
5

Magnetic hysteresis

 $\mathbf{M}\mathbf{M}\mathbf{A}\mathbf{H}$ **GTDS** ΝΕ Т E ER R тι E Α S CL

Poznań 2019

Maciej Urbaniak

S

Magnetic hysteresis

- General properties of magnetic hysteresis
- Rate-dependent hysteresis
- Preisach model

RECOMA® Summary of main grades of SmCo₅ and Sm₂Co₁₇

				Su	ımma	ry of	maii	n gra	ades	of Sr	- nCo₅	and S	Sm ₂ Co	0 ₁₇				Ą	etizing ⁽²⁾	erature cient (20-150°C)	num lting erature ⁽³⁾
			(BH	I)max			В	sr			н	lcb		In	trinsic Co Hcj		у	Density	Magne Field ⁽	Tempo Coeffi of Br (Maxin Opera Temp
		kJ/	/m ³	MO	GOe		Т	k	κG	k/	۹/m	k	Се	k A	√m	k	Oe	g/cm ³	kA/m	%/K	°C
Product	Designator ⁽¹⁾	typ	min	typ	min	typ	min	typ	min	typ	min	typ	min	typ	min	typ	min	typ	min	typ	
Recoma 18	(135/200) A	143	135	18.0	17.0	0.87	0.83	8.7	8.3	650	600	8.2	7.5	2400	2000	30	25	8.4	>2000	-0.045	250
Recoma 20	(140/200) A	160	140	20.1	17.6	0.90	0.85	9.0	8.5	700	640	8.8	8.0	2400	2000	30	25	8.4	>2000	-0.045	250
Recoma 22	(155/200) T	175	155	22.0	19.5	0.94	0.90	94	90	730	680	92	86	2400	2000	30	25	84	>2000	-0.045	250

source: www.arnoldmagnetics.com, 2019.05.25

Μ

U

R B A

Ν

Κ

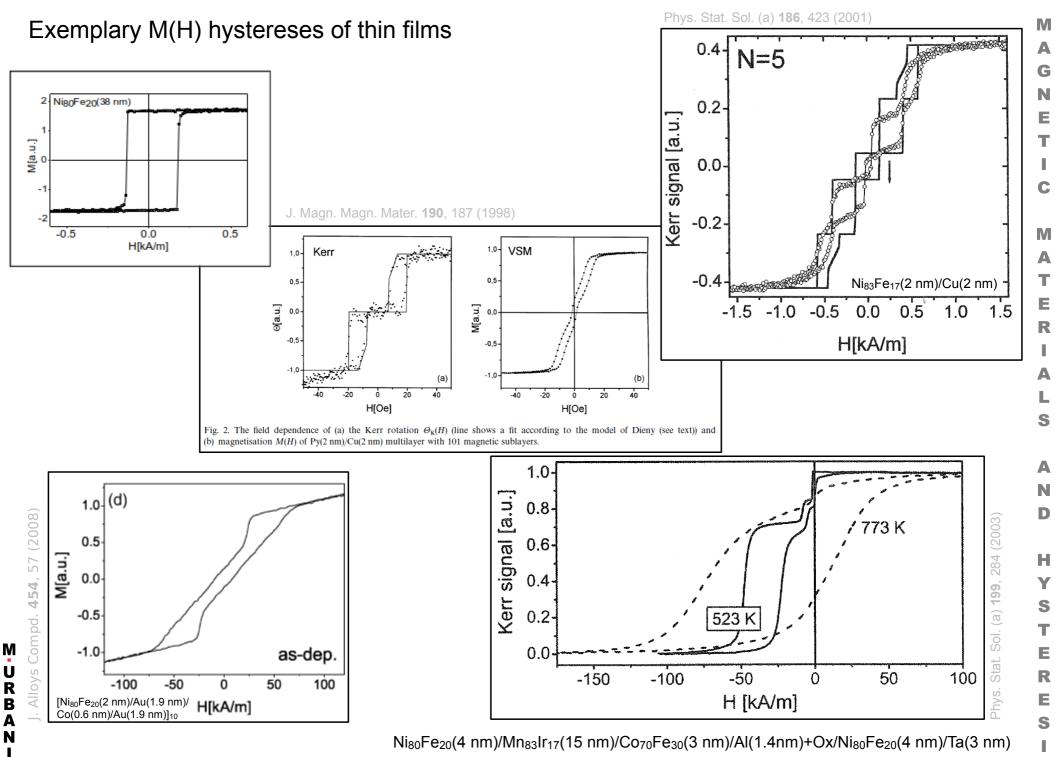
Depending on the use (e.g. permanent magnets or transformers applications) different parameters of the hysteresis are most important. In hard magnets applications the (BM)max* and coercivity are most relevant. In electrical steel for transformers hysteresis losses and attainable polarization (µ₀M) are crucial.

powercore®) C: Guaranteed I	magnetic pr	operties		thys	senk	rupp	Elec	trical St	eel Gmb
Grade	Thickness	Thickness	Typical	core loss at			Guaran core los		Typical polarization at	Guaranteed polarization at
	[mm]	[inch]	1.5 T	1.7 T	1.5 T	1.7 T	1.7 T	1.7 T		
			50 Hz	50 Hz	60 Hz	60 Hz	50 Hz	60 Hz	800 A/m	800 A/m
			W/kg	W/kg	W/lb	W/lb	W/kg	W/Ib	typ. T	min. T
C 120-23	0.23	0.009	0.77	1.18	0.46	0.71	1.20	0.72	1.83	1.78
C 120-27	0.27	0.011	0.80	1.18	0.48	0.71	1.20	0.72	1.83	1.80
C 130-27	0.27	0 011	0.83	1 23	0.50	0.74	1 30	0 78	1.83	1 78

source: www.thyssenkrupp-steel.com/en/electricalsteel, 2019.05.29

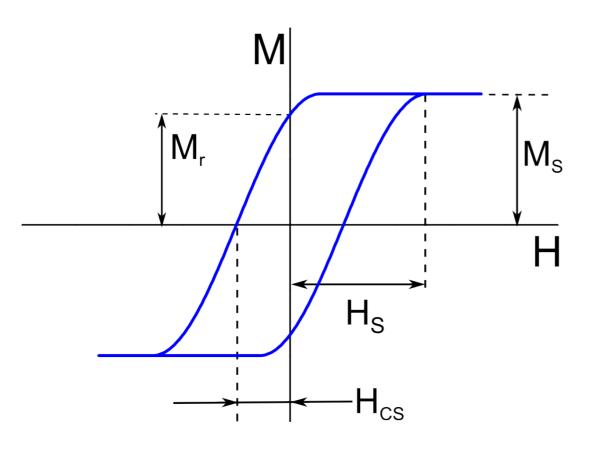
* see my lecture from 2012 (www.ifmpan.poznan.pl/~urbaniak/Wyklady2012/urbifmpan2012lect3 02.pdf)

Μ


G

Ν

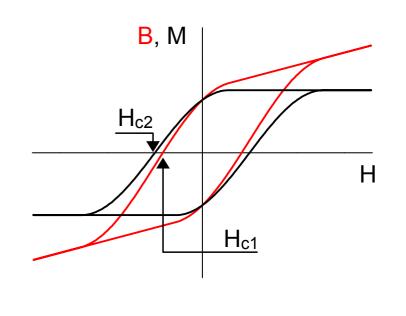
Ε Т


С

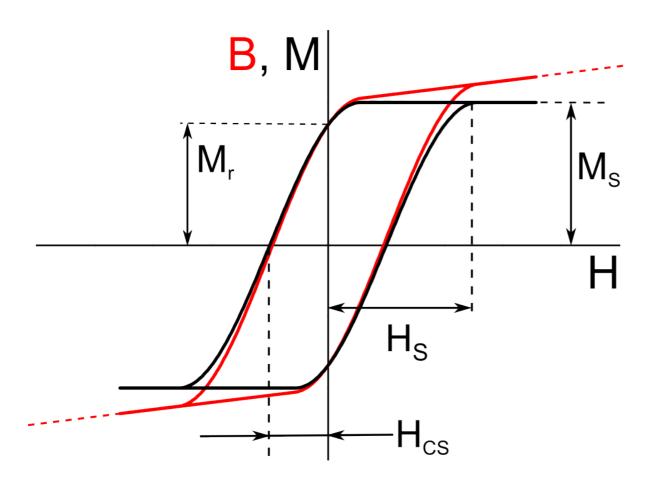
Μ Α Т Ε R

A K 2019

S



•A hysteresis loop can be expressed in terms of B(H) or M(H) curves.


•In soft magnetic materials (small H_s) both descriptions differ negligibly [1].

•In hard magnetic materials both descriptions differ significantly leading to two possible definitions of coercive field (and coercivity).

•*M*(*H*) curve better reflects the intrinsic properties of magnetic materials.

The magnetic hysteresis can be presented both as B(H) and $M(H)^*$ dependencies.

intrinsic induction:

 $\vec{B}_i = \vec{B} - \mu_0 \vec{H} = \mu_0 \vec{M}$

coercive field strength – field required to reduce the **magnetic induction** to zero after the material has been symmetrically cyclically magnetized.

intrinsic coercive field strength – field required to reduce the intrinsic induction to zero after...

coercivity, *H*cs—the maximum value of coercive field strength that can be attained when the magnetic material is symmetrically cyclically magnetized to *saturation induction*, B_S.

Μ

A G N

> E T

С

Μ

Α

т

Ε

R

Α

S

Ν

D

н

Υ

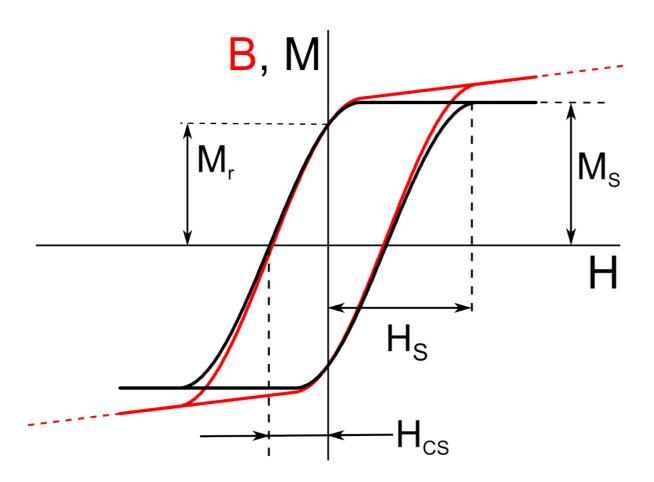
S

Т

Ε

R

E S


Μ

U

R B A

Ν

The magnetic hysteresis can be presented both as B(H) and $M(H)^*$ dependencies.

saturation induction, Bs—the maximum intrinsic induction possible in a material saturation magnetization, Ms: $\vec{M}_{s} = \vec{B}_{s} / \mu_{0}$ demagnetization curve-the portion of a dc hysteresis loop that lies in the second (or fourth quadrant). Points on this curve are designated by the coordinates, **B**_d and H_{d} . **remanence**, *B***_{dm}—the maximum** value of the remanent induction for a given geometry of the magnetic circuit. Т paraprocess, forced magnetization—after domain walls disappear at technical saturation further increase of the external field leads to the asymptotic increase of magnetization to that corresponding to the

absolute zero of temperature [7]

Μ

Α G Ν

E Т

С

Μ

Α

Т

Ε

R

Α

S

Α Ν

D

н

Y S

Ε

R

Е

S

S

Hysteresis losses
We use the following formula [8] for the energy density of the magnetic field:

$$\rho_{\kappa} = \frac{1}{2} \vec{B} \cdot \vec{H}$$
Introducing complex permeability, $\mu = \mu_0(\mu'_R - i\mu''_R)$ we get [6]:
 $\vec{B} = \mu \vec{H} = \mu_0(\mu'_R - i\mu''_R) \vec{H} e^{i(\omega + i\theta)}$
The mean power dissipated in a periodic system is given by [6]:
 $\vec{P} = \Re(\vec{H}) \Re(\frac{\partial \vec{B}}{\partial t}) = \frac{1}{2} \Re[(\mu_0 * (\mu' - i * \mu''))) * \omega * (H'_x + iH''_x) * (H'_x - iH''_x)]$
 $dissipative term in complex
magnetic permeability
 $\Re(\vec{H}_1) \Re(\vec{H}_2) = \frac{1}{2} \Re[H_1 \cdot H_2 \cdot$$

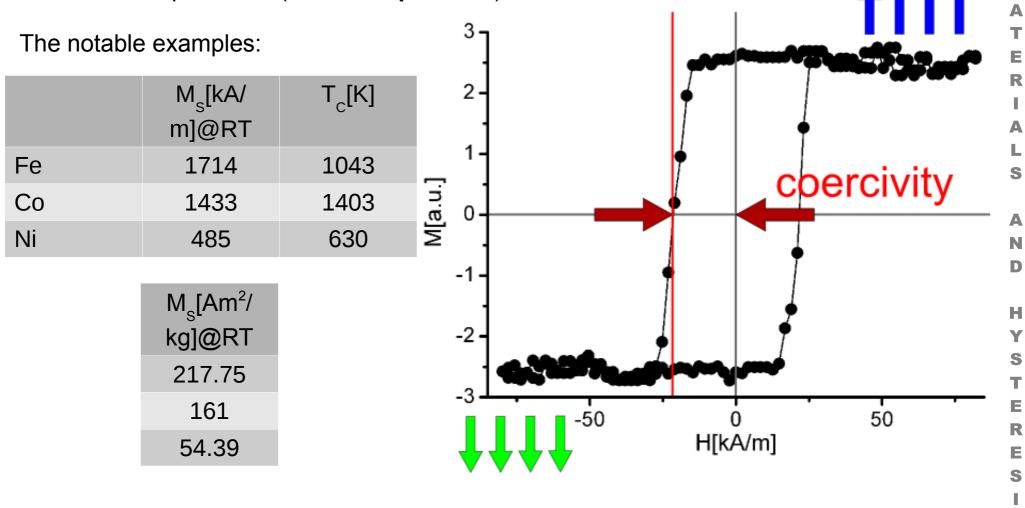
Most notable features of ferromagnetic materials:

- high initial susceptibility/permeability
- they usually retain magnetization after the removal of the external field remanence

Μ

A G N

E


Т

С

Μ

S

- the magnetization curve (B-H or M-H) is nonlinear and hysteretic
- they lose ferromagnetic properties at elevated temperatures (**Curie temperature**)

Μ


U

R B

A

Ν

Because field *H* and magnetization *M* are vector quantities the full description of hysteresis should include information about the magnetization component perpendicular to the applied field – it gives more information than the scalar measurement. Vector Vibrating Sample Magnetometer (VVSM):

Μ

U

R

B A N

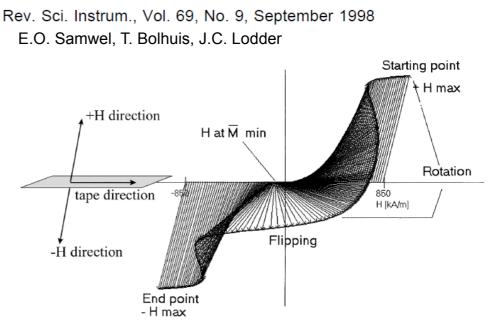
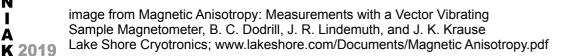


FIG. 1. Reversal process in a γ -Fe₂O₃ audio tape at 80°. The arrows indicate the magnetization vector. The downward half of a hysteresis loop is shown. The horizontal direction represents the sample plane, the vertical direction the normal to the tape.


Arrows showing magnetization direction start at point on field axis corresponding to the appropriate external field value

М

G N

Ε

Т

M(H) hysteresis – vector picture

Vector Vibrating Sample Magnetometer (VVSM):

FIG. 2. (Color online) Magnetization curve of CrO_2 magnetic recording tape with the field applied perpendicular to the plane (a), 1 s per point. Torque curve for the same sample recorded at 200 mT, 100 ms per data point.

Μ

U

R

В

Α

Ν

Κ

•VVSM magnetometer with two compact Halbach cylinders

•The vector measurement principle can be used with MOKE magnetometers too:

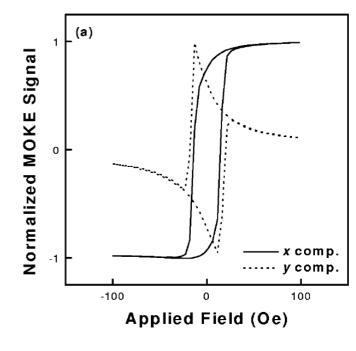


Fig. 3. Hysteresis loops of the x and the y components measured by using the MOKE for α =45°.

The demagnetizing field* changes the inner field within the sample which **can** lead to the change of characteristic fields of the hysteresis loop (switching fields, coercive field) LONG ROD - weak demagnetization field

Μ

A G N

Ε

Т

С

Μ

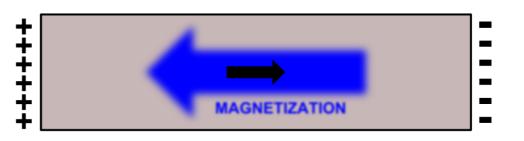
A T

E R

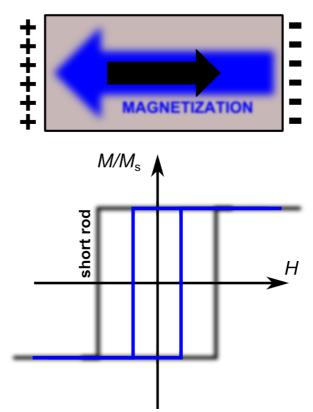
S

A N D

н


Y S T

Ε


R

E S

S

short rod -STRONG DEMAGNETIZATION FIELD

 $\vec{B} = \mu_0 (-N \cdot \vec{M} + \vec{M})$

M(H) hysteresis – shape of the specimen

Shape of the sample influences the measured hysteresis not only through the scaling of H-axis. The demagnetizing field can influence the character of the M(H) dependence:

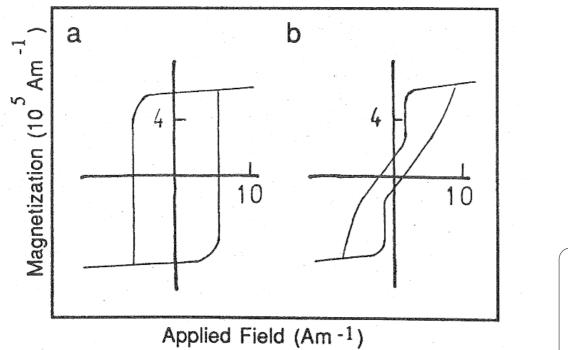


Fig. 1.- Hysteresis loops of two Fe-rich wires ($Fe_{77.5}Si_{7.5}B_{15}$) with different length: 13.1 cm(a) and 5.2 cm (b).

'There exists nothing that we can straightforwardly call the "hysteresis loop of iron".' - Bertotti [1]

Μ

U

R B

A

Ν

 soft amorphous material shows a typical bistable behavior. Closure domains extend up to about 3cm from ends into the wire. In short wires (less than 7cm) the collapse of closure domains suppresses bistable behavior. 	
To associate an experimental curve with a given material one has to state [1]:	
 the experimental conditions geometry of the experiment 	

•The long wire made of a magnetically C

 spatial scale of the experiment (*i.e.*, what is the size of the volume/area we get signal from) S

T.

Ε

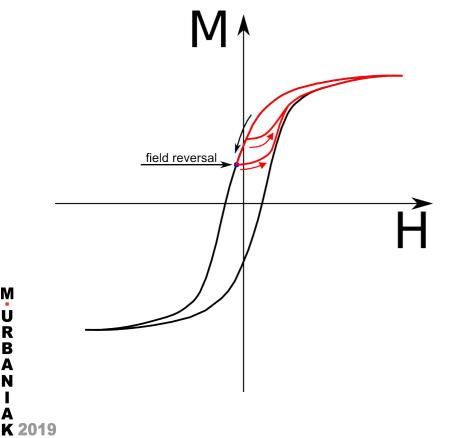
R

E

S

Μ

G N

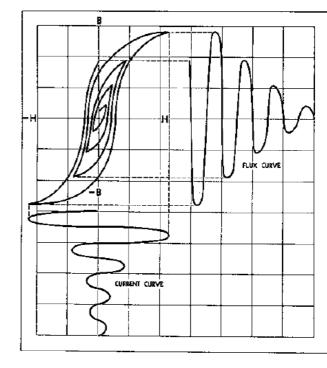

Ε

Т

M(H) hysteresis – cont'd

Technical saturation - state reached under field such that further increase of field does not change hysteresis properties

- Each point at the interior of the saturation loop can be reached in a infinite number of ways
- *First order return branch* start at saturation and reversal at some point of saturation loop
- Second, third... order return branch- two, three... reversal fields
- Ac-demagnetization sequence of large number of finely spaced reversals with decreasing values of reversal fields leads to demagnetized state (zero remanent magnetization)
- Anhysteretic curve ac-demagnetizing field superimposed on constant field

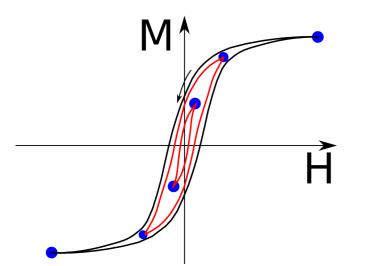

Μ

U

R

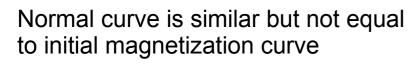
В A

Ν


Μ

Α

G Ν


Ε

• Normal magnetization curve – start from demagnetized state and cycle field with increasing amplitude; the line connecting the tips of the curve (places where the field sweep changes direction) [1]*.

Schematic drawing of normal curve – line connecting blue dots. Note: in real measurement all points are on the same $\mathbf{M}(\mathbf{H})$ curve obtained with field increasing somewhat like that:

 $H(t) = Const \ t \ \cos(\omega t),$ where $\omega \gg Const$

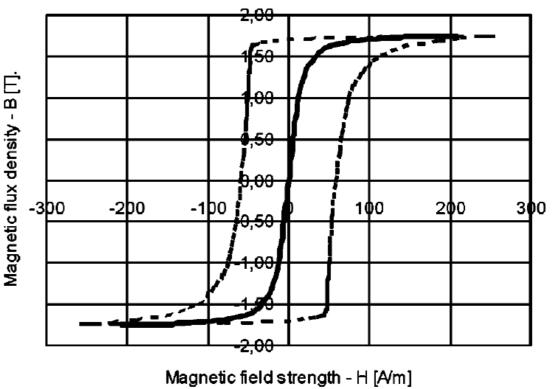


FIG. 1. Anhysteretic magnetization curve (continuous line) and hysteresis loop (dot line) of the magnetic materials.

Μ Δ G Ν

Ε

Т

С

Μ

Α Т Ε R

S

Α

Ν

D

н

Υ

S Т

E

R

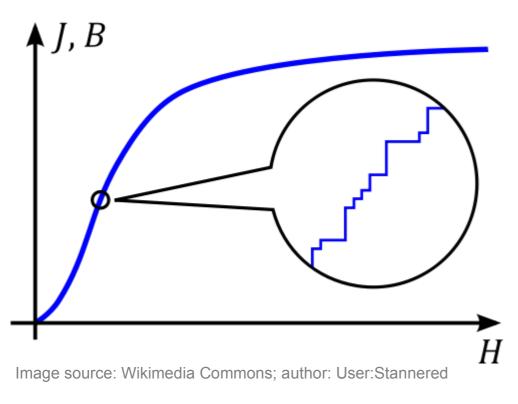
Е

S

S

*The normal curve can denote the B(H) dependence too. K 2019

J. Kwiczala and B. Kasperczyk , J. Appl. Phys. 97, 10E504 (2005)


M U

RB

A N

A K 2019

- The magnetic moments of the magnetized body have different local surroundings (grains in polycrystals, dislocations, deformations, inclusions, interface/surface roughness etc.)
- These sources of disorder are coupled to the magnetization through exchange, anisotropy, magnetoelastic and magnetostatic interactions [1]
- As a result energy landscape of the system exhibits numerous local minima.
- At normal temperatures the heights of the energy barriers separating local minima is enough to keep the system in initial state.
- Applied field destroys that equilibrium; if it changes with time the system jumps abruptly to consecutive minima – this leads to a noncontinuous change of magnetic moment/magnetization with time

 Barkhausen effect is closely related to the presence of magnetic domains

Barkhausen effect

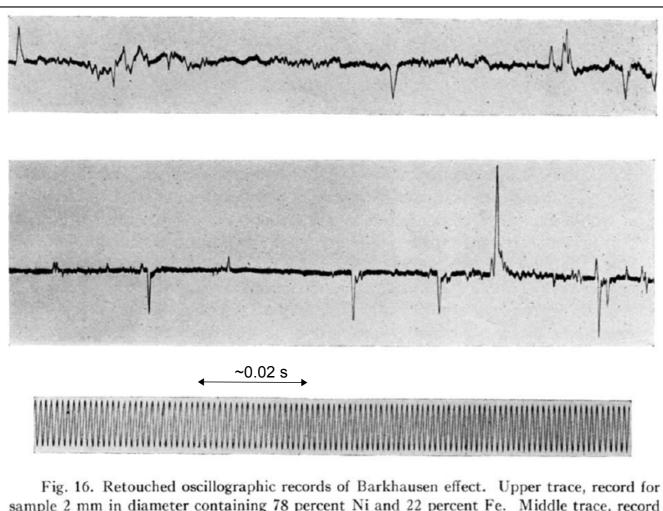


Fig. 16. Retouched oscillographic records of Barkhausen effect. Upper trace, record for sample 2 mm in diameter containing 78 percent Ni and 22 percent Fe. Middle trace, record for sample 1 mm in diameter containing 81 percent Ni and 19 percent Fe. Lower trace, timing line of frequency 1000 cycles per second.

M.URBANIA

R. M. Bozorth, Phys. Rev. **34**, 792 (1929)

Μ

A G N E T

С

M A T E R

А

S

A N D

Н

Y

Dynamic effects – eddy current losses

• The shape of the M(H) loop depends on field sweep rate:

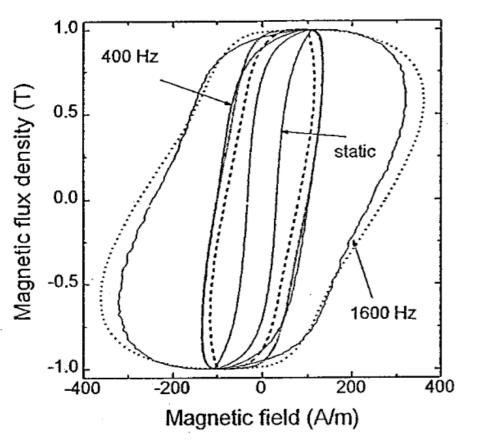


FIG. 3. Dynamic hysteresis loops at 1 T, for 0, 400, 1600 Hz. Continuous lines measurements. Dotted lines FEM prediction based on dynamic PM. Broken line. FEM prediction based on conventional PM.

Μ

U

R

B A

Ν

- Measurement on commercial (AST 27/ 35) non-oriented Fe–Si alloys (2.9 wt. % Si, 0.4 wt. % AI), with average grain size of 75 µm. The lamination thickness was 0.334 mm.
- With increasing frequency *f* the are of the saturation loop increases – this means that the amount of energy irreversibly turned into heat in every cycle increases with *f*.

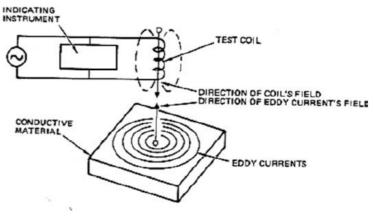


FIG. 2.17. Basic eddy current testing equipment.

image from "Eddy Current Testing at Level 2..." INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna 2011 Μ

G N

E

T.

С

Μ

A T

Е

R

Α

S

D

S

Т

E

R

Ε

S

Dynamic effects – eddy current losses
• The energy transformed into heat in one cycle is [1]: $\frac{P}{f} = \oint_{loop} H_{applied} dB$, where <i>P</i> is a power loss and $\frac{P}{f}$ is a loss per cycle
 The losses can be formally expressed as (Joule's law):
$\frac{P}{f} = \frac{1}{V} \int_{V} d^{3}r \int_{0}^{1/f} j(\vec{r},t) ^{2} \rho(\vec{r})$
 In real systems the eddy current distribution is not known. It can be though expressed phenomenologically as [1]:
$\frac{P}{f} = C_0 + C_1 f + C_2 f^{-1/2}$ The coefficients may be functions of magnetization
 The above equation can be applied to the broad variety of magnetic materials with different domain structure.

Μ

A G N E T

I C

Μ

A T E R

I.

A L S

A N

D

H Y

S T

E R

E S I S

M U R B A N I A K 2019 • It turns out that the constants in the $P/f = C_0 + C_1 f + C_2 f^{-1/2}$ equation can be attributed to different processes influencing the hysteresis [1]:

Μ

A G

N E

Т

С

Μ

A T

E R

S

Α

N D

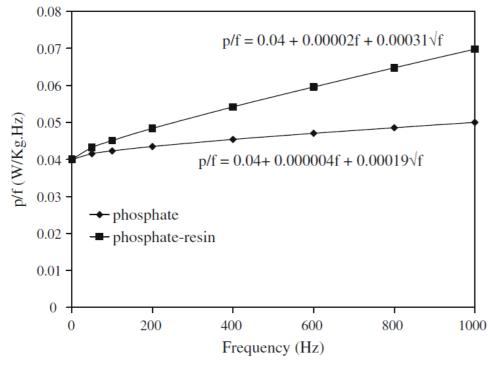
H Y

S

Т

Ε

R


Ε

S

S

-hysteresis loss – scale of Barkhausen effect – eddy currents induced by the small jumps of domain walls fragments - C₀
 -classical loss – related to specimen geometry – calculated from Maxwell's equations assuming homogeneous, conducting material with no domain structure - C₁
 -excess loss – caused by eddy currents accompanying steady motion of domain walls

under the influence of external field

Μ

U

R

В

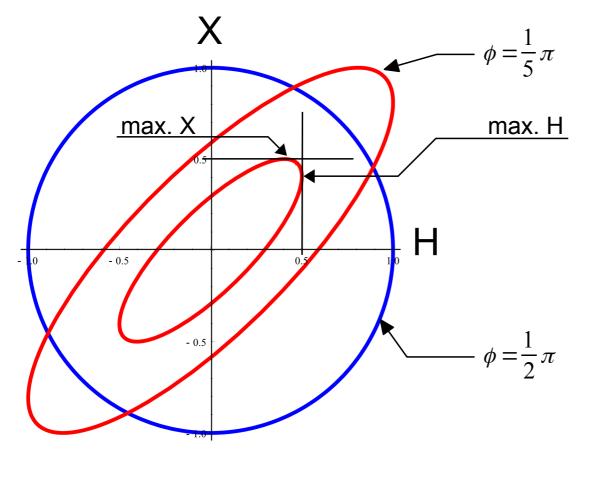
Α

Ν

K 2019 A.H. Taghvaei, H. Shokrollahi, K. Janghorban, H. Abiri, Materials and Design 30 (2009) 3989–3995

Hysteresis lag

Μ


U R B A

Ν

A

K 2019

- The word hysteresis, coined by Scotsman James Alfred Ewing from ancient Greek ὑστέρησις (hysterēsis, "shortcoming"), denotes in general that the output is lagging the input [1].
- As an example consider a system:
- $H(t) = H_0 \cos(\omega t) \qquad \qquad X(t) = X_0 \cos(\omega t \varphi)$

- In general the response to sinusoidal excitation is not sinusoidal.
- Undistorted response is R characteristic for *linear systems* where the superposition principle A holds.

Μ

Α G Ν

Е

т

С

Μ

Т

Ε

S

Ν

D

н Υ S

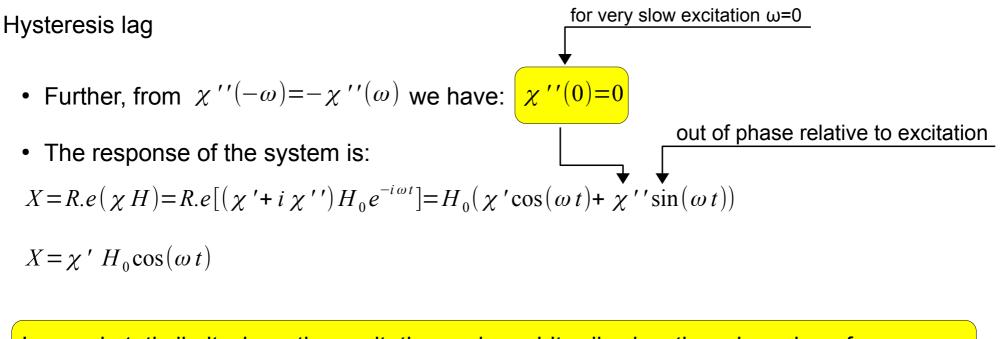
Ε

R E S

S

Hysteresis lag

Μ


U R B

A

K 2019 **because $\cos(-\omega) = \cos(\omega)$ and $\sin(-\omega) = -\sin(\omega)$

- G • We have time-invariant system which responses at time t to an input impulse $\delta(t-t_0)$ that Е occurred at t₀. The response can be often written as [1]: Т $\Phi(t) = \chi_i \delta(t) + \Phi_d(t) \Theta(t)$ Heaviside step function - response follows excitation С Х -2 Μ • The terms represent the instantaneous and delayed response. It is assumed that: Α Т $\Phi_d(t) \rightarrow 0$ as $t \rightarrow \infty$ which means that after long enough time after excitation the system E is at X=0. R Using a superposition principle the response to a arbitrary input is: $X(t) = \chi_i H(t) + \int \Phi_d(t-t') H(t') dt'$ (1) In frequency domain it can be rewritten to give [1]: $X_{\omega} = \chi(\omega) H_{\omega}$ with $\chi(\omega) = \chi_i + \int_0^{\cdot} \Phi_d(t) e^{-i\omega t} dt$ • The generalized susceptibility is a complex number: $\chi(\omega) = \chi'(\omega) + \chi''(\omega)$ S т From Euler's formula* and the fact that the response Φ is a real function it follows that**: E $\chi'(-\omega) = \chi'(\omega)$ $\chi''(-\omega) = -\chi''(\omega)$
 - $e^{ix} = \cos(x) + i\sin(x)$

М

М

G

N E

Т

С

Μ

T E R

Α

S

Α

N

D

н

S

E

R

Е

S

S

In quasi-static limit where the excitation varies arbitrarily slow there is no lag of response relative to input and there is **no hysteresis**

• Thermal fluctuations in the limit of very slowly varying excitation lead the system to the absolute energy minimum

- We consider the case when H and X are conjugate variables; HdX represents the work done on the system by external forces [1].
- The first law of thermodynamics may be written as:

 $dU = H dX + \delta Q$

Μ

U R

B A N

- If the system undergoes cyclic changes its internal energy is not changed (T=const) and the work done on the system is dissipated as heat: $\phi = 0$ $\phi = 0.1\pi$ $\phi = 0.2\pi$ $\phi = 0.5\pi$
- $\oint_{cycle} H \ dX = \oint_{cycle} \delta Q$
- In any hysteretic system the work dissipated in each cycle is given by the area of the loop described by X(H). For the case of linear system (see 4 slides back) we get [1]:

$$W = \oint_{cycle} H \ dX = \pi H_0 X_0 \sin(\varphi) \tag{2}$$

• Using the identity $\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$ and remembering that: $X = X_0 \cos(\omega t - \varphi) = R.e(\chi H) = H_0(\chi'\cos(\omega t) + \chi''\sin(\omega t))$ $B_{\parallel} W = \int \Delta \vec{B} \cdot \vec{H} \, dV$

we get, comparing coefficients of $cos(\omega t)$ and $sin(\omega t)$:

$$X_0 \cos(\varphi) = H_0 \chi' \qquad \qquad X_0 \sin(\varphi) = H_0 \chi''$$

2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Н

ΛB

М

G

• Substituting the second of the above identities into Eq.2 we get [1].	E
$ W = \pi H_0^2 \chi''(\omega) $	ד ו ס
 Dissipation in linear systems is controlled by the imaginary part of susceptibility. Expressing losses in terms of loss angle is not limited to linear systems. 	N A T E
$- W = \oint H dX = \pi H_0 X_0 \sin(\varphi)$	(2)
cycle	C / A N D H Y
$X_{0}\cos(\varphi) = H_{0}\chi' \qquad \qquad X_{0}\sin(\varphi) = H_{0}\chi''$	S T E R E S
I A K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998	S

• Substituting the second of the above identities into Eq.2 we get [1]:

Μ А G Ν

Μ

U

R

B A

Ν

- In a system exhibiting hysteresis future evolution depends on past history [1].
- In systems with memory the output at time t depends not only on the input at time t but also on previous inputs *H*(*t'*) at times *t'*.
- Nonpersistent memory
- input *H* varies for t<t₀ and remains constant for t>t₀; from Eq.1 we have:

$$X(t) = \chi_{i}H_{0} + \int_{-\infty}^{t_{0}} \Phi_{d}(t-t')H(t')dt' + H_{0}\int_{0}^{t-t_{0}} \Phi_{d}(t')dt'$$

- because $\Phi_{d}(t) \rightarrow 0$ as $t \rightarrow \infty$ the output reaches the limit:

$$X(t) = \left(\chi_{i} + \int_{0}^{\infty} \Phi_{d}(t')dt'\right)H_{0} = \chi'(0)H_{0}$$

$$\chi(\omega) = \chi_{i} + \int_{0}^{\infty} \Phi_{d}(t)e^{-i\omega t}dt$$

expression in parentheses equals $\text{Re}[\chi(\omega)]$ for $\omega=0$.

- in the limit the memory of input for t<t_0 is lost

 Persistent memory – state of the system under constant input keeps on depending on the past history of the inputs even after all transients have died out [1]

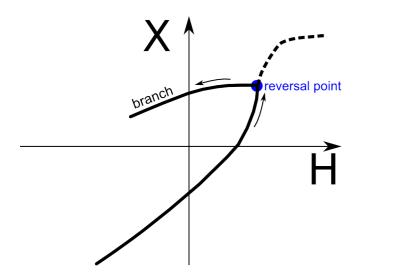
For a given input *H* the system can occupy different states.

М

A G N

Е

Т


С

MATER

S

Α

• Branching – branch is generated when input *H* stops increasing and starts decreasing:

- Branching is an indication that the system is not in thermodynamic equilibrium
- Local memory the values of *H* and *X* are enough to identify the state
- Nonlocal memory different curves X(H) can start from every (H, X) point; this is observed in many magnetic materials
- When thermodynamic equilibrium is reached any memory of the previous states is lost
- In many magnetic systems there is a input-rate interval where the rate dependence of hysteresis can be neglected [1]:
 - -rate must be slow enough not to introduce frequency dependents effects (like eddy currents in conducting magnets)
 - -rate must be high enough for thermal relaxation not to play a role

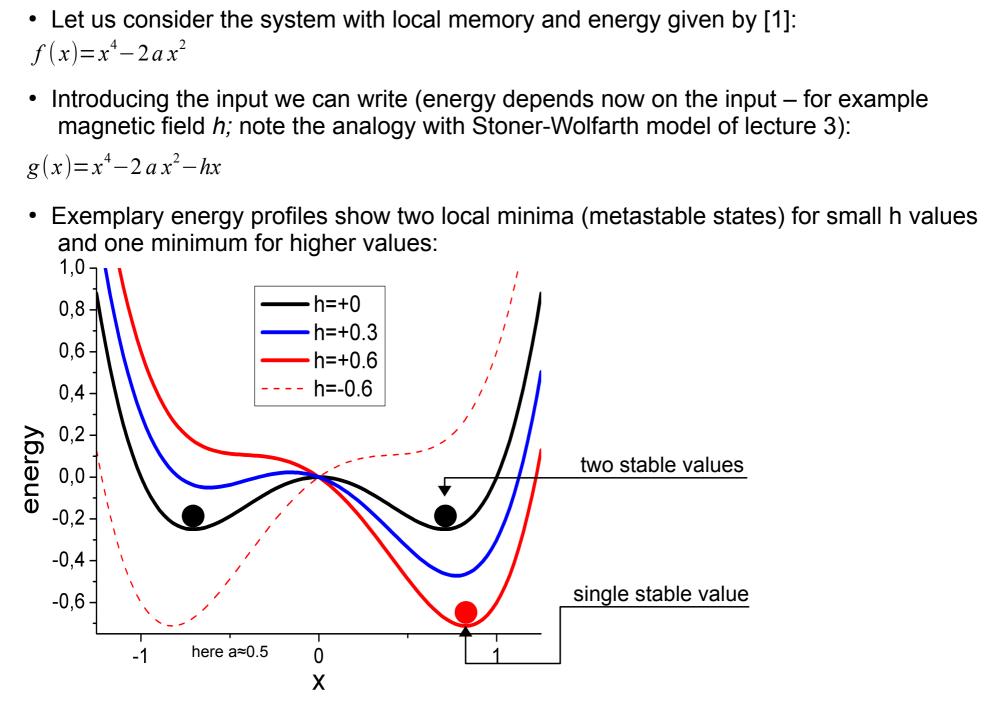
Μ

U

R

B A

Ν


М

A G N

E T

С

MATER

Μ

A G

Ν

E T

С

M A

Т

Е

R

S

A N

D

н

Y S

Т

Ε

R

Ε

S

S

K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Μ

U

R B A

Ν

Hysteresis – bistable systems

Hysteresis – bistable systems - cont'd

 $f(x) = x^4 - 2ax^2$ $g(x) = x^4 - 2 a x^2 - hx$ •From the condition for extremum of g(x) we have: $\frac{\partial}{\partial x}g(x) = \frac{\partial}{\partial x}f(x) - h = 0 \quad \leftarrow \quad g(x) = f(x) - hx$ •Using $\partial/\partial x[f(x)] = h$ we can graphically trace hysteresis: start at positive h (field) 1.0 At h=0 there are three 2 0.8 extrema (one metastable) dashed line (h=0) intersects blue line at three points 0.6 Barkhausen jump 6 At h=h_c there is only one 3 0.4 minimum – Barkhausen 0.2 (x) = 0.2(x) = 0.0(x) = -0.2(x) = -0.4jump 5 4 Field is increasing shifting the position of the single minimum Barkhausen jump 3 -0.6 Field sweep direction is 5 -0.8 reversed -1.0 Μ 1 0 U R Χ В Α Ν

2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998 Κ

S

Μ

A G

E

Т

С

Μ Α

Т

Е

R

н

Α

S

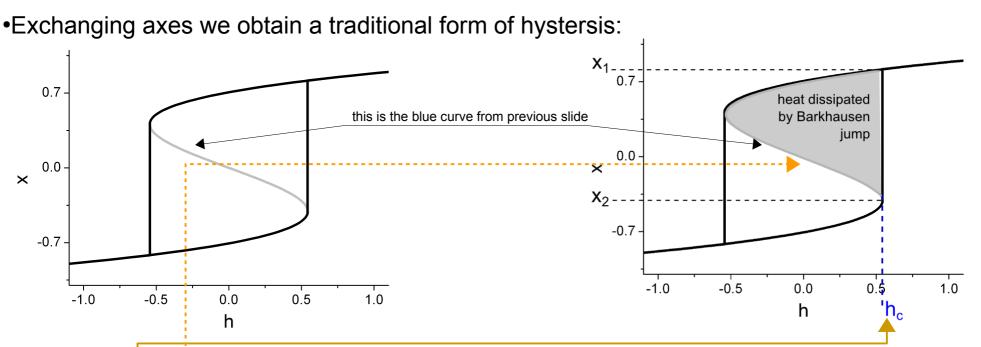
Α

Ν

D

н

Y


S

E

R

Е

S

•We want to know the area of the shaded region of the top right hysteresis (it should be half the work dissipated in hysteresis). The work can be expressed as (see previous slide) [1]: $\Delta W = \int_{xI}^{x2} \left[h_c - \frac{\partial f}{\partial x} \right] dx = -\int_{xI}^{x2} \left[\frac{\partial g}{\partial x} \right]_{h=h_c} dx = g(xI, h_c) - g(x_f, h_c) \qquad \leftarrow \quad \frac{\partial}{\partial x} g(x) = \frac{\partial}{\partial x} f(x) - h = 0$

The work is exactly the energy decrease when the system makes Barkhausen jump

The above description is rate-independent: it was assumed that system is always in one of energy minima independently of the input rate of change.

2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

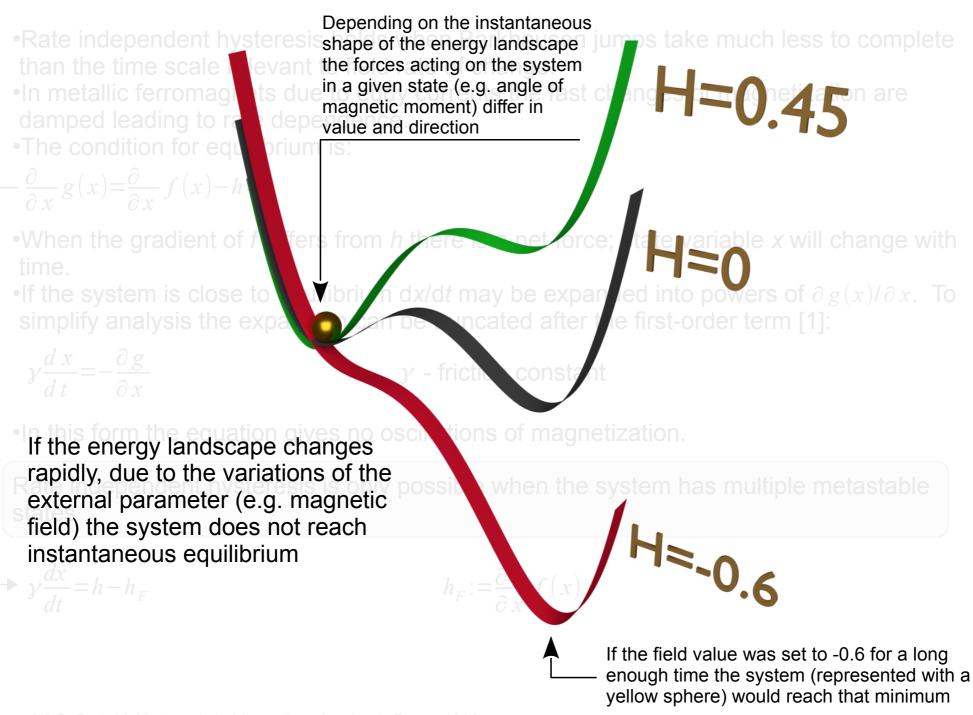
Μ

U R

В

A

Ν


М

A G N

E

С

Μ

М

G

Ν

Е

C

М

E R

н

E

R

S

S

Μ

U

- •Rate independent hysteresis holds when Barkhausen jumps take much less to complete than the time scale relevant to field rate of change.
- •In metallic ferromagnets due to eddy currents the fast changes of magnetization are damped leading to rate dependence.
- •The condition for equilibrium is:

$$-\frac{\partial}{\partial x}g(x) = \frac{\partial}{\partial x}f(x) - h = 0$$

•When the gradient of f differs from h there is a net force (state variable x will change with time):

- $F = \frac{\partial}{\partial x} f(x) h$ First term describes the force due to the system (internal forces, e.g. anisotropy energy) and the second the influence of the external field (e.g. magnetic)
- •If the system is close to equilibrium dx/dt may be expanded into powers of $\partial g(x)/\partial x$. To simplify analysis the expansion can be truncated after the first-order term [1]:

$$\gamma \frac{dx}{dt} = -\frac{\partial g}{\partial x} \leftarrow \text{force}$$

 $\blacktriangleright \gamma \frac{dx}{L} = h - h_F$

Μ

U

R B A

In this form the equation gives no oscillations of magnetization.

Rate independent hysteresis is only possible when the system has multiple metastable states

$$h_F := \frac{\partial}{\partial x} f(x)$$

 $\frac{dx}{dt} = h - h_F$

 $\frac{dh}{dt} = r(t)$

Μ

U

R

B A

Ν

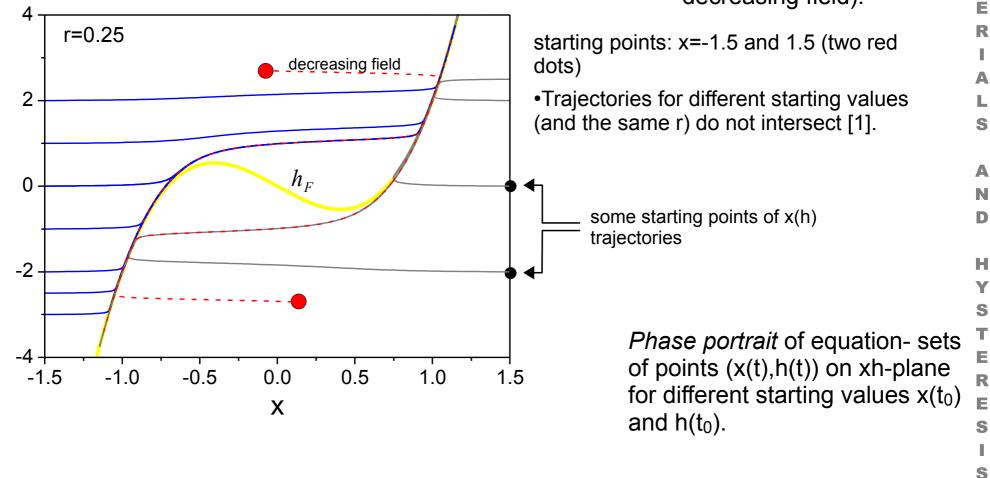
• Assuming that the input (field) changes with time we can write (putting γ =1):

To numerically calculate the trajectory x(h(t)) we choose some initial point $(x(t_0),h(t_0))$, then change x by $\Delta t \cdot (dx/dt)$, advance the time by Δt , change h accordingly (H depends linearly on time t) and so on...

Μ

A G N

E T


Μ

Т

 $h_F := \frac{\partial}{\partial x} f(x)$

- time varying field (eg field of VSM electromagnet)

• Exemplary phase portrait of above equation for $f=x^4-x^2$ and r=0.25 (and r=-0.25 - decreasing field).

K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – rate dependence

d t

Μ

U

R

B A

Ν

• Assuming that the input (field) changes with time we can write (putting γ =1):

$$\frac{dx}{dt} = h - h_F$$

$$\frac{dh}{dt} = r(t) \quad - \text{ time varying field (e g field of VSM electromagnet)}$$

Μ

A G N

E T

С

M A

Т

Ε

R

S

Α

Ν

D

н

Y

S

Т

Ε

R

Е

S

S

Exemplary phase portrait of above equation for f=x⁴-x² and r=0.25 (and r=-0.25 – decreasing field).

4 r=0.25 starting points: x=-1.5 and 1.5 (two red decreasing field dots) 2 0 -2 To obtain a hysteresis corresponding to increasing field given r one identifies trajectories for opposite r that intersect at desired peak input values of h. -4 --1.0 -0.5 0.0 0.5 1.0 -1.5 1.5 Х

K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

 $\frac{dx}{dt} = h - h_F$

 $\frac{dh}{dt} = r(t)$

Ч

Μ

U

R

B A

Ν

•Assuming that the input(field) changes with time we can write (putting $\gamma=1$):

Phase portrait of equation - sets of points (x(t),h(t)) on xh-plane for different starting values $x(t_0)$ and $h(t_0)$.

Μ

A G N

E T

С

M A

Т

Ε

R

Α

S

Α

Ν

D

Н

Y

S

Т

Ε

R

Ε

S

S

•Exemplary phase portrait of above equation for $f=x^4-x^2$ and r=2.5 (and r=-2.5 – decreasing field).

4 r=2.5 starting points: x=-1.5 and 1.5 (plus two red dots) decreasing field 2 0 -2 To obtain a hysteresis corresponding to given r one identifies trajectories for opposite r that intersect at desired peak increasing field input values of h. -4 -1.0 -0.5 0.0 -1.5 0.5 1.0 1.5 Х

K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

 $\frac{dx}{dt} = h - h_F$

 $\frac{dh}{dt} = r(t)$

Μ

U

R

B A

Ν

•Assuming that the input(field) changes with time we can write (putting I=1):

Phase portrait of equation- sets of points (x(t),h(t)) on xh-plane for different starting values $x(t_0)$ and $h(t_0)$.

•Exemplary phase portrait of above equation for $f=x^4-x^2$ and r=2.5 (and r=-2.5 – decreasing field).

starting points: x=-1.5 and 1.5 (plus two red dots)

To obtain a hysteresis corresponding to given r one identifies trajectories for opposite r that intersect at desired peak input values of h.

Μ

A G N

E T

С

M A

Т

E R

Α

S

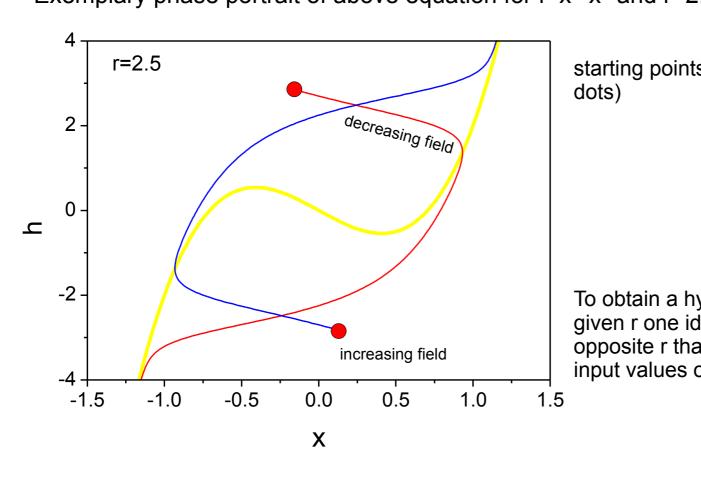
Α

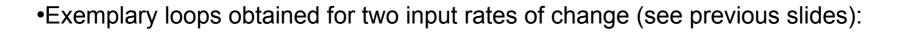
Ν

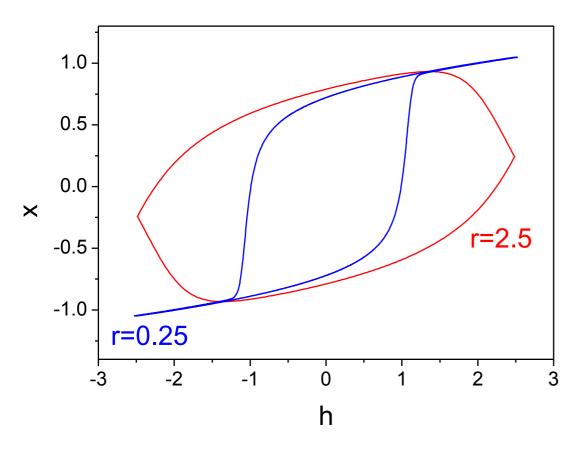
D

Н

Y


S


Т


Ε

R

Е

both curves obtained for the same field amplitude (h≈2.5)

- The shape of loop depends on the rate of change of input (*magnetic field*)
- With increasing frequency *f* the area of the saturation loop increases – this means that the amount of energy irreversibly turned into heat in on period increases with *f*.
- The shape of loop depends not only on the frequency of the input and its peak values (*h*_{min} and *h*_{max}) but also on the waveform applied, i.e., the *x*(*h*) dependence is different for sinusoidally varying h from the one obtained for triangular excitations.

2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

S T

Ε

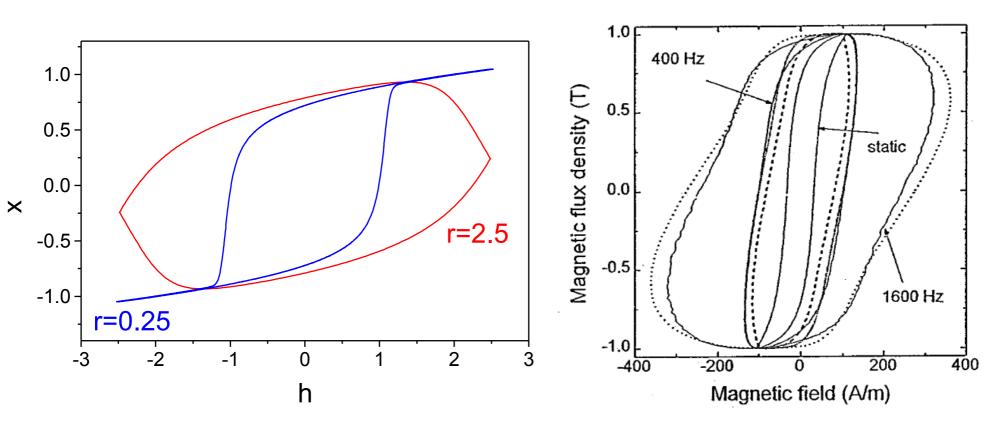
R

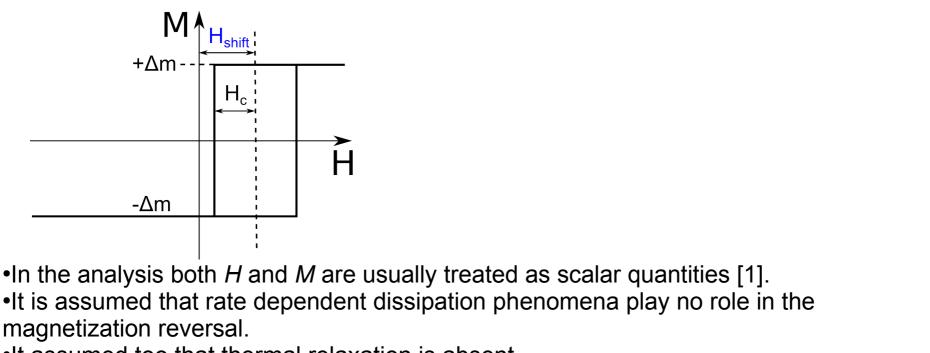
Hysteresis – rate dependence

Μ

URBAN

•There is a qualitative agreement with experimental dependencies:




FIG. 3. Dynamic hysteresis loops at 1 T, for 0, 400, 1600 Hz. Continuous lines measurements. Dotted lines FEM prediction based on dynamic PM. Broken line. FEM prediction based on conventional PM.

Т

A K 2019 V. Basso, G. Bertotti, O. Bottauscio, F. Fiorillo, M. Pasquale, M. Chiampi and M. Repetto, J. Appl. Phys. 81, 5606 (1997) M A G N E •In many magnetic materials the hysteresis is a sequence of Barkhausen jumps

•The jump is associated with the system leaving metastable state in favor of state with lower energy

•Preisach proposed [2] to treat magnetic material as a set of units characterized by elementary rectangular hystereses with randomly distributed values of coercive field and shift field:

•It assumed too that thermal relaxation is absent.

•The above assumptions mean that the hysteresis is rate-independent and corresponds to zero temperature.

K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Μ

Ū

R

B A

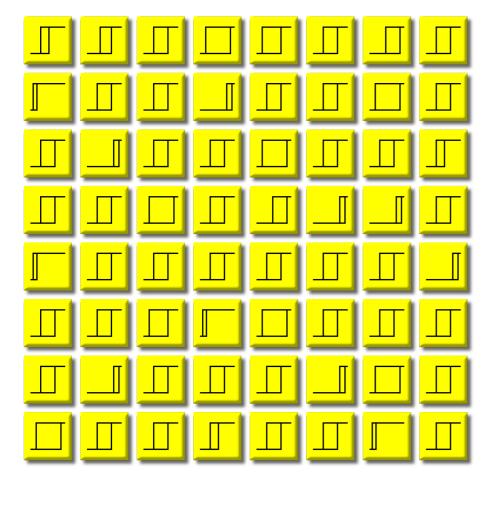
Ν

Μ

A G N

Ε

T.


С

Μ

•In many magnetic materials the hysteresis is a sequence of Barkhausen jumps

•The jump is associated with the system leaving metastable state in favor of state with lower energy

•Preisach proposed [2] to treat magnetic material as a set of units characterized by elementary rectangular hystereses with randomly distributed values of coercive field and shift field:

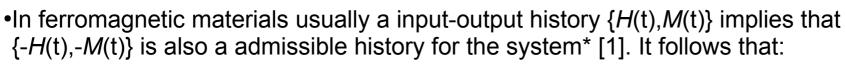
Т

Ε

R

E

S

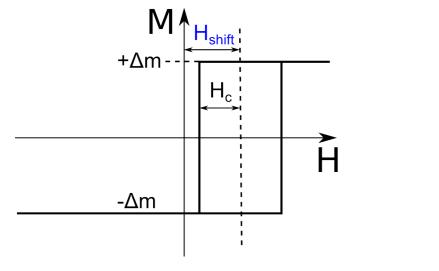

S

Μ

•Each Preisach unit can be characterized by different associated magnetic moment (Δm) •*Preisach distribution* p(h_c,h_u)– is a function describing relative abundance of Preisach units with given coercivity and shift field h_u.

•Preisach approach is expected to give approximate description of certain systems.

•Once Preisach distribution is known the magnetization reversal can be calculated.



in ferromagnetic materials

2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

*it may not be the case in systems with exchange anisotropy if the S antiferromagnetic material is not saturated (minor loops)

 $p(h_c, h_u) = p(h_c, -h_u)$

Μ Α G Ν Е Т С Μ Α Т Ε R

S

Ν D

н

Y S

E

R

Е

S

•Preisach plane: $(H \leq h_u - h_c)$ $m = -\Delta m$ $(h_u - h_c < H < h_u + h_c)$ Preisach plane two metastable $(H \ge h_u + h_c)$ states M 1 ٥_c H<h_u-h_c H>h_u+h_c $+\Lambda m$ in this field range the

- •The boundary of the cone (yellow region), position of which depends on the external field H, is a set of points where the Barkhausen jumps can take place.
- •The different points on the Preisach plane correspond to elementary loops of different H_c and shift.
- •The total number of metastable states is 2^N, where N is the number of Preisach units in yellow region.

Μ

U R

B A

Ν

Κ

Μ

A G N

Е

Μ

Α

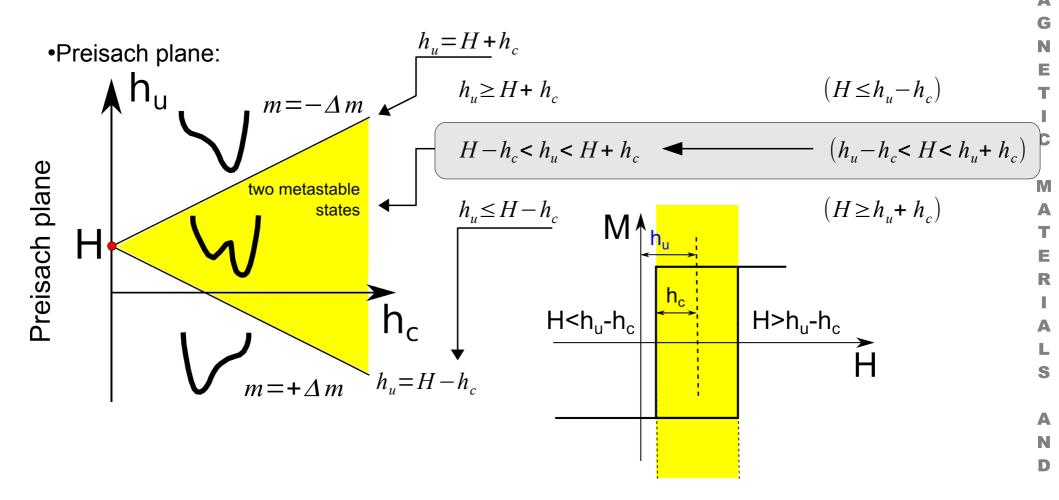
Т

E R

S

Α

Ν


D

н

Y

Preisach unit can be

magnetized up or down

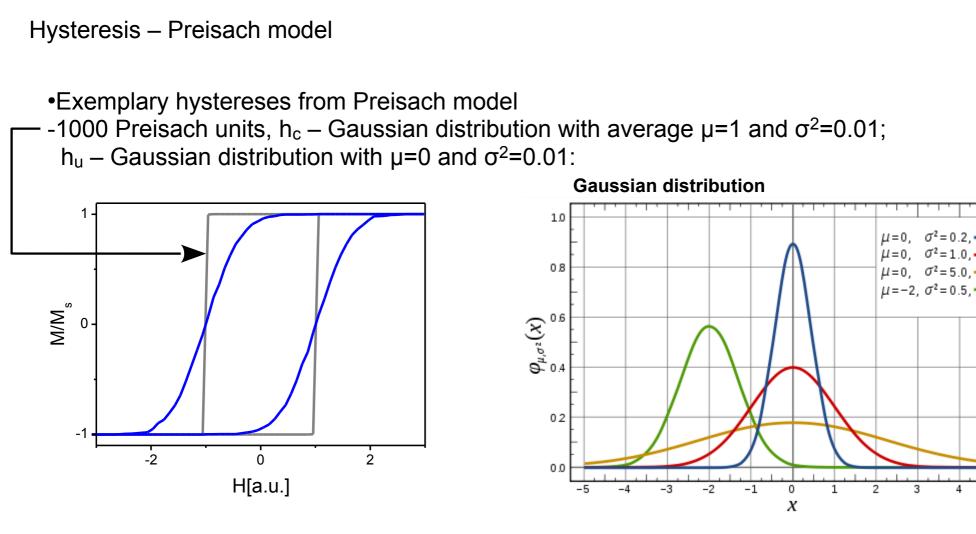
- •The boundary of the cone (yellow region), position of which depends on the external field H, is a set of points where the Barkhausen jumps can take place.
- •The different points on the Preisach plane correspond to elementary loops of different H_c and shift.
- •The total number of metastable states is 2^N, where N is the number of Preisach units in yellow region.

Μ

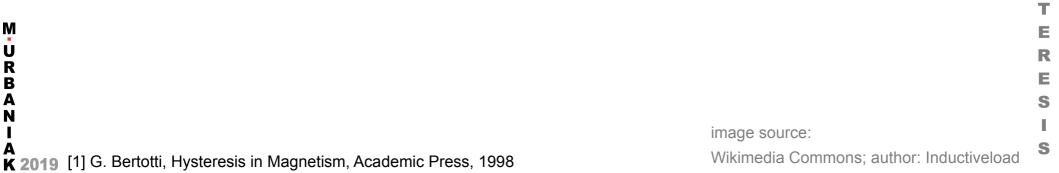
U

R

В


A N н

S


Т

Ε

М

•For narrow distribution of Preisach units on Preisach plane we essentially recover the elementary square loop of a single element.

A G N E

Μ

Μ

Α

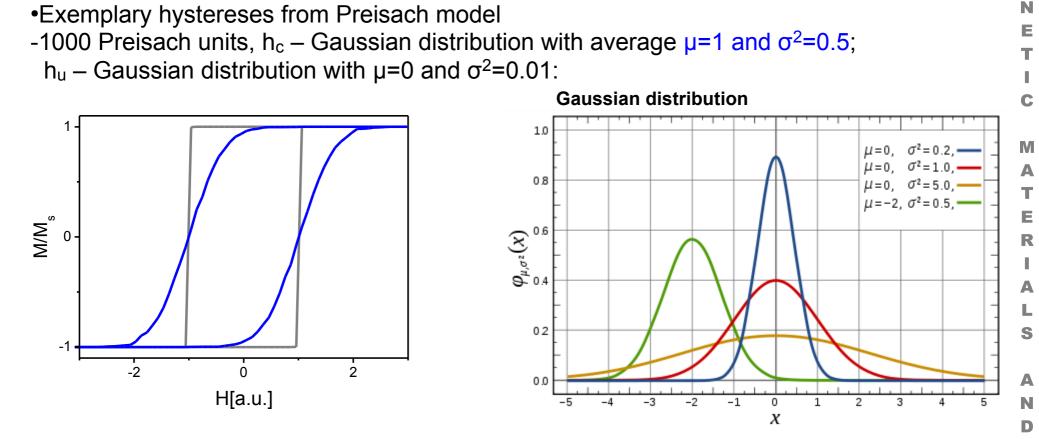
Т

Ε

R

Α

S


Α

Ν

D

Н

Y S

•The shapes of the hysteresis depend mainly (assuming zero average shift h_u) on the width of the distribution •In systems composed of individual physical entities (grains etc.) one often uses factorization (Preisach distribution which is a product of distributions for h_c and h_u): $p(h_c, h_u) = f(h_c)g(h_u)$

Wikimedia Commons; author: Inductiveload

K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Μ

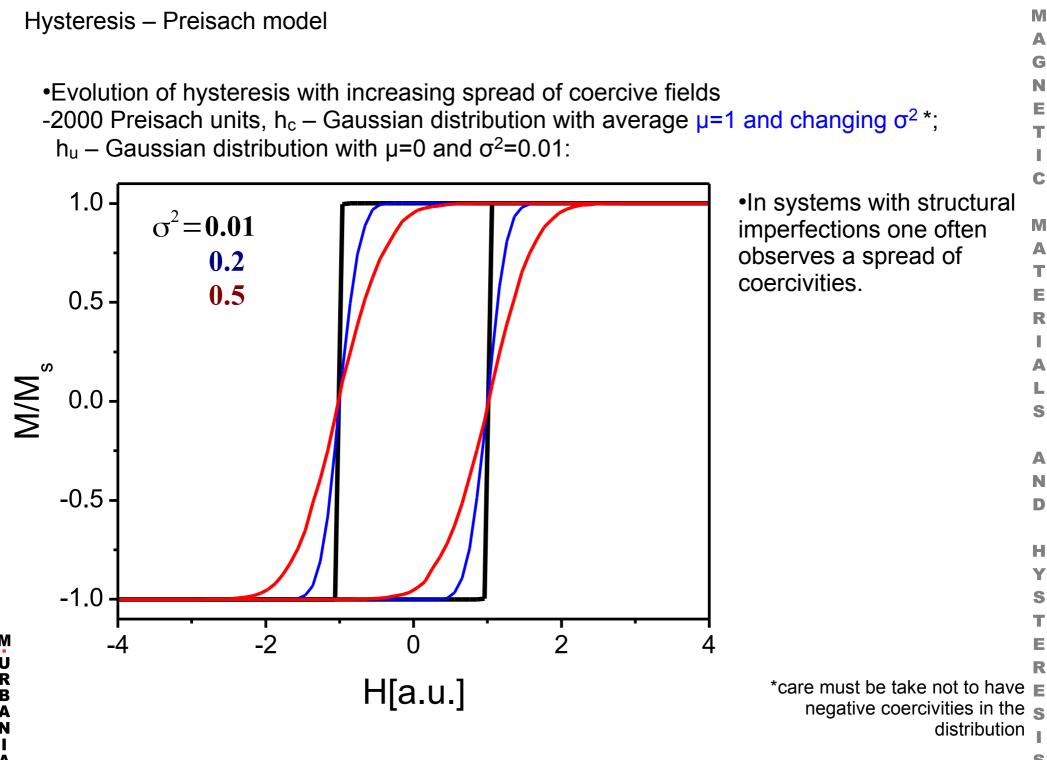
U R B A

Ν

н

Y

S


Т

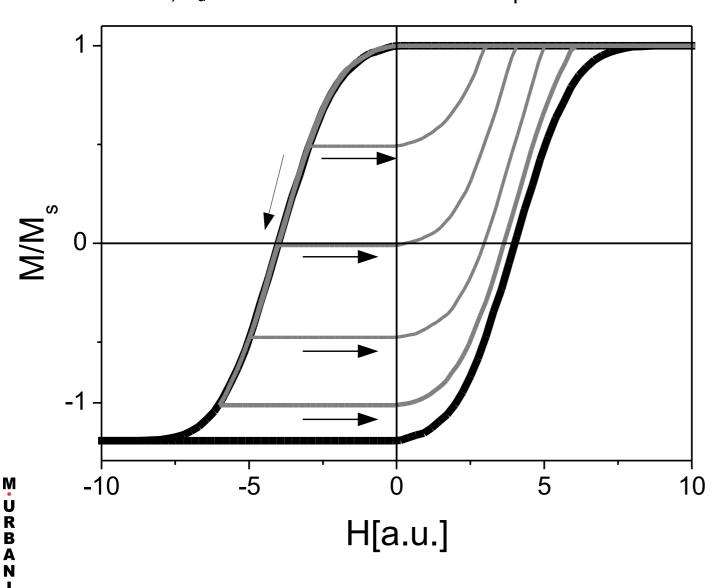
Ε

R E S

Μ

A G

K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998


Μ

U R B A

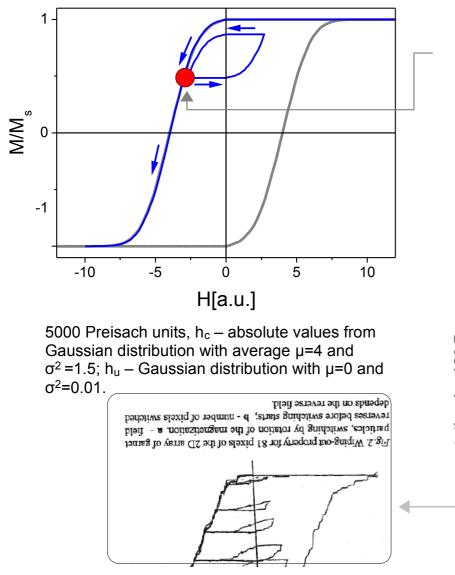
Ν

•Exemplary major and corresponding **minor hystereses**

-5000 Preisach units, h_c – absolute values from Gaussian distribution with average μ =4 and σ^2 =1.5; h_u – Gaussian distribution with μ =0 and σ^2 =0.01:

K 2019 [1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

С Μ Α Т Ε R S Α Ν D Н Υ S Ε R Ε S S


Μ

A G N

Е

Т

•A necessary condition for the Preisach model to be applicable is that the system exhibits return-point memory [1]

When the field returns back to $H=H_1$ the system returns back to the exactly same state it occupied Μ when the point $H=H_1$ was reached for the first time.

Μ Δ G Ν

Ε

Т

С

Α

Т

Ε R

S

N

D

н

Y

S

Т

Ε

R

Ε

S

S

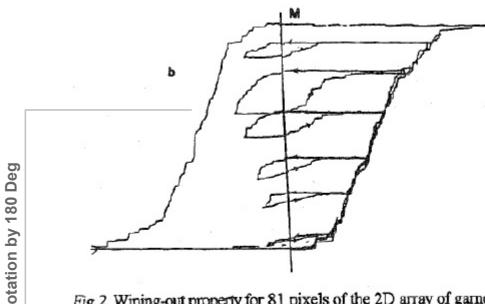
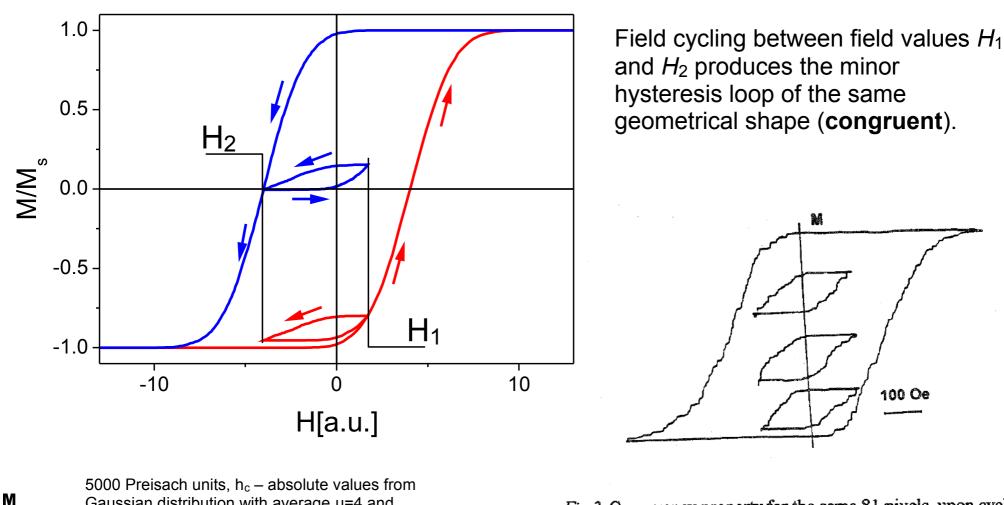


Fig.2. Wiping-out property for 81 pixels of the 2D array of garnet particles, switching by rotation of the magnetization. a - field reverses before switching starts; b - number of pixels switched depends on the reverse field.

image source: M. Pardavi-Horvath and G. Vertesy, IEEE Trans. Magn. 33 3975 (1997)

Μ

U


R

В A

Ν

Κ

•A necessary condition for the Preisach model to be applicable is that the system exhibits **congruency** [1]

5000 Preisach units, h_c – absolute values from Gaussian distribution with average μ =4 and σ^2 =1.5; h_u – Gaussian distribution with μ =0 and σ^2 =1.

U

R

В

A

Ν

Fig.3. Congruency property for the same 81 pixels, upon cycling E the field around H=0.

image source: M. Pardavi-Horvath and G. Vertesy, IEEE Trans. Magn. 33 3975 (1997)

M A G N

Е

Т

С

Μ

Α

Т

Ε

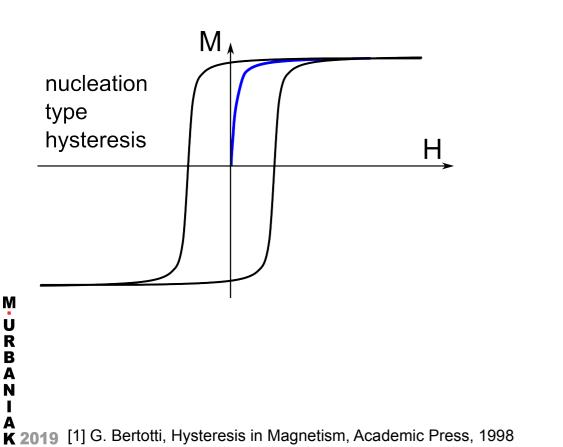
R

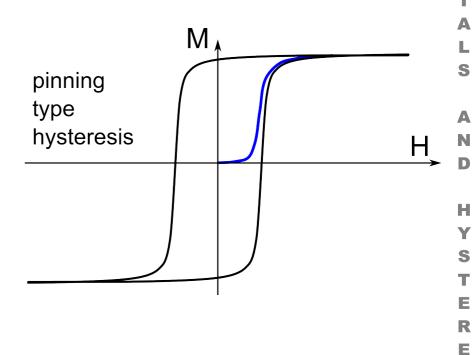
S

Ν

D

н


S


•In nucleation-type magnets, the virgin curve (obtained after *thermal demagnetization of the sample*) is steep and saturation is reached in fields small compared to coercive field of the saturation loop:

-domain walls are present in virgin state

-the formation of reverse domains is difficult and the demagnetization curve (second quadrant) is characterized by high coercivity

•In pinning-type magnets domain wall pinning is substantial also in the virgin state

S I S

M A G N

Е

т

С

Μ

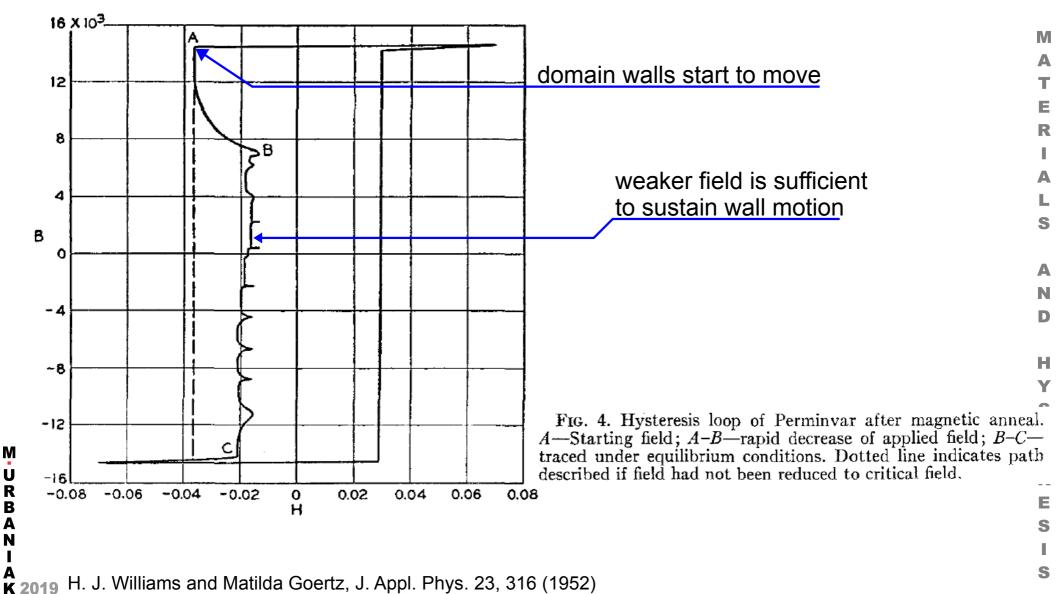
A T E R

U

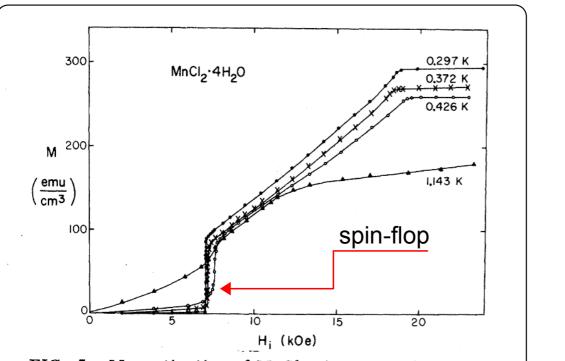
R B A

Ν

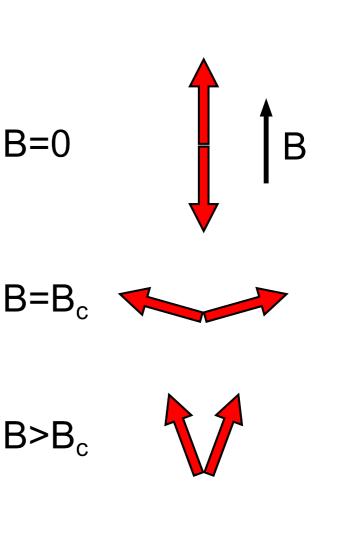
•The nucleation of walls often requires much higher fields than those required to sustain the domain wall motion.


М Α G Ν

Ε


Т

С


•If one measures the hystersis keeping the rate of change of magnetization very slow the so called *reentrant loop* can be obtained [1,3].

•The spin-flop transition* can be induced in an uniaxial antiferromagnet with low anisotropy by the field applied parallelly to anisotropy axis:

Spin-flop in bulk antiferromagnet

М

G

Μ

N

E

R

Ε

S

FIG. 5. Magnetization of $MnCl_2 \cdot 4H_2O$ as a function of internal field for several temperatures with the external field along the preferred direction.

J. E. Rives and V. Benedict, Phys. Rev. B 12, 1908 (1975)

*an example of a matamagnetic transition. "A metamagnetic transition is a general term for (qualitative) changes in magnetic order due to the application of a magnetic field", Kai Fauth, University of Würzburg

M.URBAN.

•The spin-flop transition can be induced in an uniaxial antiferromagnet with low anisotropy by the field applied parallelly to anisotropy axis:

Μ Α G Ν

Е

Т

С

Α

Т Ε

R

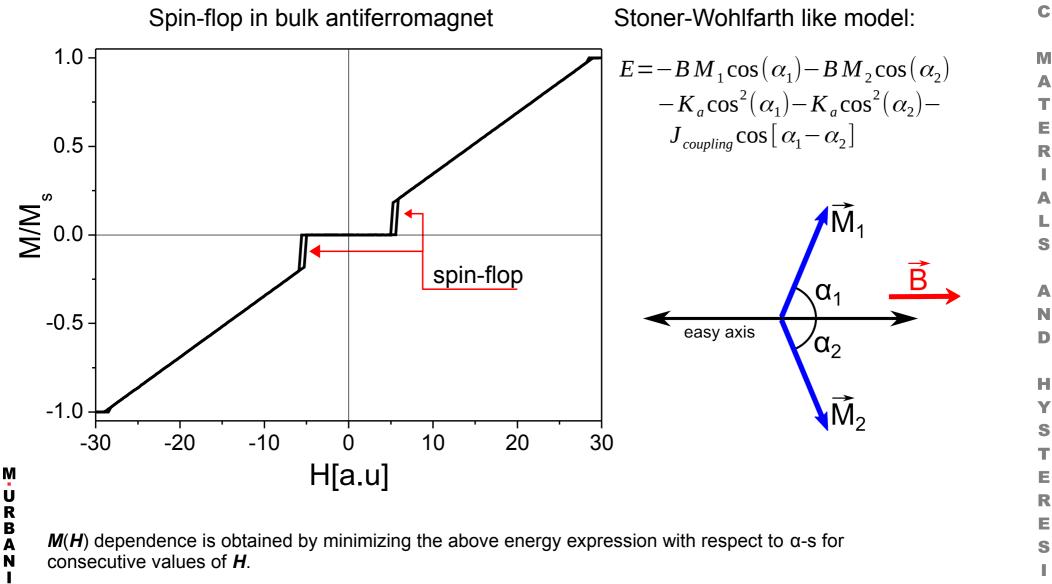
S

Α Ν

D

н

S

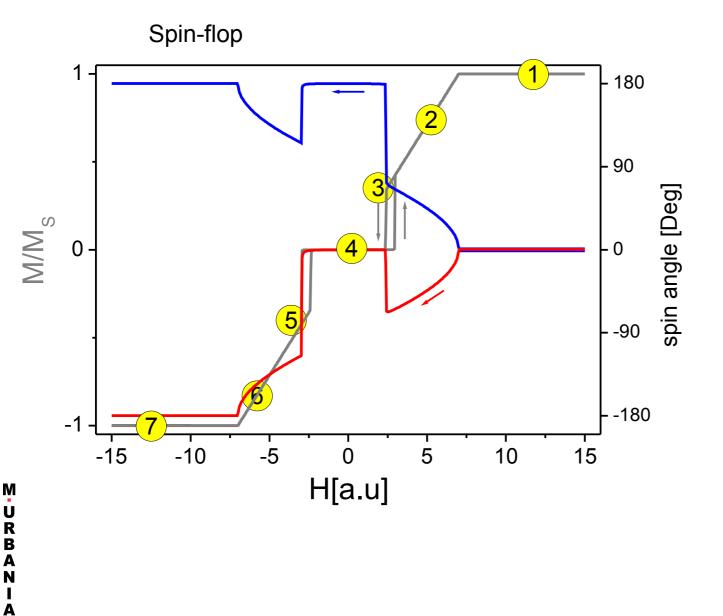

Т

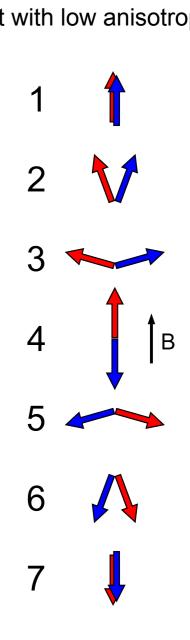
Ε

R Ε

S

S




Α K 2019

Field induced spin-flop phase transition

K 2019

•The spin-flop transition can be induced in an uniaxial antiferromagnet with low anisotropy by the field applied parallelly to anisotropy axis:

S

•The spin-flop transition can be induced in an uniaxial antiferromagnet with low anisotropy by the field applied parallelly to anisotropy axis:

Kerr 1,0 0,5 ⊖[a.u.] 0,0 -0,5 -1,0 (a) 20 -20 40 -40 0 H[Oe]

Μ

U

R B

A

Ν

K 2019

Stoner-Wohlfarth like model:

$$E = -B M_1 \cos(\alpha_1) - B M_2 \cos(\alpha_2)$$

- $K_a \cos^2(\alpha_1) - K_a \cos^2(\alpha_2) - J_{coupling} \cos[\alpha_1 - \alpha_2]$

Μ Α G Ν

Ε

Т

С

Μ Α

> Т Е R

> S

Ν

D

н

Υ

S

E

R

Е

S

S

•In [NiFe/Cu]_N multilayer each NiFe layer can be treated as a macrospin

•The NiFe sublayers are coupled by **RKKY-like** coupling

spin-flop

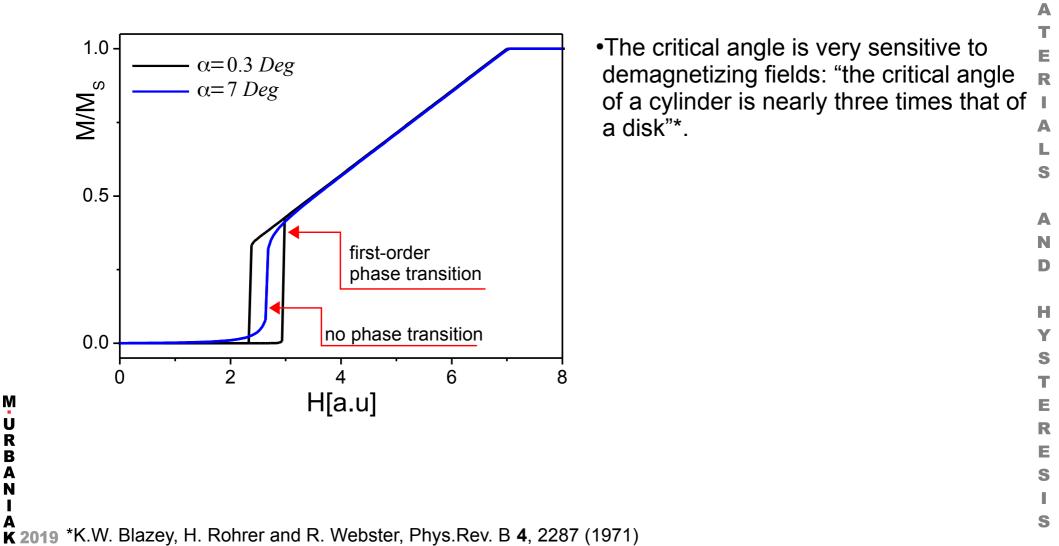
Spin-flop in [NiFe/Cu]_N thin film

Field induced spin-flop phase transition

•The spin-flop transition is classified as first order field induced phase transition because of discontinuous change of magnetization of the sample*.

Μ

A G N


Ε

Т

С

Μ

•When the angle between the external field and the easy axis of ferromagnet (α) exceeds some critical value the phase transition is suppressed and the magnetization changes continuously

		Μ
	Bibliography:	A G
	[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998	N
	[2] F. Preisach, Zeitschrift für Physik 94 , 277 (1935)	E
	[3] B. D. Cullity, Introduction to magnetic materials, Addison-Wesley, Reading, Massachusetts 1972	- 1
	[4] R. Ravaud, G. Lemarquand, Progress In Electromagnetics Research 95, 309 (2009)	С
	[5] ASTM, Standard Terminology of Symbols and Definitions Relating to Magnetic Testing, A 340 – 03a, 2003	
	[6] H.E. Knoepfel, Magnetic fields: A comprehensive theoretical treatise for practical use, John Wiley & Sons, Inc., 2000	M A T
	[7] С. В. Бонсовский, Магнетизм, Издательство ,,Наука", Москва 1971	E R
	[8] W. Hauser, Introduction to the Principles of Electromagnetism, Addison-Wesley, 1971	I
		Α
		L S
		A
		N D
		H Y
		S
		т
M U		E
R B		R E
Α		S
N I		I
A K 20	019	S