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Statement of the micromagnetic problem

● In the original Stoner-Wolfarth (SW) model the particle was single domain, i.e., its has a 
single magnetic moment (macrospin)

● We searched for an equilibrium orientation of the moment as a function of magnitude 
and direction an external magnetic field

● The dynamic effects played no role in the model
● In the fifth lecture we studied the rate dependent hysteresis in 1 dimension (angle of 

rotation of the moment) assuming some fictional energy landscape (similar to the one in 
SW model) but still within macrospin approximation

● We want now to introduce the formalism allowing the reasonable predictions of the 
behavior of the magnetic sample composed of many magnetic moments and evolving 
under the influence of:

- external magnetic field

- exchange, RKKY-like, and Dzyaloshinskii–Moriya          
  coupling between neighboring spins

- local anisotropies (magnetocrystalline, stress etc.)

- influence of the flow (current, heat etc.)

- long range magnetostatic interactions between the       
  magnetic moments (shape anisotropy)



  

Statement of the micromagnetic problem

● First we will describe the behavior of a rectangular prism sample with a single magnetic 
moment

● The raise time of the magnetic field is always larger than zero but in micromagnetics the 
field changes are approximated by step-wise varying magnetic field – the field changes 
are instantaneous

Raise-time of the field is 
determined primarily by a 
self-inductance of the the 
coils/electromagnet

The analytical formulas for 
demagnetizing factors for 
rectangular prisms are given by 
A. Aharoni in J. Appl. Phys. 83, 
3432 (1998)



  

Statement of the micromagnetic problem

● In the simulation we want to predict the changes of the orientation of the magnetic 
moments as the external field changes

● The position of the moment is assumed to be fixed – no changes due to 
magnetostriction, phonons, magnons etc.

Exemplary trajectory (orientation vs. time) simulated 
with oommf software [18] for a 3×3×3nm3 cube after 
instantaneous switching the field from 0 to -1000mT 
along the x-direction (along cube edge); only shape 
anisotropy present; simulation time was 0.35 ns; 
damping α =0.5 (see next slides)

Final orientation 
of the moment

Initial orientation 
of the moment



  

● The change of angular momentum of a rigid body under the influence of the torque is 
 given by:

τ⃗ =d J⃗
dt

● With gyromagnetic ratio defined as               we get:γ=∣m⃗∣
∣ J⃗ ∣

● The torque acting on magnetic moment in magnetic field is: τ⃗ =m⃗× B⃗

d m⃗
dt

=γ m⃗× B⃗ This equation can be used to describe motion of the electron's 
magnetic moment. The electron itself is fixed in space.

m⃗e=−g e

e
2m

S⃗

For an electron we have:

● Larmor precession [3]
   Vector rotating with angular velocity Ω changes according to the formula:

d A⃗
dt

=Ω⃗× A⃗

● From equation for time change of m we get:

d m⃗
dt

=γ m⃗×B⃗=−γ B⃗×m⃗=−ωL×m⃗

Landau-Lifshitz-Gilbert (LLG) equation of spin motion

|S|= h
2π

√3
2

S z=
h

2π
1
2

g≈2

γ=
m⃗e

S⃗
=− e

m



  

●The velocity is called Larmor angular velocity 
and is given by:

Ω⃗ L=γ B⃗

●The corresponding Larmor frequency is:

f L=
1

2π
γ B

●For electron Larmor frequency is approximately 1.761×1011 rad s-1T-1  *

*http://physics.nist.gov/cgi-bin/cuu/Value?gammae    retrieved 2012.05.16

Landau-Lifshitz-Gilbert (LLG) equation of spin motion

http://physics.nist.gov/cgi-bin/cuu/Value?gammae


  

●Landau and Lifshitz have introduced a damping term to the precession equation:

dm⃗
dt

=γ m⃗×B⃗−
α L

∣m⃗∣
(m⃗×(m⃗×B⃗)) , (1)

where αL is a dimensionless parameter [5].

●As can be seen the damping vector
 is directed toward B and vanishes when m and B 
 become parallel.
 

●As can be seen from Eq. (1) the relaxation of m  
 towards B is greater the higher the damping 
 constant αL. Gilbert [6] pointed out that this is 
 nonphysical and that Eq. (1) can be used for small 
 damping only [5].

−m⃗×(m⃗×B⃗)

●He introduced other phenomenological form of equation which can be used for arbitrary 
 damping. Damping is introduced as dissipative term [7] of the effective field acting on the 
 moment:

B⃗→ B⃗−η d m⃗
dt

(2)

Landau-Lifshitz-Gilbert (LLG) equation of spin motion



  

●Inserting Eq. (2) into precession equation (3 slides back) we obtain:
d m⃗
dt

=γ m⃗×B⃗

B⃗→ B⃗−η d m⃗
dt

d m⃗
dt

=γ m⃗× B⃗→γ m⃗×( B⃗−ηd m⃗
dt )=γ m⃗× B⃗−γηm⃗×d m⃗

dt
=

γ m⃗×B⃗− α
|m⃗|

m⃗×d m⃗
dt

α=γ η∣m⃗∣,   with 

●The equation can be transformed by substituting itself into righ-hand side:

dm⃗
dt

=γ m⃗×B⃗−
α
∣m⃗∣

m⃗×
d m⃗
dt

=γ m⃗× B⃗−
α
∣m⃗∣

m⃗×(γ m⃗×B⃗−
α
∣m⃗∣

m⃗×
d m⃗
dt )

●Multiplying out we get:

●Using vector identity                                           we have:a⃗×( b⃗× c⃗)=b⃗ (a⃗⋅⃗c)− c⃗ (a⃗⋅⃗b)

m⃗×m⃗×
dm⃗
dt

=m⃗(m⃗⋅
dm⃗
dt

)−
d m⃗
dt

∣m⃗∣2

●Since the magnitude of m is assumed to be constant* there can be no component of
 which is parallel to m; we get then:

m⃗×m⃗×dm⃗
dt

=−dm⃗
dt
|m⃗|2 (4)

dm⃗
dt

*if the system consists of a number of individual 
moments, each of which is damped slightly 

differently, the magnitude of the total magnetic 
moment may not be conserved; one should use 

Bloch equation then.

Landau-Lifshitz-Gilbert (LLG) equation of spin motion

dm⃗
dt

=γ m⃗×B⃗−
α γ
|m⃗|

m⃗×m⃗×B⃗+ α2

|m⃗|2
m⃗×m⃗× d m⃗

dt
(3)



  

● Inserting Eq. (4) into Eq. (3) we obtain:

dm⃗
dt

=γ m⃗×B⃗−
α γ
∣m⃗∣

m⃗×m⃗× B⃗−α 2 dm⃗
dt

d m⃗
dt

(1+ α 2)=γ m⃗×B⃗−
α γ
∣m⃗∣

m⃗×m⃗×B⃗ α=γ η∣m⃗∣

● And finally:

dm⃗
dt

=
γ

(1+α 2)
m⃗×B⃗− α

(1+ α 2)
γ
∣m⃗∣

m⃗×m⃗×B⃗

Landau-Lifshitz-Gilbert equation

● In general the magnetic induction should be replaced by the effective field Beff [9, p. 178]:

to be read as                                                           [9, p.178]
∂
∂ m⃗

f =x̂
∂
∂m x

f + ŷ
∂
∂m y

f + ẑ
∂
∂mz

f

Landau-Lifshitz-Gilbert (LLG) equation of spin motion

dm⃗
dt

=γ m⃗×B⃗−
α γ
|m⃗|

m⃗×m⃗×B⃗+ α2

|m⃗|2
m⃗×m⃗×

d m⃗
dt

(3)

−
dm⃗
dt
|m⃗|2=m⃗×m⃗×

dm⃗
dt

(4)

B⃗eff=μ0(∇ 2 M⃗+H⃗+∂
∂ m⃗

Eanisotropy )
Other energy terms, like Dzyaloshinskii–Moriya 
interaction or magneto-elastic effects, may 
contribute to the effective field



  

●With the replacement                                      both equations have similar form but...

dm⃗
dt

=
γ G

(1+ αG
2 )

m⃗×B⃗−
αG

(1+ αG
2)

γ G

∣m⃗∣
m⃗×m⃗×B⃗

Landau-Lifshitz-Gilbert equation

dm⃗
dt

=γ L m⃗×B⃗−
α L

∣m⃗∣
(m⃗×(m⃗×B⃗))

Landau-Lifshitz equation

γ L=
γ G

1+α G
2

, α L=
αGγ G

1+αG
2

the dependencies of precessional and relaxation terms on damping constant are quite 
different [8]:

●According to LL equation the 
 relaxation becomes faster with 
 increasing damping αL  (red             
 dashed  curve) which is  counter     
 intuitive.
 
●In case of LLG equation the 
 behavior of both terms agree with 
 the expectations for the dynamics 
 of damped precession [8].
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Landau-Lifshitz-Gilbert (LLG) equation of spin motion



  

dm⃗
dt

=
γ G

(1+ αG
2 )

m⃗×B⃗−
αG

(1+ αG
2)

γ G

∣m⃗∣
m⃗×m⃗×B⃗

Landau-Lifshitz-Gilbert equation

 

Landau-Lifshitz-Gilbert (LLG) equation of spin motion – inclusion of moment of inertia

[24] S. Bhattacharjee, L. Nordström, and J. Fransson, PRL 108, 057204 (2012)

● Investigation of spin dynamics at very high frequencies requires taking into account 
moments of inertia of a system (not limited to spins)

● Calculations set “the time scale of the inertial contribution to the femtosecond (10-15 s) 
regime. It, therefore, defines magnetization dynamics on a time scale that is one or more 
orders of magnitude shorter compared to, e.g., the precessional dynamics of the 
magnetic moment.”



  

● Let us* consider the LLG equation describing the orientation of a single moment 
 (monodomain state) of magnetized sphere fixed in space (no translational motion)**:

d M⃗
dt

=
γ μ0

(1+α 2)
(M⃗× H⃗−α

M
[ M⃗×(M⃗×H⃗ )])

● For simplicity the time scale is changed:

M 2 d M⃗
dτ

=M M⃗× H⃗−α [ M⃗×( M⃗×H⃗ )]

τ =
t M γ μ0

(1+ a2)

● We assume that the external field is applied along z-direction [Ba/μ0=(0,0,Hz)]. The 
 demagnetizing field inside the sphere is (Hd=-1/3 Hz). With H=Ha -Hd we obtain:

M 2 dM x

dτ
=−α H z M x M z+ H z M y M

M 2 dM y

dτ
=−α H z M y M z−H z M x M

M 2 dM z

dτ
=α (H z M x

2+ H z M y
2 )

● Verifying that dM is perpendicular to M  [                                    ]  we see that the length 
of  the magnetization vector is preserved as expected.

(dM x , dM y , dM z)⋅M⃗=0

*Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)
**Kikuchi uses this form of the equation; for α≪1 it reduces to Landau-Lifshitz equation

(-α Hz Mx Mz +Hz My M,-α Hz My Mz -Hz Mx M, α (Hz Mx Mx +Hz My My)).(Mx,My,Mz)=0

Magnetic moment reversal



  

●We can then rewrite the equation for Mz obtaining the equation of motion that does not 
 depend on Mx and My:

●Integrating between the final and the initial values of Mz we have:

M 2 dM z

dτ
=α H z(M

2−M z
2)

α H z τ =∫
M z

i

M z
f

M 2

(M 2−M z
2)

dM z=M ArcTanh [M z

M ]
M z

i

M z
f

=M ln∣√−1−M z /M

√−1+ M z /M ∣
M z

i

M z
f

=

M ( ln∣√−1−M z
f /M

−1+ M z
f /M ∣−ln∣√−1−M z

i /M

−1+ M z
i /M ∣)=M ( ln∣√−1−M z

f /M

−1+ M z
f /M

−1+ M z
i /M

−1−M z
i /M ∣)=

1
2

M ln∣(M+ M z
f )(M−M z

i )

(M−M z
f )(M + M z

i )∣
●Going back to the actual time we get for the time for Mz to change from the initial to final 
 value:

τ =
t M γ μ0

(1+ a2)
tF=

1
2γ H z

1+α 2

α
ln∣(M+ M z

f )(M−M z
i )

(M−M z
f )(M+ M z

i ) ∣

M 2 dM z

dτ
=α (H z M x

2+ H z M y
2 )

∣M⃗ ∣=const

Magnetic moment reversal

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

●If at t=0 the magnetization/moment points exactly along z-axis (Mz=-M) then tF would be 
 undefined, for Mz approaching -M it would approach infinity – no switching.
●If there is no damping (α approaches 0) then tF would tend to infinity – the moment of the 
sample would  precess around the external field direction.

●The shortest switching time is obtained for 
 finite value of damping coefficient (α=1).
 

●The value of the critical damping constant 
 depends on the shape of the sample.
 

●For single domain thin film the critical α is 
 about 0.013.
 

●For permalloy films the minimum switching 
 time, as obtained from the similar calculations 
 is about 1 ns.

tF=
1

2γ H z

1+α 2

α
ln∣(M+ M z

f )(M−M z
i )

(M−M z
f )(M+ M z

i ) ∣

0 2 4 6 8 10
0

2

4

 

t F
/t

F
(α

=
1

)

1+ α2

α

α

Magnetic moment reversal

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

● Time evolution of magnetic moment orientation for low and high damping:
- initial orientation of magnetic moment: (0,0.001,1)
- magnetic field instantaneously switched on to value: (0,0,-1)

● α=0.1
 

● blue dots mark the same time 
 intervals

 

● the end of moment moves from top to 
 bottom 
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ilepunktow=9000;
orientacjamomentu=Table[{0,0,0},{i,1,ilepunktow-1}];
dt=0.025;
alfa=0.1;
Hz=-1;
Mi={0,0.001,1};(*initial moment orientation*)
moment=Sqrt[Mi.Mi];(*moment's length*)
licznik=0;
gamma=2;
timemultiplier=1/(moment gamma (1+alfa^2));

coile=50;(*co ile punktow stawiac marker*)
macierzznacznikow=Table[{0,0,0},{i,1,Floor[ilepunktow/coile]-1}];
licznik=1;
l=1;
For[k=1,k<ilepunktow,k++,

Mi[[1]]=Mi[[1]]+dt timemultiplier  Hz(moment Mi[[2]] -alfa Mi[[1]] Mi[[3]])/moment^2;
Mi[[2]]=Mi[[2]]+dt timemultiplier  Hz(-moment Mi[[1]] -alfa Mi[[2]] Mi[[3]])/moment^2;
Mi[[3]]=Mi[[3]]+dt timemultiplier Hz alfa (Mi[[1]]^2+ Mi[[2]]^2)/moment^2;
orientacjamomentu[[k,1]]=Mi[[1]];orientacjamomentu[[k,2]]=Mi[[2]];orientacjamomentu[[k,3]]=Mi[[3]];

(*matrix of markers*)
If[licznik<coile,licznik=licznik+1,{licznik=1;
macierzznacznikow[[l,1]]=orientacjamomentu[[k,1]];
macierzznacznikow[[l,2]]=orientacjamomentu[[k,2]];
macierzznacznikow[[l,3]]=orientacjamomentu[[k,3]];

l++}
]

]
wy1=ListPointPlot3D[orientacjamomentu, PlotRange->{{-1.1,1.1},{-1.1,1.1},{-1.1,1.1}},
BoxRatios->{1,1,1},PlotStyle->{Red},AxesLabel->{X,Y,Z},ViewPoint->{0,Pi,0},BoxStyle->Directive[Thickness[0.004]]];

wy4=ListPointPlot3D[macierzznacznikow, PlotRange->{{-1.1,1.1},{-1.1,1.1},{-1.1,1.1}},
BoxRatios->{1,1,1},PlotStyle->PointSize[Large],AxesLabel->{X,Y,Z},ImageSize->600,ViewPoint->{Pi,Pi/2,2}];
wy2=Graphics3D[{Opacity[0.5],Sphere[{0,0,0},1]}];
wy3=Graphics3D[{AbsoluteThickness[2],Line[{{0,0,0},{0,0,1}}]}];
wy3=Show[wy1,wy2,wy3,wy4,ImageSize->600,ViewPoint->{Pi,Pi/2,2},ImageMargins->20]

Wolfram Mathematica 6.0 code to obtain these curves:

H||z axis

Magnetic moment reversal

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)
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Magnetic moment reversal

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)

● Time evolution of magnetic moment orientation for low and high damping:
- initial orientation of magnetic moment: (0,0.001,1)
- magnetic field instantaneously switched on to value: (0,0,-1)

● α=0.1
 

● blue dots mark the same time 
 intervals

 

● the end of moment moves from top to 
 bottom 

H||z axis
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● α=0.05
 

● blue dots mark the same time 
 intervals

 

● the end of moment moves from top to 
 bottom

 

● the total time of movement is the 
 same as on the previous page

 

● note that due to weaker damping the 
 moment did not change its 
orientation  to -z – the switching is 
delayed

Magnetic moment reversal

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)

● Time evolution of magnetic moment orientation for low and high damping:
- initial orientation of magnetic moment: (0,0.001,1)
- magnetic field instantaneously switched on to value: (0,0,-1) H||z axis
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● α=1 – minimal switching time
 

● blue dots mark the same time 
 intervals

 

● the end of moment moves from top to 
 bottom 

Magnetic moment reversal

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)

● Time evolution of magnetic moment orientation for low and high damping:
- initial orientation of magnetic moment: (0,0.001,1)
- magnetic field instantaneously switched on to value: (0,0,-1) H||z axis



  

● Note that further increase of damping constant α slows down the switching of magnetic 
 moment (more blue dots)
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●α=10●α=1 – minimal switching time

Magnetic moment reversal

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

●Time evolution of magnetic moment orientation for low and high damping:
- nitial orientation of magnetic moment: (-1,0.001,0) – in plane of the sample
- magnetic field instantaneously switched on to value: (+1,0,0)

● α→0
 

● the end of moment moves from 
behind  to the front

 

● blue dots mark the same time 
 intervals

 

● in thin films, contrary to the case of 
the  single domain sphere, the 
 demagnetizing field is, in general*, 
not  parallel to magnetic moment and 
 exerts a torque on it ⇒ the switching 
 time depends on the magnetization

 

● for large α:  
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*it is parallel when M is along the film normal

initial orientation of the moment

tF∝
α
M

H⃗ demag=− ẑ M z

Magnetic moment reversal – thin film

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)

H||z axis



  

●Time evolution of magnetic moment orientation for low and high damping:
- initial orientation of magnetic moment: (-1,0.001,0) – in plane of the sample
- magnetic field instantaneously switched on to value: (+1,0,0)

● α=10
 

● the end of moment moves from 
behind  to the front

 

● if damping is high the moment rotates 
almost within xy plane and 
approaches  field directions 
monotonically without  oscillations  
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initial orientation of the moment

Magnetic moment reversal – thin film

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

● Trajectory of the moment depends on the field value:
- nitial orientation of magnetic moment: (-1,0.001,0) – in plane of the sample
- magnetic field instantaneously switched on to value: (+1,0,0) (red line) or (+3,0,0) (green 

 line)
● α=0.009
 

● the component of magnetization 
 parallel to the external field 
oscillatorilly  approaches saturation 
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blue dots mark the same time  intervals

initial orientation of
the moment

Hx=3

Hx=1

0 10 20 30 40
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Magnetic moment reversal – approach to saturation

Ryoichi Kikuchi, J. Appl. Phys. 27, 1352 (1956)



  

● Sputtered, 0.35 mm wide Cu(75nm)/Py(25nm)/Cu(3nm) trilayer
● Current pulses through thick Cu layer (10ns duration)  create 

field pulses (Oersted field) perpendicular to the film stripline (in 
plane of the film)

● A bias field Hb can be applied parallel to the stripline in  order to 
align the initial magnetization prior to excitation.

● Element-selective x-ray resonant magnetic scattering (XRMS)

S. Buschhorn, F. Brüssing, R. Abrudan and H. Zabel, J. Phys. D: Appl. Phys. 44 ,165001 (2011)

Figure 5. Comparison of the magnetization dynamics 
measured at the Fe (full) and Ni (open symbols) 
resonant edges for a set of different bias fields. The 
detected intensity is converted into opening angle φ 
according to the hysteresis curves.

authors' “data show that Fe and Ni 
moments are aligned parallel to each 
other at all times, while they oscillate 
around the effective field direction 
given by the step field pulse and 
applied bias field”

Element-resolved precessional dynamics



  

● Micromagnetism*, as a refinement of domain theory, begins in 1930ies (Landau, Lifshitz) 
 [9].

● In most cases of interest the use of atomistic description is too computationally 
 demanding.

● In micromagnetism microscopic details of the atomic structure are ignored and the 
 material is considered from the macroscopic point of view as continuous [9].

● Spins are replaced by classical vectors motion of which is described by LLG equation

*the term micromagnetism was coined by William Fuller Brown

Micromagnetism



  

● The exchange interaction energy among spins*, assuming that coupling is non-zero 
between nearest neighbors only, can be written as [9]:

Eex=−J S 2 ∑
neighbours

cosϕ i , j

● The angles between the magnetic moments of neighboring spins are always small due 
to  high strength of exchange coupling [8]. The angle between spins can be expanded in 
 series coefficients**. In one dimensional case we have: 

Eex=−J S 2 ∑
neighbours

cosϕ i , j=−J S 2 ∑
neighbours

(1−1
2
ϕi , j

2 + ...)≈−J S 2 ∑
neighbours

1+ J S 2 ∑
neighbours

1
2
ϕi , j

2

● If we use the state with all spins aligned (φij=0) as a reference state we get:

*this section is taken mainly from A. Aharoni, Introduction to the Theory of Ferromagnetism, Clarendon Press, Oxford 1996
**compare Bloch wall profile calculation in lecture 6

Eex≈
1
2

J S2 ∑
neighbours

ϕ i , j
2

Continuous form of exchange energy



  

●If the angle between neighboring magnetic moments is small it can be expressed as:

∣ϕ i , j∣≈∣m⃗i−m⃗ j∣

●If M (magnetization vector) is a continuous variable we can use first-order expansion in 
 Taylor series [9] to get Δm dependence on r :

m⃗:= M⃗
∣M⃗ ∣

∣m⃗i−m⃗ j∣=∣ ( drx

∂
∂x

+ dr y

∂
∂ y

+ drz

∂
∂z ) m⃗ ∣=∣(d⃗r⋅∇) m⃗∣

ϕi , j

●The exchange energy then becomes:

Eex≈
1
2

J S2 ∑
neighbours

ϕ i , j
2 ≈

1
2

J S2∑
i
∑⃗
dr i

(( d⃗r⋅∇)m⃗ )2 If φij is small the vector mi-mj 
is approximately of the same 

length as arc.

summation from lattice 
point to all its neighbors

Continuous form of exchange energy



  

● As an example consider a simple cubic lattice with following six vectors to the nearest 
neighbors:

d⃗r : (1,0,0) , (0,1,0) , (−1,0 ,0) , (0,−1,0) , (0,0 ,1) , (0,0 ,−1)

● We substitute the above vectors into the sum from previous page. We have:

∑⃗
dr i

(( d⃗r⋅∇) m⃗) 2
=2( ∂

∂ x
mx)

2

+ 2( ∂
∂ y

mx)
2

+ 2( ∂
∂ z

mx)
2

+ 2( ∂
∂ x

m y)
2

+ 2( ∂
∂ y

my)
2

+ 2( ∂
∂ z

m y)
2

+

2(
∂
∂ x

m z)
2

+ 2(
∂
∂ y

m z)
2

+ 2(
∂
∂ z

m z)
2

(
∂
∂ x

m y)
2

+ 2(
∂
∂ y

m y)
2

+ 2(
∂
∂ z

m y)
2

=(∇m y)⋅(∇m y)

1
2 ∑⃗dr i

(( d⃗r⋅∇)m⃗ )2=(∇ mx)
2+ (∇ my)

2+ (∇ m z)
2

● Changing the summation to integration over the ferromagnetic body we obtain for cubic 
systems [9,14 p. 134]:

E ex=
1
2

C∫ [ (∇mx)
2+ (∇m y)

2+ (∇ mz )
2 ] dV C

● For lower symmetries of crystal lattice the expression for exchange energy density has 
slightly different forms . “But for most cases of any practical interest this equation can be 
taken as a good approximation for the exchange energy, in as much as the assumption 
of the continuous material is a good approximation to the physical reality.”-A. Aharoni [9]

- constant

Continuous form of exchange energy



  

● Constant C depends on lattice type [9]:

E ex=
1
2

C∫ [ (∇mx)
2+ (∇m y)

2+ (∇ mz)
2 ] dV C=2 J S 2

a
c

J- exchange integral, S – spin,
a-lattice constant, c- constant

lattice c

sc 1

bcc 2

fcc 4

● For hexagonal crystal, such as cobalt, one obtains the 
 same form of expression but the value of constant  C 
is  different:

C=4 √ 2 J S 2

a
, where a is nearest neighbors' distance

● It is common ([8] for example) to write the expression 
 for exchange energy density without the factor ½; a 
 different constant  A= ½ C is defined then.

● Both A and C are referred to as “exchange constant 
of  the material” [9] or exchange stiffness constant (A) 
[8].

● Constant A is of the order of 10×10-12 Jm-1 in 
 ferromagnetic materials.

● The exchange constant is roughly proportional to 
Curie   temperature [15]:

A[pJ m-1]*

α-Fe 21

Co 31

Ni 7

Ni80Fe20 [7] 11

*from  H. Kronmüller, M. Fähnle,
 Micromagnetism... [8] 

A≈
k B T C

2a0

, a0 -lattice parameter in
 a simple structure

Continuous form of exchange energy



  

● We have the expression for the effective field [7, 9]:

to be read as                                                           ([9, p.178], [14, p. 126])
∂
∂ m⃗

f = x̂
∂
∂mx

f + ŷ
∂

∂m y

f + ẑ
∂
∂mz

f

Effective field is an extension of 
magnetostatic energy terms of 
different origin:

● If one is interested in magnetization distribution static equilibrium  the only condition that 
must be satisfied is [7,14]:

m⃗×H⃗ eff=0

● Symmetry breaking of exchange interactions at outer surfaces brings additional so called 
 free boundary conditions [7,14 p.135]:

∂ m⃗
∂ n⃗

=0

M must point at each point along the direction of the effective field

Equilibrium condition

B⃗eff=μ0(∇ 2 M⃗+H⃗+∂
∂ m⃗

Eanisotropy )

Emagn=−M⃗⋅B⃗

H⃗ eff=−
1

μ0 M S

∂
∂ m⃗

E total



  

Lets us assume that a sample possesses uniaxial anisotropy with easy axis along z-axis

to be read as                                                           ([9, p.178], [14, p. 126])
∂
∂ m⃗

f = x̂
∂
∂mx

f + ŷ
∂

∂m y

f + ẑ
∂
∂mz

f

The effective field of anisotropy – an example

Effective field is an extension of 
magnetostatic energy terms of 
different origin:

Emagn=−M⃗⋅B⃗

H⃗ eff=−
1

μ0 M S

∂
∂ m⃗

E total



  

The anisotropy energy can be described as (where θ is a polar angle of magnetic moment 
of the sample):

to be read as                                                           ([9, p.178], [14, p. 126])
∂
∂ m⃗

f = x̂
∂
∂mx

f + ŷ
∂

∂m y

f + ẑ
∂
∂mz

f

The effective field of anisotropy – an example

Effective field is an extension of 
magnetostatic energy terms of 
different origin:

Emagn=−M⃗⋅B⃗

H⃗ eff=−
1

μ0 M S

∂
∂ m⃗

E total

E=−K cos2(θ) , K>0

, which in case of using angles 
from the image below transforms 
to:

E=−K cos2(γ)

The components of a unit vector parallel to a given vector M 
are known as its direction cosines:

m x=
M⃗⋅x̂
|M⃗|

=cos (α)

m y=
M⃗⋅ŷ

|M⃗|
=cos (β)

m z=
M⃗⋅ẑ
|M⃗|

=cos( γ)
or, using direction cosines,
to:

E=−K m z
2



  

to be read as                                                           ([9, p.178], [14, p. 126])
∂
∂ m⃗

f = x̂
∂
∂mx

f + ŷ
∂

∂m y

f + ẑ
∂
∂mz

f

The effective field of anisotropy – an example

Effective field is an extension of 
magnetostatic energy terms of 
different origin:

Emagn=−M⃗⋅B⃗

H⃗ eff=−
1

μ0 M S

∂
∂ m⃗

E total

… or, using direction cosines,
to:
E=−K m z

2

Using the definition of vector 
derivative we arrive at:

∂
∂ m⃗

E= ẑ ∂
∂mz

E=−2K m z

and finally have:

Beff=
2K mz

M s

ẑ

Note that Beff depends on the orientation of magnetic 
moment, but in some cases, when we are interested only in 
small deviations from easy axis we can use the 
approximation [15,25]:

Beff≈
2K
M s

ẑ

In the case of constant Beff “A magnetic field defines an easy 
direction, not an easy axis.” [Coey, 25, p. 171]:



  

The effective field of anisotropy – an example

… or, using direction cosines,
to:
E=−K m z

2

Using the definition of vector 
derivative we arrive at:

∂
∂ m⃗

E= ẑ ∂
∂mz

E=−2Ku mz

and finally have:

Beff=
2K mz

M s

ẑ

Note too, that “the exact” effective field gives the proper dependence of the anisotropy 
energy* on the angle γ:

Δ Emz1→m z2
=∫mz 1

mz 2

−Beff⋅dmM s=∫mz 1

mz 2

−Beff
z ⋅dmz M s=∫mz 1

mz 2

−
2K m z

M s

dm z M s=[−K m z
2 ]mz 2

mz 1

=−K (cos2(γ2)−cos2(γ1)) → γ1=0: E(γ)=−K cos2(γ)

*calculation per unit volume and remembering that the effective field depends on γ

E(θ)=−K cos2(θ) , K>0



  

● In the so called field based approach [7] one is seeking a numerical solution to LLG 
equation by first calculating the effective field and then inserting it into LLG equation.

H⃗ eff=−
1

μ0 M S

∂
∂ m⃗

E total

● The most difficult task is the calculation of long range magnetostatic interactions
●  Exchange interactions and magnetocrystalline anisotropy are calculated locally:
- exchange energy depends on the magnetic moment orientation of nearest neighbors  
  (nn) (6-neighbor exchange in simple cubic crystals) or nnn
- magnetocrystalline energy depends only on the orientation of the moment itself

Finite difference micromagnetism



  

● Demagnetizing field evaluation can be calculated in formalism of volume and surface  
charges (lecture 2).

● The volume of magnetic body is divided into a number of discretization cells.
● It can  be assumed that each cell has constant magnetization divergence within its 

volume  and surface tiles with magnetic charge density [14].
● The demagnetizing field in a given cell is averaged across its volume for integrating LLG 

equation.
● It can be assumed too that 

the magnetization within 
each cell is homogeneous 
[8].

● The discretization cell must 
not necessarily be a cube 
[16]. 

Finite difference micromagnetism – demagnetizing field evaluation



  

● The required resolution of discretization (the maximum sizes of cells) is determined by 
the  smallest features which may appear in the solution of micromagnetic problem [17].

● In micromagnetism there are three typical length scales [7,8]:
 

-magnetocrystalline exchange length – related to the width of the Bloch wall (π lk)

-magnetostatic exchange length* [10] – related to the width of the Néel wall (π ls)

 

-thermal exchange length [13]

● The discretization cell should be smaller than the smallest of three lengths defined         
above [17].

● The magnetostatic exchange length rarely exceeds a few nanometers in 3d 
ferromagnetic metals or alloys; it imposes a severe constraint on the mesh size in 
numerical simulations [7].

l k=√ A /K 1

l k=√ 2 A

μ0 M s
2

l k=√ A
μ 0 M s H th

, H th=√ 2α k b T

Δ γ μ0 M s l
3

*that length is sometimes defined without ,,2” under square root [7].

Finite difference micromagnetism – exchange lengths



  

● The magnetostatic exchange length rarely exceeds a few nanometers in 3d 
ferromagnetic   metals or alloys; it imposes a severe constraint on the mesh size in 
numerical simulations   [7].

● At a distance roughly equal to the appropriate exchange length the spin configuration is that of 
unperturbed state:

    - the local perturbation can be a grain with high magnetocrystalline anisotropy with easy direction     
      perpendicular to the applied field (here, on the drawing, directed to the right)
    - it can be laser-heated region of the sample in which magnetocrystalline anisotropy vanishes and    
      the spin is directed along the external field (this time directed upward), etc.

lk[nm] ls[nm]

α-Fe 21 3.3

Co 8.3 4.9

Ni 7 8.7

SmCo5 0.84 5.3

table data from:
H. Kronmüller, M. Fähnle, 
Micromagnetism and the 
Microstructure of 
Ferromagnetic Solids,
Cambridge University Press, 
2003

Finite difference micromagnetism – exchange lengths



  

● In micromagnetic simulation every discretization cell interacts with every other cell by 
magnetostatic interactions .

● The shortest exchange length determines which energy term contributes the largest 
amount to the total energy [8].

● In soft magnetic materials the spin arrangements are more or less divergence free – 
pole  avoidance principle [9].

● each cell is a source of magnetic 
field either due to volume or 
to surface magnetic charges

● to compute the average field through the 
cell  the demagnetizing factors for 
rectangular ferromagnetic prisms are 
used.

Finite difference micromagnetism



  

● In micromagnetic simulation every discretization cell interacts with every other cell by 
magnetostatic interactions .

● The shortest exchange length determines which energy term contributes the largest 
amount to the total energy [8].

● In soft magnetic materials the spin arrangements are more or less divergence free – 
pole  avoidance principle [9].

There exist analytical formulas for interaction 
energy between rectangular blocks which are 
used to calculate effective field, due to all 
blocks in the simulation, acting on a magnetic 
moment of a given block:

A.J. Newell, W. Williams, D.J. Dunlop
Journal of Geophysical Research 98, 9551 
(1993)

Finite difference micromagnetism



  

● In dynamic micromagnetic simulation the effective field is calculated as the input of LLG 
equation (for example OOMMF) [18].

● The magnetic moments of the cells are then updated according to angular velocities 
obtained from LLG equation.

● The time step is adjusted so that the “the total energy of the system decreases, and the 
maximum error between the predicted and final M is smaller than a nominal value” [18]

dm⃗
dt

=
γ

(1+α 2)
m⃗×B⃗− α

(1+ α 2)
γ
∣m⃗∣

m⃗×m⃗×B⃗

Finite difference micromagnetism – calculation scheme



  

● The oommf simulation of a “sample” consisting of four discretization cells
● In simulation of the hysteresis, in contrast to study of dynamics, we usually assume 

relatively high damping constant to make the simulation time shorter 

Finite difference micromagnetism – exemplary simulation

Trajectories (orientation vs. time) simulated 
with oommf [18] for four 3×3×3nm3 cubes 
after instantaneous switching the field from 0 
to -1000mT along the x-direction (along cube 
edge); only shape anisotropy present; 
simulation time was 0.33 ns; damping α =0.3

cubes edges are along Cartesian 
directions; the moments point initially 
approximately along x-direction 



  

Finite difference micromagnetism – exemplary simulation

● The oommf simulation of a “sample” consisting of four discretization cells
● In simulation of the hysteresis, in contrast to study of dynamics, we usually assume 

relatively high damping constant to make the simulation time shorter 

Trajectory of the resultant moment 
corresponding to the simulation 
from the previous slide



  

Finite difference micromagnetism – exemplary simulation

● The oommf simulation of a “sample” consisting of four discretization cells
● In simulation of the hysteresis, in contrast to study of dynamics, we usually assume 

relatively high damping constant to make the simulation time shorter 

Trajectory of the resultant moment 
corresponding to the simulation 
from the previous slide ...

… and the corresponding time variations of 
the Cartesian components of the resultant 
moment

m
x,

 m
y,

 m
z



  

● Remanent state of thin 900×900nm NiFe film; discretization cell 3×3×1nm3

● Simulation time – 6ns (simulated with OOMMF [18])

● Magnetization tends to be align along 
outer  edges of the specimen – 
minimization of  surface charges

● Exchange anisotropy forces moments 
to  be parallel to each other – central 
part of  the specimen

each arrow corresponds to 11×11 discretization cells

Finite difference micromagnetism – the second example



  

Langevin-Landau-Lifshitz-Gilbert equation ...
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