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● Domain walls in bulk materials cont.

● Domain walls in thin films

● Domain walls in 1D systems

● Domain wall motion



  

● From previous lectures we know Bloch and Néel domain walls.  

● Schematic view of the 
magnetic moments 
orientation of the Bloch 
wall in easy plane 
anisotropy sample

● The magnetic moments 
rotate gradually about 
the axis perpendicular 
to the wall

Bloch versus Néel wall



  

Chirality – the object cannot be mapped to its mirror image by rotations and translations 
alone  

Néel walls come in two handednesses too.   

Bloch wall – right or left handedness

Bloch type wall:
The magnetic moments rotate gradually 
about the axis perpendicular to the wall



  

● To note is that when the 
Bloch wall in easy 
plane anisotropy 
sample crosses the 
surface of the sample 
the magnetic moments 
within the wall are not 
parallel to the surface

● Magnetic charges 
appear on the surface

Bloch versus Néel wall

● From previous lectures we know Bloch and Néel domain walls.  



  

● Schematic view of the 
Néel wall

● Magnetic moments 
within Néel wall rotate 
along direction parallel 
to the wall

● To note is that when the 
Néel wall in easy plane 
anisotropy sample 
crosses the surface of 
the sample the 
magnetic moments 
within the wall are 
parallel to the surface

Bloch versus Néel wall

● From previous lectures we know Bloch and Néel domain walls.  



  

● The rotation of magnetic moments within the Néel wall creates volume magnetic 
charges.

●  Assuming the following orientation of magnetization within Néel wall*:   

θ x axis=arctan (x) ; M x=cos(θ x axis) M y=sin (θ x axis) M z=0

*this is just an approximation
  of the actual wall profiley

x

we obtain for the volume charge of the wall:   

ρ magn=−∇⋅M⃗=−(
∂
∂ x

M x+
∂
∂ y

M y)=
x

(1+ x2)3/2

● Néel wall creates volume magnetic 
 charges of opposite signs

● Néel wall, contrary to Bloch wall, is a 
source of magnetic field in an infinite 
crystal

● Néel wall corresponds to a line of 
magnetic dipoles 

Bloch versus Néel wall



  

● In uniaxial anisotropy material the energy is given by:  

Eu=K1 sin2ϕ+ K 2 sin4ϕ
● In the previous derivation of the Bloch wall profile we have neglected the second order 

anisotropy constant K2. It can be shown [1] that the wall profile with K20 is given by:

tanϕ=√ 1+κ sinh(
x

√ A/K 1

)

κ=K 2 /K 1

graphics based on Fig.3.60 from [1]: A. Hubert, R. Schäfer, Magnetic 
domains: the analysis of magnetic microstructures,  Springer 1998

● Parameter κ must be larger 
than -1, otherwise the two 
domains are not stable [1]*.

 

● On approaching  κ=-1 the 
wall divides into two 90o-
walls which may, if the 
effective anisotropy is 
modified, split into two 
creating new domain.

 

● Widened walls are common 
in cubic anisotropy materials.

x

√ A /K1

*the magnetization with spin angle 0 would have lower energy than for ±π/2

Bloch wall in material with higher order anisotropy



  

x

√ A /K1

● Parameter κ must be larger 
than -1, otherwise the two 
domains are not stable [1]*.

 

● On approaching  κ=-1 the 
wall divides into two 90o-
walls which may, if the 
effective anisotropy is 
modified, split into two 
creating new domain.

 

● Widened walls are common 
in cubic anisotropy materials.

graphics based on Fig.3.60 from [1]: A. Hubert, R. Schäfer, Magnetic 
domains: the analysis of magnetic microstructures,  Springer 1998

Bloch wall in material with higher order anisotropy



  

● Peculiarities of the wall profile influences the evaluation of wall width [1].
● For κ<-0.5 the wall profile has three points of inflection and the width is defined with the 

tangents in the outer inflection points (   ). 
● For other cases the thickness is defined as previously.  

x

√ A /K1

graphics based on Fig.3.60 from [1]: A. Hubert, R. Schäfer, Magnetic domains: the analysis of magnetic microstructures,  Springer 1998

Bloch wall in material with higher order anisotropy



  

● In contrast to previously analyzed uniaxial anisotropy materials cubic anisotropy results 
in 3 or 4 easy axes (6 or 8 easy orientations of magnetization)

● In positive anisotropy crystals the preferred orientations are along <100> directions
● In negative anisotropy crystals the preferred orientations are along <111> directions   

Preferred magnetization orientations
in Fe bulk crystals*
3 easy axes

Preferred magnetization orientations
in Ni bulk crystals
4 easy axes

*without stress, external field etc.

Domain walls in cubic anisotropy crystals



  

● In positive anisotropy crystals the possible angles between unperturbed domain 
 magnetizations are 90o and 180o (see the previous slide)

● In negative anisotropy crystals the allowable angles are 71o and 109o:

Preferred magnetization orientations
in Ni bulk crystals
4 easy axes

*without stress, external field etc.

70.528o

109.472o

Domain walls in cubic anisotropy crystals



  

● Due to anisotropy the energy of the domain wall depends on its orientation relative to the 
crystal axes:

● Magnetostatic energy does not restrict the orientation of 
 domain wall

● We assume the magnetization direction to rotate within 
the wall from [100] to its opposite direction

● In static equilibrium no field can exist in cubic material 
with 180o wall [1]:

-the field parallel to [100] direction would force the wall to 
 move as in uniaxial crystals
-the field component within the (100) plane would favor 
 other domains

The preferred orientation of 180o wall in 
(100) oriented transformer steel favors 
wall shapes as shown, in contrast to 
straight, perpendicular walls (image from 
A. Hubert [1] - Fig. 3.64)

Domain walls in cubic anisotropy crystals



  

● Magnetic films are defined as thin if their thickness is comparable with Bloch wall width 
[1].

● A Bloch and Néel walls can be approximated by an infinite elliptical cylinder, of height 
equal to the thickness of the film [1,2], placed between regions of opposite 
magnetization:

● Demagnetizing factors of the 
cylinders can be approximated 
with expressions for ellipsoids.

Domain walls in thin films



  

● Magnetic films are defined as thin if their thickness is comparable with Bloch wall width 
[1].

● A Bloch and Néel walls can be approximated by an infinite elliptical cylinder, of height 
equal to the thickness of the film [1,2], placed between regions of opposite 
magnetization:

● Demagnetizing factors of the 
cylinders can be approximated 
with expressions for ellipsoids.

Domain walls in thin films



  

● Magnetic films are defined as thin if their thickness is comparable with Bloch wall width 
[1].

● A Bloch and Néel walls can be approximated by an infinite elliptical cylinder, of height 
equal to the thickness of the film [1,2], placed between regions of opposite 
magnetization.

● Within the cylinder demagnetizing field is created (N is taken from general expression**):

H d=M eN=
M ew

w+ t
, M e - effective magnetization of the wall (see below)

● Magnetostatic energy associated with that field is:

Ed=
1
2
μ 0N M e

2=μ 0

M e
2w

w+ t
(1)

● The spin angle within the wall is supposed to change according to the expression*:

ϕ=π (x /a) for −a /2≤x≤a /2

*this is just an assumption, without  proof; S. Middelhoek, J. Appl. Phys. 34, 1054 (1963)
** Eq. 3.23 in [1]; in numerator we have the shorter axis of the ellipsoidal cross section of the cylinder

a - wall width, φ – the angle between the magnetization 
and a direction in the plane of the wall and perpendicular to 
the plane of the film

● For a given φ(x) dependence the anisotropy energy density (averaged along the wall 
width) is:

EA=
1
a ∫−a /2

a/2

K cos2[π (x /a)]dx=1
2
K

t- film thickness
w -wall width

Domain walls in thin films



  

● To find the effective magnetization of the Bloch wall in very thin films* (t≪w) we 
calculate  the magnetostatic energy of the wall in its own demagnetizing field:

● Comparing this with Eq.(1) for t≪w we obtain:

*we can then use the approximation that the demag field at x depends only on magnetization at x.

Ed=
μ 0

a ∫
−a/2

a /2

1⋅M S
2 cos2[π (x

a
)]dx=

1
2
μ 0M S

2

Ed=μ0

M e
2w

w+ t
≈μ0M e

2

M e=
M s

√ 2

● The total energy of the wall (per unit area) is obtained by summing exchange,  
 magnetocrystalline and  stray field energy densities (volume energy densities are 
 multiplied by wall thickness):

The Bloch wall can be approximated by the infinite 
cylinder if we decrease magnetization by a factor of 0.7... 
It is further assumed that this is true for thicker films too.

γ=A(πa )
2

a+
1
2
K a+ μ 0

M e
2a

a+ t
a

demag factor for thin film

cos(x)=1−x
2

2
+ ...

●The energy is minimized with respect to wall width a and that value is inserted back in 
the  expression for the energy.

S. Middelhoek, J. Appl. Phys. 34, 1054 (1963)

Domain walls in thin films



  

● The same kind of approximate calculations can be performed for Néel wall
● The wall is represented by the cylinder as in the case of Bloch wall, but it is now flattend; 

as a consequence the demagetization coefficient changes:

● It is assumed that the effective magnetization is the same as in the case of “Bloch 
 cylinder”.

● For Néel wall the expression for the total energy is then:

S. Middelhoek, J. Appl. Phys. 34, 1054 (1963)

H d=M eN=
M e t

w+ t
, M e - effective magnetization of the wall (see below)

γ=A(πa )
2

a+
1
2
K a+ μ 0

M e
2 t

a+ t
a

the only difference between Néel and Bloch 
walls within the present model 

● The energy and domain wall width dependence on film thickness can be obtained 
 numerically. Here the exemplary Mathematica code:

A=1;
mi0=1;
K=1;
Ms=1;
energyNeel[a_,t_]=A (Pi^2/a)+0.5 a K+(0.5 mi0 Ms^2 a t/(a+t));
tmax=40;
ilepunktow=201;
w=Table[{t//N,FindMinimum[energyNeel[x,t],{x,2}][[2,1,2]]},{t,0,tmax,tmax/(ilepunktow-1)}];
ListPlot[w,Joined->False] (*wall width versus film thickness*)
energiavsthickness=Table[{i tmax/(ilepunktow-1)//N,energyNeel[w[[i,2]],i tmax/(ilepunktow-1)]},{i,1,ilepunktow,1}];
ListPlot[energiavsthickness,Joined->False](*wall energy versus film thickness*)

Domain walls in thin films



  

● In case of thin films the most important difference between those kinds of domain walls 
is  their dependence on film thickness:

Néel wall

Bloch wall

tc

●  At certain critical thickness the 
 energy of Néel wall becomes less 
 than the energy of Bloch wall 

● The Néel walls are favored in thin 
 easy-plane* anisotropy films

● In thin perpendicular anisotropy films 
Bloch walls may be energetically 
favored

S. Middelhoek, J. Appl. Phys. 34, 1054 (1963)

Energy of Bloch and Néel wall

*
● easy-plane anisotropy – the energy does not 

depend on the orientation within the plane
● in-plane anisotropy - the energy does depend 

on the orientation within the plane



  

● The same model predicts the thickness dependence of domain wall width:

Néel wall

Bloch wall

● Néel walls are characterized by core  
 region with dipolar charge pattern 
 (see 13 slides back) and long tails

● The more elaborate calculations give 
that core width can be expressed as:

W core=2 √ A

(K u+ K d )(1−co
2)

, where c0 is a cosine of the spin angle 
corresponding to core-tail boundary.
 

● The spin angle of Néel wall is, 
 similarly to Bloch wall, field 
 dependent

● With increasing Kd core width 
 decreases and tails get longer 

● In permalloy              is about 5 nm [1]√ A /K d

Energy of Bloch and Néel wallEnergy of Bloch and Néel wall



  

● The critical thickness of the Bloch-Néel wall transition is of the order of tens of 
 nanometers:

● Other types of walls exist which can have lower energy then Bloch or Néel walls 
depending on thickness, external field value etc.:

-cross-tie walls

-asymmetric Bloch and  Néel walls

S. Middelhoek, J. Appl. Phys. 34, 1054 (1963)

Energy of Bloch and Néel wall



  

● At intermediate thicknesses cross-tie walls exists
● They are composed of alternating regions of Bloch and Néel-like transitions
● In permalloy films they are observed for thickness
●  range from 30 to 90 nm
● Schematic view of cross-tie wall:
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Bitter patterns of a cross-tie wall for 
different anisotropy fields HK

● Note the change of the cross-ties spacing as 
a function of the effective anisotropy 
(introduce by bending of the film – stress 
anisotropy)

Cross-tie walls



  

● The inner structure of the cross-tie walls can be 
resolved with contemporary imaging methods.

N. Wiese et al., EPL 80, 57003 (2007)

Cross-tie walls



  

● The cross-tie wall images obtained from Lorentz microscopy* confirm the predicted 
structure of the transition region:

*detects the force acting on imaging electrons due to magnetic field
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Cross-tie structure of the evaporated 60 nm thick 
permalloy film (from Lorentz electron microscopy 
image).

Cross-tie walls



  

● In some cases asymmetry of the spin angle in domain wall may result in stray-field free 
domain walls in thin films: 
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● In “normal” walls “center” of the wall is planar
 

● Similarly stray-field free configurations can be obtained for Néel walls [1]. 

The contour line indicates the 
“center” of the wall, i.e. the surface 
on which z-component of 
magnetization passes through zeroy

x

Asymmetric walls



  

● Depending on film thickness and external field value various kinds of domain wall are 
 energetically favored:
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● Bloch walls are only stable compared to Néel walls up to reduced field h=0.3.

h=H
μ 0M S

2K

Asymmetric walls

an example: critical thickness for a Bloch vs. symmetric 
Néel wall transition for field H=0.2



  

● In thin films two Néel walls of the opposite rotation sense (unwinding walls) attract each 
 other each other – because they generate opposite charges in their overlapping tails [1].

● In thin films two Néel walls of the same rotation sense (winding walls) repel each other:

● When to unwinding walls meet they can  
annihilate

 

● If the winding walls are pressed together 
by the action of the external field  
energetically disfavoring the 
magnetization direction within the walls 
(blue arrow) they create so called 360o 
wall.

 

● The 360o wall can be annihilated only in 
large fields [1].

 

● In permalloy films of 50 nm thickness 
Néel walls interact over distances at 
least 0.1mm! (2000 times the thickness)

R.C. Collette 1964, dissertation, Pasadena 1964

360o walls



  

● From the point of view of applications 360o walls should be avoided as they may reduce 
 the reproducibilty of switching events*

*C. B. Muratov and V. V. Osipov J.Appl. Phys. 104, 053908 (2008)
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The domain structure in Fe 
layer and whisker is the same 
due to magnetostatic 
interactions

360o walls



  

● Domain walls can be generated by the proper external field sequence:

Youngman Jang etal., Aplied Physics Letters 100, 062407 (2012)

● Results of micromagnetic simulations are confirmed with Magnetic Force Microscopy 
images

5nm thick Co structure
4×4×5 nm3 micromagnetic cells

Field sequence:
● 239 kA/m saturation along y- direction
● remanence - 180o wall generated
● -15.9 kA/m field produced the second 180o 
  wall
● remanence – two 180o walls meet to create 
  360o wall

other sample- two 180o walls
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360o walls



  

● Inserting a consecutive 180o wall to the wire with 360o wall can create 540o wall:

SEMPA* images suggest the possibility of 
producing higher order walls – with nπ 
rotation

● 360o walls have well-defined structure and 
persist over wide field range

*SEMPA-scanning electron 
microscopy with polarization 
analysis

540o walls

Youngman Jang etal., Aplied Physics Letters 100, 062407 (2012)



  

● Due to almost perfect crystallinity whiskers are ideal for the investigations of simple 
 domain structures [1].

● Whiskers are usually grown from vapor phase by chemical reactions
● Process parameters (temperature, pressure etc.) control the sizes, type and the 

perfection  of the whiskers
● The whiskers can be up to several millimeters in size
● Domain observation is possible from all sides [1].
● Typical domain structure of whisker:
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U. Hartmann, Phys. Rev. B 36, 2331 (1987)

Magnetic whiskers



  

● Due to almost perfect crystallinity whiskers are ideal for the investiagtions of simple 
 domain structures [1].

perfect closure 
domains 
produce no 
magnetic fields

Magnetic whiskers

U. Hartmann, Phys. Rev. B 36, 2331 (1987)



  

● Brown's coercive paradox – coercive fields predicted by the early (1940s) calculations 
 hugely overestimated the experimental results.

● Brown predicted, assuming ellipsoidal shape of the sample, that the reversal (coercive) 
 field should be:

H r>
2K
μ 0M s

−N d M s

● In whiskers “huge demagnetizing fields associated with a uniformly magnetized corner 
cause the formation of closure domains (...) which remain even during the overall 
magnetization of the whisker.” (U. Hartmann).

● The whisker electropolished in Cr03 glacial acetic
    acid show greatly increased coercive field and
    hysteresis characteristic for single-domain particles.

Polished whiskers have 
much higher coercive fields

Magnetic whiskers

U. Hartmann, Phys. Rev. B 36, 2331 (1987)



  

● In contrast to whiskers they do not have, in general, perfect structure
● Amorphous magnetic wires find applications in sensors
● Due to the high curvature of the surface modifications of standard domain imaging 

 methods must be employed. On of the methods is the magneto-optical indicator film 
 (MOIF) microscopy:

Yu. Kabanov, A. Zhukov, V. Zhukova, and J. Gonzalez, Applied Physics Letters 87, 142507 (2005)

● Magnetic moments within garnet indicator film 
with high Verdet constant are influenced by 
the  stray fields coming from the surface of 
the wire

● The changes in magnetic structure of the 
 indicator film are detected by the Faraday  
 effect which is sensitive to the magnetization 
 component parallel to incident light.

Magnetic wires



  

● In contrast to whiskers they do not have, in general, perfect structure
● Amorphous magnetic wires find applications in sensors
● Due to the high curvature of the surface modifications of standard domain imaging 

 methods must be employed. On of the methods is themagneto-optical indicator film 
 (MOIF) microscopy.

● Labirynth-like open domain structure* is 
present in the wire

 

● In Fe-rich wires (Fe77.5B15Si7.5), with positive 
 magnetostrictions, the magnetic 
moments  are perpendicular to the surface 
in the  regions close to surface and the 
domains are  separated by 180o walls.

 

● In Co-rich wires (Co72.5B15Si12(?)), with 
negative  magnetostriction, magnetic 
moments are  parallel to the surface of the 
wire

 

● The core of the wire is magnetized 
approximately along the wire axis with 
domains  no less than 0.5mm in size.

*that is without closure domains
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Yu. Kabanov, A. Zhukov, V. Zhukova, and J. Gonzalez, Applied Physics Letters 87, 142507 (2005)

Magnetic wires



  

● The velocities of domain walls are highly 
 unlinear functions of the applied 
magnetic  field.

● In “small fields”, up to the so called 
 Walker field Hw, the velocity of the wall 
is  approximately a linear function of the 
 applied field. 

● Above the critical field the velocity of the 
 wall may fluctuate

● In samples of limited dimensions (wires, 
 patterned media, etc.) the orientation of 
 easy axes with respect to sample 
 surfaces influences the character of 
 velocity-field dependence [10].

Jusang Yang, Corneliu Nistor, G. S. D. Beach, and J. L. Erskine, Phys. Rev. B 77, 014413 (2008)

Domain wall in external magnetic field – Walker limit



  

● If the external field is applied parallelly to the straight Bloch wall the torque is exerted only 
 on the spins within the wall (neglecting the infinite extent of the wall - see lecture 6).

● The torque forces precession of moments (see LLG equation – next lecture or lecture 
7/2012) giving  demagnetizing field component perpendicular to the wall [11].

Domain wall in external magnetic field – Walker limit

“From the above qualitative picture it 
 becomes clear that a wall has a finite 
maximum velocity. The reason is that  the 
demagnetisation field HS is necessarily 
finite (Hx<Mx), implying a finite precession 
frequency and thus a  finite maximum 
velocity.” 
F.H de  Leeuw [11]



  

● In relatively broad range of magnetic field the domain wall velocity is approximately 
linear function of the applied field [12].

● The velocity can be expressed as:

● Above depinning field Hdp the wall moves with velocity determined by mobility μ.
● Typical values of wall mobility are [12]:

● μ=1-1000 ms-1 mT-1                                                                                              ≈0.00125-1.25 ms-1 (A/m)-1

● In thin films of permalloy the mobility is of the order of μ=100 ms-1 mT-1[12].

v (H )={ 0 H< H dp

μ(∣H∣−H dp) H≥H dp

H dp≤HH< H dp

Domain wall mobility



  

v (H )={ 0 H< H dp

μ(∣H∣−H dp) H≥H dp

● Velocity of domain walls in typical  fields 
used in experiments can  exceed 10 
km/s

image from: Боровик Е. С, Еременко В. В., Мильнер А. С. Лекции  по магнетизму. , М.: ФИЗМАТЛИТ, 2005.  

Domain wall mobility

● In relatively broad range of magnetic field the domain wall velocity is approximately 
linear function of the applied field [12].

● The velocity can be expressed as:

● Typical values of wall mobility are [12]:

● μ=1-1000 ms-1 mT-1                                                                                              ≈0.00125-1.25 ms-1 (A/m)-1



  

● Magnetic viscosity - the delayed response of  
magnetic domains to changes in external field 
[13].

● The effect, called also magnetic aftereffect, is 
easily observable in ultrathin magnetic films.

● Cu(100)/Fe(7 ML) grown at RT
● Domain images were taken in-situ with the help 

of a long-distance microscope (the distance 
between the front of the microscope and the 
sample was 32 cm, the resolution was better 
than 10μm)

A. Kirilyuk, J. Giergiel, J. Shen, J. Kirschner, Journal of Magnetism and Magnetic Materials 159, L27 (1996)

5s after field is switched on

20s after field is switched on

Domain wall in external magnetic field – thermally activated motion
Relatively small (~10%) changes of the
external field strength accelerate 
switching tenfold



  

● Consider a domain wall crossing a sequence of potential barriers of equal* height E0 
[13].

● The energy that must be supplied to wall in the presence of field H in the direction of 
expanding domain is:

*for simplicity

, where αH is the energy supplied by the field during 
penetration of or the “climbing up” the barrier

● Number of occasions per second on which the wall acquires thermal energy E high 
enough to cross the barrier is:

Domain wall in external magnetic field – thermally activated motion

E=E0−αH

N=C e−(E0−αH )/ k T



  

, where C* is a constant of the order 109 to 1010 Hz 
[13,14,15] 

● If the average separation of energy minima is d and the delay of the wall at each energy 
 barrier is much greater than time to move from barrier to barrier then the wall velocity 
is**:

v=N d=d C e−(E0−α H )/ k T∝eH / k T v∝eH /k T

● In many cases the reversal takes place in limited volume VB (Barkhausen or activation 
 volume [16]) and the energy associated with the reversal can be expressed as:

α H → 2μ 0M V BH

, which comes from the Zeeman energy of reversing volume (fragment of the wall etc.)

*called attempt frequency [5]         
**note that, in this formulation, th velocity is different from zero in the absence of field → ,,Brownian motion”

Domain wall in external magnetic field – thermally activated motion

● Consider a domain wall crossing a sequence of potential barriers of equal* height E0 
[13].

● The energy that must be supplied to wall in the presence of field H in the direction of 
expanding domain is:

, where αH is the energy supplied by the field during 
penetration of or the “climbing up” the barrier

● Number of occasions per second on which the wall acquires thermal energy E high 
enough to cross the barrier is:

E=E0−αH

N=Ce−(E0−αH )/ k T



  

● Dependence of coercivity on magnetic field sweep rate is common to superparamagnetic 
 particles [15].

Mingjun Yu, M. F. Doerner, D. J. Sellmyer, IEEE Trans. Magn. 34, 1534 (1998)

● In particulate magnetic media the 
deciding  factor in defining magnetic 
properties is not  the volume of a single 
particle but the so called switching 
(activation) volume [15].

 

● If theses volumes are close to each 
other it  means that the particles switch 
almost  independently.

Sweep rate dependence of coercivity



  

● Eddy-currents (EC) - electric currents induced in a electrical conductor exposed to 
changing  magnetic field.

● In magnetic materials the domain walls movement may produce changing field which 
create eddy currents.

Eddy current brake 
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● Eddy-currents are governed by Faraday's 
 law

● In magnetic specimens the EC damping is 
more pronounced in the middle of the 
crystal which may lead, depending on the 
field value, to curving of the domain.

● In bulk materials the field penetrates 
the inner regions of the sample with a 
delay [18].

● The time required for the EC effect to 
disappear depends on resistivity and 
permeability of the material and the shape 
of the specimen.

● If the field applied to the rod is alternating 
then the maximum induction at the center 
of the specimen can be always less than 
the maximum field at its surface. 

H. J. Williams, W. Shockley, and C. Kittel,  Phys. Rev. 80, 1090 (1950)
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Eddy-current damping



  

● Domain wall movement creates the eddy-currents which in turn (Lenz's rule) create the 
 field opposing the applied field.

a schematic is based 
on Fig. 12. 6 from  B. 

D. Cullity, Introduction 
to magnetic materials, 

Addison-Wesley, 
Reading, 

 Massachusetts 1972 

● The wall moves now in a effective field  which is less 
than  the applied field – the wall velocity diminishes.

● For the special case of the straight wall moving
in a rod of square cross section expression for the 
velocity is [18]:

v (H )≈8×109 π ρ
M sd

, d

● Note is that the low resistivity materials 
are characterized high eddy-current 
damping and consequently low wall 
mobilities.

● Eddy-current damping depends on the 
geometry of the specimen

-edge length

exemplary values of core losses in
modern FINEMET® soft magnetic materials

image source HITACHI, www.hilltech.com/pdf/hl-fm10-cFinemetIntro.pdf.pdf
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