulating) [8]:  

*point-like contacts between the electrode and the conductor

What is the potential due to 
the electrodes at arbitrary 
point P within the conductor?

What is the potential due to 
the electrodes at arbitrary 
point P within the conductor?

R
1 R

2

3a/2?
to measure resistance one 
uses four, equally spaced (by 
a), electrodes



  

Basics of resistance measurements

● The potential at point P is the sum of the potentials due to both electrodes. Using Eq. 6 
we get: 

R
1 R

2

U (P)=
ρ

2π R1

I−
ρ

2π R2

I=
I ρ
2π ( 1

R1

−
1
R2

)= I ρ
2π [

1

((x+
3 a
2

)
2

+ y2+ z2)
1
2

−
1

(( x−
3 a
2

)
2

+ y2+ z2)
1
2 ] (7)
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● The potential at point P is the sum of the potentials due to both electrodes. Using Eq. 6 
we get: 

R
1 R

2

U(P)=
ρ

2 πR 1

I−
ρ

2πR 2

I=
Iρ
2π ( 1

R 1

−
1
R 2

)= Iρ
2π [

1

((x+
3a
2

)
2

+y 2+z 2)
1
2

−
1

((x−
3a
2

)
2

+y 2+z2)
1
2 ]

equipotential lines (U(P)=const)
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● The potential at point P is the sum of the potentials due to both electrodes. Using Eq. 6 
we get: 

R
1 R

2

U(P)=
ρ

2 πR 1

I−
ρ

2πR 2

I=
Iρ
2π ( 1

R 1

−
1
R 2

)= Iρ
2π [

1

((x+
3a
2

)
2

+y 2+z 2)
1
2

−
1

((x−
3a
2

)
2

+y 2+z2)
1
2 ]

Current flows from the plus 
electrode to the minus one in 
the direction determined by the 
gradient of the potential

Current vector is everywhere 
perpendicular to equipotential 
lines*

equipotential lines (U(P)=const)

Mathematica 4 input used to obtain the plot to the left:

*lengths of arrows do not show current amplitude; the arrows show only current direction!
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● Top view of the two electrodes*: 

U(P)=
ρ

2 πR 1

I−
ρ

2πR 2

I=
Iρ
2π ( 1

R 1

−
1
R 2

)= Iρ
2π [

1

((x+
3a
2

)
2

+y 2+z 2)
1
2

−
1

((x−
3a
2

)
2

+y 2+z2)
1
2 ]

Current flows from the plus 
electrode to the minus one in 
the direction determined by the 
gradient of the potential

source

sink

z=0

high current density

*lengths of arrows do not show current amplitude; the arrows show only current direction!
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● Depth of current penetration [8]: 

● Following van Nostrand we investigate the current density at the mid-plane between the 
two electrodes (x=0)

● The current density at any given point is given by:

j⃗=
E⃗
ρ=−

1
ρ ∇U

j⃗=−
I

2π
∇ [

1

((x+
3a
2

)
2

+y2+z2)
1
2

−
1

((x−
3a
2

)
2

+y2+z2)
1
2 ]● Using Eq.(7) we get: 
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● Depth of current penetration [8]: 

● and for the components of current density respectively:

jx=−
I

2π [
x−(3/2)a

((x−(3/2)a)2
+y 2

+z2
)
3
2

−
x+(3/2)a

((x+(3/2)a)2
+y 2

+z2
)

3
2 ]

jy=−
I

2π [
y

((x−(3 /2)a)2+y 2+z 2)
3
2

−
y

((x+(3/2)a)2+y 2+z 2)
3
2 ] jz=−

I
2π [

z

((x−(3 /2)a)2+y 2+z 2)
3
2

−
z

((x+(3 /2)a)2+y 2+z 2)
3
2 ]
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● at x=0 j
x
 is given by:

jx=−
I

2π [ 3a

[(9/4)a2
+y 2

+z2
]
1.5 ]=− I

2π [ 3a

(1 /8)[9a2
+4 y 2

+4z 2
]
1.5 ]=

−
I
π [ 12a

[9a2
+4 y2

+4z2
]
1.5 ] L :=3a jx=

I
π [ 4L

[L 2
+4 y2

+4z2
]
1.5 ]

● We need only the current density component 
that is perpendicular to yz plane (i.e. j

x
)

4(3 / 2)
=8

L=3a

or introducing

● To calculate the total current I
1
 flowing  above the given depth z

i
 we integrate the current 

density j
x
 (see the drawing to the right) [8]:

I1=
4L I
π ∫

0

z1

∫
−∞

∞

[ 1

[L 2
+4 y 2

+4z2
]
1.5 ]dydz

the total current above z
1
 depth crossing x=0 planeI1=I

2
π arctan(2z 1

L )

I1=
4L I
π ∫

0

z1

∫
−∞

∞

[ 1

[L
2
+4 y

2
+4z

2
]
1.5 ]dydz=4L I

π ∫
0

z1

[2∫0
∞

[ 1

[L
2
+4 y

2
+4z

2
]
1.5 ]dy ]dz=∫0

z1

[2[ 4I L y

[π(L
2
+4 z

2
)L

2
+4 y

2
+4z

2
]
0.5 ]

0

∞

]dz=

∫
0

z1

[ 4 I L

πL
2
+4π z

2 ]dz=I 2
π arctan(2 z1

L )

The problem is symmetric about y=0 plane 
so we can replace integration from -∞ to ∞ 
by 2 integrals from 0 to ∞

I - the total current
I1 – the current above a given xy-plane
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I1
I
=

2
π arctan(2 z1

L )

● “only half of the current penetrates to a depth greater than half of the distance between 
the current electrodes*” [8]

● 70.5% of the total current passes above depth equal to the distance between the current 
electrodes

2
π arctan (2×0.5 )=0.5

*note that till now we were talking only about the current electrodes

I - the total current
I1 – the current above a given xy-plane
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● in practice, when the resistivity is a quantity of interest, both the placement of electrodes 
relative to the sample as well as the shape of the sample are standardized; this allows 
the use of analytical expressions relating the current and voltage applied to the current 
electrodes

● usually a second pair of electrodes is used to measure the voltage between defined 
points of the sample (in solid state physics usually on its surface; in electric soundings of 
geophysics [5] the electrodes may be placed within the sample)

● the current 
electrodes establish 
current flow within the 
investigated conductor

● they can be arbitrarily 
placed and the sample 
can have any shape
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The use of the voltage electrodes in addition to the current electrodes has two principal 
reasons:
● high input resistance of voltmeter makes voltage measurements almost independent of a 

resistance of connecting wires
● the typical 4-point configuration (with all electrodes on a line) is more sensitive to the 

resistance of material between voltage electrodes, where the current flows almost 
parallelly to the probe axis; 

   this property is important when 
   measuring isotropic samples
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There is a multitude of popular electrode configurations

The one most relevant to solid state physics is 
the Wenner configuration*:

● the four electrodes are equidistant and 
collinear

● inner electrodes are used to measure voltage

In solid-state physics this arrangement is 
usually called simply four-point probe or four-
electrode probe

graphics from [8] R.G. Van Nostrand, K.L. Cook, 
Interpretation of resistivity data, 
US Geological Survey Professional Paper 499, 1966

*Wenner alpha configuration [9], in solid state physics the use of this array is called Kelvin method [16]
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Let us consider the voltage (potential difference)  between two voltage electrodes placed 
collinearly with the current electrodes on the surface of the semi-infinite sample

We have derived previously the expression for the potential due to the two current 
electrodes (Eq. 7) placed at x=-3a/2 and x=+3a/2; for z=0 (the surface of the sample) and 
y=0 (all electrodes lie on the x-axis) it transforms to:

voltage electrodes

U(x , y=0,z=0)=
Iρ
2π [

1

((x+
3a
2

)
2

)
1
2

−
1

((x−
3a
2

)
2

)
1
2 ] this expression gives the potential along that line
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The potential difference is given by:

ΔU=U (x=−a /2, y=0, z=0)−U (x=a/2, y=0, z=0)=
1

2π a
Iρ

The so called apparent resistivity is given by:

ρa=2π a
V
I

Apparent resistivity is the resistivity of 
a homogeneous sample that for a 
given array of electrodes would 
produce the same voltage drop for a 
given current flowing between current 
electrodes [9].

Apparent resistivity is the resistivity of 
a homogeneous sample that for a 
given array of electrodes would 
produce the same voltage drop for a 
given current flowing between current 
electrodes [9].

this relation characterizes Wenner alpha 
array placed on a homogeneous half-
space sample
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● Sensitivity of the Wenner array
- contributions for all y-values are added     
  giving S(x,z) map

● Sensitivity is high close to electrodes
● Sensitivity is high between voltage 

electrodes
● Large negative values of sensitivity show 

between current and voltage electrodes 
(anomaly inversion [9])

,,The sensitivity function basically tells us the 
degree to which a change in the resistivity of a 
section of the subsurface will influence the 
potential measured by the array” - M.H. Loke [9]

,,The sensitivity function basically tells us the 
degree to which a change in the resistivity of a 
section of the subsurface will influence the 
potential measured by the array” - M.H. Loke [9]
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Basics of resistance measurements

Consider now the current 
flow in the case of a thin 
conductor placed on an 
insulator

Very often the samples used 
for investigation of spintronic 
materials are produced in 
form of thin films* in which 
thickness is much smaller 
than their lateral (in-plane) 
dimensions  

*to be structured when used in functioning devices 
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Very often the samples used 
for investigation of spintronic 
materials are produced in 
form of thin films* in which 
thickness is much smaller 
than their lateral (in-plane) 
dimensions  

*to be structured when used in functioning devices 
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● from previous analysis it follows that direct in the vicinity of a contact point between the electrode 
and the conductor/sample the current flows radially from the point

 
● symmetry of the problem suggests that far from the contact point the current flows radially from the 

parallel to the surface* of the sample at the contact point 

*the current cannot flow into the insulator (see slide 16) 
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Indeed, it can be shown [5, p.246] that radial component of electric field E
r
, on the surface 

of the conductor, is inversely proportional to in-plane distance from the contact point:

Er=
Iρ

2π r t
if

r
t
≫1 (8) r=√x 2+y 2

E r=−
∂U
∂r

insulator

t

r

● With an increase of r the current density vector becomes horizontal and independent of z 
coordinate.

● In a system composed of a number of layers with different conductivities the layers can 
be treated as conductors connected in-parallel if the distance from the current electrode 
r is much greater than the total thickness of the system [5, p.248] – this statement may 
not apply in case of electrically thin films, i.e. such in which mean free path of electrons 
is comparable to the thickness of the individual layers.

t-thickness of the sample
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Four-point probe in case of thin conducting film on an insulator
 

Like in the case of the array placed on the sample occupying a half-space we have for the 
potential difference due the source electrode (from Eq. 8):

ΔU (r1,r2)=∫
r1

r2

I ρ
2π r t

dr=[ I ρ log(r)
2π t ]

r1

r2

In case of Wenner alpha array we have for the potential difference at the voltage 
electrodes due to both source and sink electrodes (spacing 3a):

V=2[ I ρ log(r)
2π t ]

a

2a

=
I ρ log(2)

π t

2 comes from the fact that both 
current electrodes produce the 
same potential difference 
between the voltage electrodes

ρ=
π t

ln (2)
V
I

We have then for a four-point probe array on a thin* conductor:

*probe spacing much greater than the thickness of the conductor (only then the approximation of radial current flow holds)

note that this expression is 
independent of electrode 
spacing

E r=
I ρ

2π r t
if

r
t
≫1 (8)
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Four-point probe in case of thin conducting film on an insulator
 

In thin film physics one often speaks about the so called sheet resistance:

R
s
 characterizes the sample from the point of view of external circuit giving its apparent 

resistance.

ρ=
π t

ln (2)
V
I

We have then for a four-point probe array on a thin* conductor:

note that this expression is 
independent of electrode 
spacing

Rs=
ρ

t
[Ohm] → Rs=

π
ln(2)

V
I

*probe spacing much greater than the thickness of the conductor (only then the approximation of radial current flow holds)
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Influence of an electrode size on current flow

I≈20.93A

I≈23A

the current flow was calculated with a QuickField™ Student Edition software (version 5.10.1.1141) from Tera Analysis Ltd., 
www.quickfield.com; not that the mesh nodes are limited to 255 so the spatial resolution of the graph is not sufficient to show the details 
of the flow, particularly in the vicinities of the electrodes and sample corners.

the system is infinitely extended in the direction perpendicular to the plane of the image – the 
electrodes are in fact strips

http://www.quickfield.com/
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Sensitivity of the four-point array

source of graphics: [10] Fei Wang, Dirch H. Petersen, Torben 
M. Hansen, Toke R. Henriksen, Peter Bøggild, and Ole 
Hansen, J. Vac. Sci. Technol. B 28, C1C34 (2010)

,,The sensitivity function basically tells us the 
degree to which a change in the resistivity of a 
section of the subsurface will influence the 
potential measured by the array” - M.H. Loke [9]

,,The sensitivity function basically tells us the 
degree to which a change in the resistivity of a 
section of the subsurface will influence the 
potential measured by the array” - M.H. Loke [9]

● like in the case of the array placed on a 
conductor occupying a half-space sensitivity 
is highest on the array-line

● anomaly inversion [9] is present too

● note that the sensitivity is higher when 
smaller samples are used; maximum 
sensitivity for the Wenner array placed on a 
longer symmetry axis of 2a x 5a sample is 
about twice that of the prob placed on an 
infinite sample [10]
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Geometrical correction factors
● Our derivations of the basic equations characterizing four-point probe assumed infinite 

samples
● In practice the sample dimensions are very often comparable with the electrodes 

spacing a and correction factors F are needed to account for that [11,12]
● For the case of thin films:

ρ=
π t

ln (2)
V
I

infinite thin film

ρ=F
V
I

thin film with dimensions 
comparable to electrodes 
spacing

● Calculation of factors F is very demanding in most cases but they are already calculated/ 
tabulated for all practically important cases

● In practice, however, it is enough to use a sample in which all relevant dimensions (width 
and height in case of thin films) are 5 or more times greater than the electrode spacing 
[12] – the corrections become negligible and often unnecessary if other sources of 
measurement errors dominate.
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ρ=
π t

ln (2)
V
I

infinite thin film

ρ=F
V
I

sample with dimensions 
comparable to electrodes 
spacing

ρ=2π a
V
I
×

1
G7

If the thickness of a conductor is 5 or 
more times greater than probe spacing 
(other dimensions infinite) the expression 
for Wenner alpha array on a half-space 
conductor can be used*

*it introduces only minor deviations from the exact value

expression for the 
Wenner configuration 
on a half-space (slide 
48)
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Van der Pauw's method [13] – used to measure thin samples of arbitrary shape:
● simply connected geometry (no areas of a different conductivity- holes, inclusions)
● point-like contacts
● homogeneous and isotropic electric conductivity

Two consecutive measurements are performed with each pair of electrodes used once as 
the current electrodes and once as the voltage electrodes – two resistances R

AB,CD
 and 

R
BC,DA

 are obtained

R AB ,CD R BC ,DA
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It can be shown than in van der Pauw’s method [13,16] the resistances R
AB,CD

 and R
BC,DA

 
are related by the following formula:

exp (−πR AB,CD

R s
)+exp(−π

R AB ,CD

R s
)=1

If the device and the electrode placement is symmetric the expression simplifies to:

R s=
ρ

t
[Ohm ]

exp (π R AB ,CD

R s
)=2

Which gives for the sheet resistance:

Rs=π
RAB,CD

ln (2)
example

Note that van der Pauw assumes point-like contacts 
between the electrodes. In real systems the contacts 
are extended but the proper modification of the method 
allows use of arbitrary symmetric contacts on a 
symmetric device [13,16]



  

Basics of resistance measurements

● When measuring resistances in a normal range (>10 Ω [14]) the 2-wire method can be 
used to obtain relative changes of resistance (e.g., in magnetoresistance measurements 
common in spintronics)

● If however the resistance of a device under test (DUT) is smaller the typical lead 
resistance (1mΩ to 10mΩ* [14]) makes the use of a 4-point method necessary

● If the measurements involves low voltages it may be necessary to cancel out 
thermoelectric voltage by making two voltage measurements, with reversed current 
polarization, and taking the average (in ferromagnetic metals room temperature 
thermoelectric coefficients are in 20´10-6 V/K range)

● Since it is usually not possible to use large area contacts in laboratory measurements 
special care must be taken to avoid spurious contact resistances 

*it may be overly optimistic: my DMM (not the cheapest one) has about 30mΩ
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● Contact resistance – additional resistance  due to a contact between two elements 
(influenced by contamination, oxide layers etc.)

● In devices the specific contact resistance R
c,spec

 should be below 10-5 Ωcm2 [16]*; it 
should be noted that the effective R

c,spec
 depends on the contact geometry

● To assure the repeatability of measurements the normal force of the probe on the 
sample should be controlled [17] 

Schematic of a contact geometry:

oxides

Digression:
always use standardized procedures of surface 
cleaning prior to the measurement (not necessary 
with fresh samples)

excerpt from Standard Test Method for Sheet Resistance 
Uniformity Evaluation by In-Line Four-Point Probe with the 
Dual-Configuration Procedure, American Society for Testing 
and Materials 1997 [17]:

* to get the contact resistance one divides R
c,spec

 by contact area
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● Contact resistance – additional resistance  due to a contact between two elements 
(influenced by contamination, oxide layers etc.)

● Special finish/plating is usually applied to measurement probe tip to optimize its properties; 
the finish is usually made out of noble metal (electroplating, vacuum deposition)

● Contact resistance is dependent on the probe force
● Down to the 1 nA* measuring current the resistance of the contact is constant – completely 

ohmic contacts (the same was true for gold coated probe tips) [15]

* which is much less than the currents you will usually use in your measurements
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Tip wear – the probes should be regularly checked for any damage/contamination as they 
may change contact resistance, the flow of current in the sample [18] and damage the 
sample itself [17]

graphics from: 
Connector Design - Materials and Connector Reliability
R. S. Mroczkowski, AMP Incorporated 1993

Joule heating in the vicinity of the constriction is 
another factor that may influence the 
measurement

P=R I2
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Tip wear – if one has an access to a microscope it is advisable to check the probe quality 
by making Visual Inspection of Probe Impressions [17]:
● this test should be performed for new or refurbished probes
● the test should be performed if the standard deviation of the measurements performed at 

different locations on the homogeneous sample exceeds some previously set limit*

graphics from: 
Standard Test Method for Sheet Resistance Uniformity Evaluation by In-Line Four-Point Probe with the Dual-Configuration Procedure
American Society for Testing and Materials 1997 [17]

*American Society for Testing and Materials suggests s.dev of less than 0.1%  for sets of
 10 measurement at one point [17]

always attempt to make 
a good impression

probe tip not driven parallelly 
to a normal to the surface



  

Measurement errors etc.

Accuracy, precision etc. (definitions from International vocabulary of metrology(VIM) [20])
●measurement accuracy - closeness of agreement between a measured quantity value 
and a true quantity value of a measurand„ (note: <<‘Measurement accuracy’ is sometimes 
understood as closeness of agreement between measured quantity values that are being 
attributed to the measurand. >>) 

● „the concept ‘measurement accuracy’ is not a quantity and is not given a numerical 
quantity value*. A measurement is said to be more accurate when it offers a smaller 
measurement error.*”

●measurement error - measured quantity value minus a reference quantity value
●reference quantity value can be a true quantity value of a measurand, in which case it is 
unknown, or a conventional quantity value, in which case it is known.

●measurement precision - closeness of agreement between indications or measured 
quantity values obtained by replicate measurements on the same or similar objects

  under specified conditions.
● „Measurement precision is usually expressed numerically by measures of imprecision, 
such as standard deviation, variance, or coefficient of variation under the specified 
conditions of measurement.”

●repeatability condition of measurement - „condition of measurement, out of a set of 
conditions that includes the same measurement procedure, same operators, same 
measuring system, same operating conditions and same location, and replicate 
measurements on the same or similar objects over a short period of time”

●reproducibility condition of measurement - „condition of measurement, out of a set of 
conditions that includes different locations, operators, measuring systems, and replicate 
measurements on the same or similar objects” [20] and/or different reference standard [21]

*note however that many manufacturers give a numerical value to it ([14], Yokogawa DS200 etc.): 
% of reading+% of range etc.



  

Accuracy, precision etc. (definitions from International vocabulary of metrology(VIM) [20])
● measurement uncertainty - non-negative parameter characterizing the dispersion of 

the quantity values being attributed to a measurand, based on the information used
The parameter may be, for example, a standard deviation called standard measurement 
uncertainty (or a specified multiple of it)

more precise,
less accurate

less precise,
more accurate

Measurement errors etc.

precisely measured wrong value



  

Johnson noise – thermal noise (phonons, magnons etc.) results in random fluctuations of a 
voltage at the terminals of every resistor
The mean-square noise voltage of that noise is given by [22]*:

To get a peak-to-peak noise one should triple the Vrms

(for normal distribution some 99.7% of values lies within
that range)
 

● bandwidth -”The range of frequencies that can be conducted or amplified within certain 
limits. Bandwidth is usually specified by the –3dB (half-power) points.” [14]  

Measurement errors etc.

V rms
2
=4k T RΔ f k − Boltzmann 's constant

T − temperature
R − resistance
Δ f − bandwidth of the measurement

*at room temperature this approximation (constant noise for every frequency) holds up to tens of gigahertz [23]

10 log10 0.5=−3.0103...
-3dB corresponds 

roughly to 30% 
decrease of a voltage

R=1 Ω

R=100 Ω

in “static” (direct current) measurements with 
typical voltmeters (low bandwidth) the Johnson 
noise can usually be neglected provided that 
sample resistance is not too high (say less than 
10 kΩ)
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Conclusions

● resistivity measurements involve knowledge of sample and probes 
geometry

● contact resistance must be taken into account only in exceptional 
cases

● in many laboratory applications the relative change of resistivity 
and not the resistivity itself is the quantity of interest

● standard equipment is usually sufficient to conduct measurements 
(currents and voltages are relatively high)
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During the preparation of this, and other lectures in the series “Magnetic 
materials in nanoelectronics – properties and fabrication” I made an extensive 
use of the following software for which I wish to express my gratitude to the 
authors of these very useful tools:

● OpenOffice            www.openoffice.org

● Inkscape                inkscape.org

● POV-Ray                www.povray.org

● Blender                  www.blender.org

● SketchUp               sketchup.com.pl

I also used “Fizyczne metody osadzania cienkich warstw i metody analizy 
powierzchniowej” lectures by Prof. F. Stobiecki which he held at Poznań 
University of Technology in 2011.
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