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Magnetic hysteresis

● General properties of magnetic hysteresis

● Rate-dependent hysteresis

● Preisach model

Poznań 2019 Maciej Urbaniak



Essential parameters of commercial magnetic materials

source: www.arnoldmagnetics.com, 2019.05.25

source: www.thyssenkrupp-steel.com/en/electricalsteel, 2019.05.29

thyssenkrupp Electrical Steel GmbH

Depending on the use (e.g. permanent magnets or transformers applications) different parameters of the 
hysteresis are most important. In hard magnets applications the (BM)max* and coercivity are most relevant. 
In electrical steel for transformers hysteresis losses and attainable polarization (μ0M) are crucial.

* see my lecture from 2012 (www.ifmpan.poznan.pl/~urbaniak/Wyklady2012/urbifmpan2012lect3_02.pdf)

http://www.arnoldmagnetics.com/
http://www.thyssenkrupp-steel.com/en/electricalsteel
http://www.ifmpan.poznan.pl/~urbaniak/Wyklady2012/urbifmpan2012lect3_02.pdf
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Ni80Fe20(4 nm)/Mn83Ir17(15 nm)/Co70Fe30(3 nm)/Al(1.4nm)+Ox/Ni80Fe20(4 nm)/Ta(3 nm)

J. Magn. Magn. Mater. 190, 187 (1998)

Phys. Stat. Sol. (a) 186, 423 (2001)
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[Ni80Fe20(2 nm)/Au(1.9 nm)/
Co(0.6 nm)/Au(1.9 nm)]10

Exemplary M(H) hystereses of thin films



●A hysteresis loop can be expressed in 
terms of B(H) or M(H) curves.

●In soft magnetic materials (small Hs) 
both descriptions differ negligibly [1].

●In hard magnetic materials both 
descriptions differ significantly leading 
to two possible definitions of coercive 
field (and coercivity).

●M(H) curve better reflects the intrinsic 
properties of magnetic materials.
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Hysteresis nomenclature

The magnetic hysteresis can be presented both as B(H) and M(H)* dependencies.

B⃗i=B⃗−μ 0 H⃗=μ 0 M⃗

intrinsic induction:

coercive field strength – field 
required to reduce the magnetic 
induction to zero after the 
material has been symmetrically 
cyclically magnetized.

intrinsic coercive field strength 
– field required to reduce the 
intrinsic induction to zero after... 

coercivity, Hcs—the maximum 
value of coercive field strength
that can be attained when the 
magnetic material is symmetrically
cyclically magnetized to saturation 
induction, BS.

*μ0 M(H) dependence is called a intrinsic hysteretis loop [5]



Hysteresis nomenclature

The magnetic hysteresis can be presented both as B(H) and M(H)* dependencies.

saturation induction, Bs—the 
maximum intrinsic induction
possible in a material
saturation magnetization, Ms:

demagnetization curve—the 
portion of a dc hysteresis loop that 
lies in the second (or fourth 
quadrant). Points on this curve are 
designated by the coordinates, Bd 
and Hd.

M⃗ s= B⃗s/μ 0

remanence, Bdm—the maximum 
value of the remanent induction
for a given geometry of the 
magnetic circuit.

*for the glossary of magnetic measurements terms see ASTM, A 340 – 03a, 2003 [5]

paraprocess, forced magnetization—after 
domain walls disappear at technical 
saturation further increase of the external 
field leads to the asymptotic increase of 
magnetization to that corresponding to the 
absolute zero of temperature [7]



conjugate

Hysteresis losses

*”Magnetic Anisotropy” → pole avoidance principle

We use the following formula [8] for the energy density of the magnetic field:

ρE=
1
2

B⃗⋅H⃗

Introducing complex permeability,                            , we get [6]: B⃗=μ H⃗=μ0( M⃗+ H⃗ )μ=μ0(μ ' R−iμ ' ' R)

~
B⃗=μ

~
H⃗=μ0(μ ' R−iμ ' 'R) H⃗ ei (ωt+α)

underline: complex quantity

The mean power dissipated in a periodic system is given by [6]:

P=ℜ(~⃗H )ℜ(
∂
~
B⃗
∂ t
)=

1
2
ℜ [(μ0∗(μ '−i∗μ ' '))∗ω∗(H ' x+ i H ' ' x)∗(H ' x−i H ' ' x)]

=
1
2
μ0ωμ ' ' (H ' x

2
+H ' ' x

2
)=

1
2
μ0ωμ ' ' H 2

←
∂ρE

∂ t
= H⃗ ∂ B⃗

∂ t

H⃗=(H ' x+i H ' ' x ,H ' y+i H ' ' y , H ' y+i H ' ' y)

ℜ(
~⃗H 1)ℜ(

~⃗H2)=
1
2
ℜ (H 1⋅H2* )

[ 6], page 240
dissipative term in complex 
magnetic permeability



Ferromagnetic materials

Most notable features of ferromagnetic materials:
● high initial susceptibility/permeability
● they usually retain magnetization after the removal of the external field – remanence
● the magnetization curve (B-H or M-H) is nonlinear and hysteretic
● they lose ferromagnetic properties at 
 elevated temperatures (Curie temperature) 

The notable examples:

M
S
[kA/

m]@RT

T
C
[K]

Fe 1714 1043

Co 1433 1403

Ni 485 630

M
S
[Am2/

kg]@RT

217.75

161

54.39



Because field H and magnetization M are vector quantities the full description of hysteresis 
should include information about the magnetization component perpendicular to the 
applied field – it gives more information than the scalar measurement. 
Vector Vibrating Sample Magnetometer (VVSM):

image from Magnetic Anisotropy: Measurements with a Vector Vibrating
Sample Magnetometer, B. C. Dodrill, J. R. Lindemuth, and J. K. Krause
Lake Shore Cryotronics; www.lakeshore.com/Documents/Magnetic Anisotropy.pdf

E.O. Samwel, T. Bolhuis, J.C. Lodder

M(H) hysteresis – vector picture

Arrows showing magnetization direction start at point on field axis corresponding 
to the appropriate external field value



Vector Vibrating Sample Magnetometer (VVSM):

P. Stamenov and J. M. D. Coey, JOURNAL OF APPLIED PHYSICS 99, 08D912 (2006)

●VVSM magnetometer with two 
 compact Halbach cylinders

●The vector measurement principle 
can be used  with MOKE 
magnetometers too:

Fig. 3. Hysteresis loops of the x and the y components
measured by using the MOKE for α=45o.
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M(H) hysteresis – vector picture



The demagnetizing field* changes the 
inner field within the sample which can 
lead to the change of characteristic fields 
of the hysteresis loop (switching fields, 
coercive field)

* see lecture 2 and 3 

M(H) hysteresis – shape of the specimen

B⃗=μ0(−N⋅M⃗+ M⃗ )



Shape of the sample influences the measured hysteresis not only through the scaling of H-
axis. The demagnetizing field can influence the character of the M(H) dependence: 

●The long wire made of a magnetically 
 soft amorphous material shows a 
 typical bistable behavior.
●Closure domains extend up to about 
 3cm from ends into the wire.
●In short wires (less than 7cm) the 
 collapse of closure domains 
 suppresses bistable behavior.

M. Vázquez, C. Gómez-Polo, D.-X. Chen, A. Hernando, IEEE Trans. Magn. 30, 907 (1994)

To associate an experimental curve 
with a given material one has to state 
[1]:

- the experimental conditions

- geometry of the experiment
 

- spatial scale of the experiment (i.e., 
  what is the size of the volume/area 
  we get signal from)

'There exists nothing that we can straightforwardly 
call the “hysteresis loop of iron”.' - Bertotti [1]

M(H) hysteresis – shape of the specimen



Technical saturation - state reached under field such that further increase of field does not 
 change hysteresis properties
● Each point at the interior of the saturation loop can be reached in a infinite number of  

 ways
● First order return branch – start at saturation and reversal at some point of saturation 

loop
● Second, third... order return branch- two, three... reversal fields
● Ac-demagnetization – sequence of large number of finely spaced reversals with 

decreasing values of reversal fields leads to demagnetized state (zero remanent 
magnetization)

● Anhysteretic curve – ac-demagnetizing field superimposed on constant field

image from “Liquid Penetrant and Magnetic Particle Testing at Level 2”
INTERNATIONAL ATOMIC ENERGY AGENCY, 2000

M(H) hysteresis – cont’d



● Normal magnetization curve – start from demagnetized state and cycle field with 
increasing amplitude; the line connecting the tips of the curve (places where the field 
sweep changes direction) [1]*. 

*The normal curve can denote the B(H) dependence too. 

Schematic drawing of normal curve – line connecting 
blue dots. Note: in real measurement all points are on 
the same M(H) curve obtained with field increasing 
somewhat like that:

where

Normal curve is similar but not equal 
to initial magnetization curve

J. Kwiczala and B. Kasperczyk , J. Appl. Phys. 97, 10E504 (2005)

H ( t)=Const t cos(ω t) ,
ω≫Const

M(H) hysteresis – cont’d



● The magnetic moments of the magnetized body have different local surroundings (grains 
 in polycrystals, dislocations, deformations, inclusions, interface/surface roughness etc.)

● These sources of disorder are coupled to the magnetization through exchange, 
 anisotropy, magnetoelastic and magnetostatic interactions [1]

● As a result energy landscape of the system exhibits numerous local minima.
● At normal temperatures the heights of the energy barriers separating local minima is 

 enough to keep the system in initial state.
● Applied field destroys that equilibrium; if it changes with time the system jumps abruptly 

to  consecutive minima – this leads to a noncontinuous change of magnetic 
 moment/magnetization with time

Image source: Wikimedia Commons; author: User:Stannered

● Barkhausen effect is closely related to 
the presence of magnetic domains

Barkhausen effect



R. M. Bozorth, Phys. Rev. 34, 792 (1929)

Barkhausen effect

~0.02 s



● The shape of the M(H) loop depends on field sweep rate: 

● Measurement on commercial (AST 27/
    35) non-oriented Fe–Si alloys  (2.9 wt.  
    % Si, 0.4 wt. % Al), with average grain  
    size of 75 μm. The lamination          
    thickness was 0.334 mm.

● With increasing frequency f the are of 
the saturation loop increases – this 
means that the amount of energy 
irreversibly turned into heat in every 
cycle increases with f.
 

image from “Eddy    Current Testing at Level 2...”
INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna 2011

V. Basso, G. Bertotti, O. Bottauscio, F. Fiorillo, M. Pasquale, M. Chiampi and M. Repetto,  J. Appl. Phys. 81, 5606 (1997)

Dynamic effects – eddy current losses



● The energy transformed into heat in one cycle is [1]: 

P
f
=∮

loop

H applied d B , P
P
f

where    is a power loss and        is a  loss per cycle

● The losses can be formally expressed as (Joule's law): 

P
f
=

1
V ∫V

d 3r∫
0

1/ f

∣ j ( r⃗ , t)∣2ρ ( r⃗ )

● In real systems the eddy current distribution is not known. It can be though expressed 
 phenomenologically as [1]:

P
f
=C0+ C1 f + C2 f −1 /2 The coefficients may be functions of magnetization

● The above equation can be applied to the broad variety of magnetic materials with 
 different domain structure.

Dynamic effects – eddy current losses



● It turns out that the constants in the                                        equation can be attributed 
to different processes influencing the hysteresis [1]:

● -hysteresis loss – scale of Barkhausen effect – eddy currents induced by the small jumps 
 of  domain walls fragments - C0

   -classical loss – related to specimen geometry – calculated from Maxwell's equations 
   assuming homogeneous, conducting material with no domain structure - C1

  -excess loss – caused by eddy currents accompanying steady motion of domain walls 
  under the influence of external field

P / f =C0+ C1 f + C2 f −1/2

A.H. Taghvaei, H. Shokrollahi, K. Janghorban, H. Abiri, Materials and Design 30 (2009) 3989–3995

Dynamic effects –  loss separation



● The word hysteresis, coined by Scotsman James Alfred Ewing from ancient Greek 
στέρησις (hysterēsis, “shortcoming”), denotes in general that the output is lagging the ὑστέρησις (hysterēsis, “shortcoming”), denotes in general that the output is lagging the 

input [1].
● As an example consider a system:

H (t)=H 0 cos(ω t) X (t )=X 0 cos(ω t−φ )

max. Hmax. X

● In general the response to 
sinusoidal excitation is not 
sinusoidal.

● Undistorted response is 
characteristic for linear systems  
where the superposition principle 
holds.

 

ϕ =
1
5
π

ϕ =
1
2
π

Hysteresis lag



● We have time-invariant system which responses at time t to an input impulse δ(t-t0) that 
occurred at t0. The response can be often written as [1]: 

Φ (t)=χ iδ (t)+Φ d (t)Θ (t)

● The terms represent the instantaneous and delayed response. It is assumed that:

Heaviside step function  - response follows excitation

Φ d (t)→ 0 as t→∞ which means that after long enough time after excitation the system
is at X=0.

● Using a superposition principle the response to a arbitrary input is:

X (t )=χ i H (t)+∫
−∞

t

Φ d (t−t ' )H (t ' )dt ' (1)

● In frequency domain it can be rewritten to give [1]:

X ω=χ (ω )H ω with χ (ω ) =χ i+∫
0

∞

Φ d (t)e
−iω t dt

● The generalized susceptibility is a complex number: χ (ω )=χ ' (ω )+ χ ' ' (ω )

● From Euler's formula* and the fact that the response Φ is a real function it follows that**:

χ ' (−ω )=χ ' (ω ) χ ' ' (−ω )=−χ ' ' (ω )

e i x
=cos(x)+ i sin(x)*

**because cos (−ω)=cos(ω ) and sin(−ω )=−sin(ω )

Hysteresis lag



● Further, from                                  we have:χ ' ' (−ω )=−χ ' ' (ω ) χ ' ' (0)=0

X=R.e ( χ H )=R.e [(χ '+ i χ ' ' )H 0 e−iω t
]=H 0( χ ' cos(ω t)+ χ ' ' sin(ω t))

● The response of the system is:

X=χ ' H 0 cos(ω t)

out of phase relative to excitation

In quasi-static limit where the excitation varies arbitrarily slow there is no lag of response 
relative to input and there is no hysteresis

● Thermal fluctuations in the limit of very slowly varying excitation lead the system to the 
absolute energy minimum

for very slow excitation ω=0Hysteresis lag



● We consider the case when H and X are conjugate variables; HdX represents the work 
done on the system by external forces [1].

● The first law of thermodynamics may be written as:
dU=H dX + δQ

● If the system undergoes cyclic changes its internal energy is not changed (T=const) and 
the work done on the system is dissipated as heat:

∮
cycle

H dX=−∮
cycle

δQ

● In any hysteretic system the work dissipated in each cycle is given by the area of the 
loop described by X(H). For the case of linear system (see 4 slides back) we get [1]:

X=X 0 cos(ω t−φ )=R.e( χ H )=H 0( χ ' cos(ω t)+ χ ' ' sin (ω t ))

● Using the identity                                                                and remembering that:cos(α−β)=cos(α )cos(β )+ sin(α )sin (β )

we get, comparing coefficients of cos(ωt) and sin(ωt):

W=∫Δ B⃗⋅H⃗ dV

ϕ =0 ϕ =0.1π ϕ =0.2π ϕ =0.5π

W=∮
cycle

H dX=π H 0 X 0 sin(φ ) (2)

X 0 cos(φ )=H 0 χ ' X 0sin (φ )=H 0 χ ' '

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis dissipation



● Substituting the second of the above identities into Eq.2 we get [1]:

W=π H 0
2
χ ' ' (ω )

● Dissipation in linear systems is controlled by the imaginary part of susceptibility.

● Expressing losses in terms of loss angle is not limited to linear systems.

W=∮
cycle

H dX=π H 0 X 0 sin(φ ) (2)

X 0 cos(φ )=H 0 χ ' X 0sin (φ )=H 0 χ ' '

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis dissipation - cont’d



● In a system exhibiting hysteresis future evolution depends on past history [1].
● In systems with memory the output at time t depends not only on the input at time t but 

also on previous inputs H(t') at times t'.
● Nonpersistent memory
- input H varies for t<t0 and remains constant for t>t0; from Eq.1 we have:

X (t )=χ i H 0+ ∫
−∞

t0

Φ d (t−t ' )H (t ' )dt'+ H 0∫
0

t−t0

Φ d (t ' )dt'

- because                                     the output reaches the limit: Φ d (t)→ 0 as t→∞

X (t )=( χ i+∫
0

∞

Φ d (t ' )dt ') H 0=χ ' (0)H 0 χ (ω ) =χ i+∫
0

∞

Φ d (t)e
−iω t dt

- in the limit the memory of input for t<t0 is lost

● Persistent memory – state of the system under constant input keeps on depending on 
the past history of the inputs even after all transients have died out [1]

For a given input H the system can occupy different states.

∫
−∞

t0

Φ d (t−t ' )H (t ' )dt'→ 0

As t increases beyond t0:

expression in parentheses equals Re[χ(ω)] for ω=0.

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis - memory



● Branching – branch is generated when input H stops increasing and starts decreasing: 

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

● Branching is an indication that the system is not in thermodynamic equilibrium
● Local memory – the values of H and X are enough to identify the state
● Nonlocal memory – different curves X(H) can start from every (H, X) point; this is 

 observed in many magnetic materials
● When thermodynamic equilibrium is reached any memory of the previous states is lost

 

● In many magnetic systems there is a input-rate interval where the rate dependence of 
hysteresis can be neglected [1]:

-rate must be slow enough not to introduce frequency dependents effects (like eddy 
 currents in conducting magnets)
-rate must be high enough for thermal relaxation not to play a role

Hysteresis – memory, cont’d

That is how most of the hysteresis curves shown in literature are
measured – within that input-rate interval.



● Let us consider the system with local memory and energy given by [1]:
f ( x)=x4

−2 a x2

● Introducing the input we can write (energy depends now on the input – for example 
 magnetic field h; note the analogy with Stoner-Wolfarth model of lecture 3):

g (x)=x4
−2 a x2

−hx

● Exemplary energy profiles show two local minima (metastable states) for small h values 
 and one minimum for higher values:

single stable value

two stable values

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – bistable systems

here a≈0.5
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●From the condition for extremum of g(x) we have:
∂
∂ x

g (x)=∂
∂ x

f (x)−h=0 ← g (x)= f (x)−hx

●Using                        we can graphically trace hysteresis:∂/∂ x [ f (x)]=h 1

2

3

4

65

start at positive h (field)

At h=0 there are three 
extrema (one metastable)

At h=hc there is only one 
minimum – Barkhausen 
jump

Field is increasing shifting 
the position of the single 
minimum

Field sweep direction is 
reversed

1

2

3

4

5

6

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – bistable systems - cont’d
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●Exchanging axes we obtain a traditional form of hystersis:

●We want to know the area of the shaded region of the top right hysteresis (it should be 
half the work dissipated in hysteresis). The work can be expressed as (see previous slide) 
[1]:

ΔW=∫
x1

x2

[ hc−
∂ f
∂ x ] dx=−∫

x1

x2

[ ∂ g
∂ x ]h=hc

dx=g (x1 , hc)−g (x f , hc)

The work is exactly the energy decrease when the system makes Barkhausen jump

The above description is rate-independent: it was assumed that system is always in one of energy 
minima independently of the input rate of change.

← ∂
∂ x

g (x)=∂
∂ x

f (x)−h=0

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – bistable systems - cont’d

this is the blue curve from previous slide



●Rate independent hysteresis holds when Barkhausen jumps take much less to complete 
 than the time scale relevant to field rate of change.
●In metallic ferromagnets due to eddy currents the fast changes of magnetization are 
 damped leading to rate dependence.
●The condition for equilibrium is:
∂
∂ x

g (x)=∂
∂ x

f (x)−h=0

●When the gradient of f differs from h there is a net force; state variable x will change with 
 time.
●If the system is close to equilibrium dx/dt may be expanded into powers of                .  To 
 simplify analysis the expansion can be truncated after the first-order term [1]:  

∂ g (x )/∂ x

γ
d x
d t
=−

∂ g
∂ x

γ - friction constant

●In this form the equation gives no oscillations of magnetization. 

Rate independent hysteresis is only possible when the system has multiple metastable 
states

γ
dx
dt
=h−hF hF :=∂

∂ x
f ( x)

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – rate dependence

If the energy landscape changes 
rapidly, due to the variations of the 
external parameter (e.g. magnetic 
field) the system does not reach 
instantaneous equilibrium

Depending on the instantaneous
shape of the energy landscape 
the forces acting on the system 
in a given state (e.g. angle of 
magnetic moment) differ in 
value and direction

If the field value was set to -0.6 for a long 
enough time the system (represented with a 
yellow sphere) would reach that minimum



●Rate independent hysteresis holds when Barkhausen jumps take much less to complete 
 than the time scale relevant to field rate of change.
●In metallic ferromagnets due to eddy currents the fast changes of magnetization are 
 damped leading to rate dependence.
●The condition for equilibrium is:
∂
∂ x

g (x)=∂
∂ x

f (x)−h=0

●When the gradient of f differs from h there is a net force (state variable x will change with 
 time):

●If the system is close to equilibrium dx/dt may be expanded into powers of                .  To 
 simplify analysis the expansion can be truncated after the first-order term [1]:  

∂ g (x)/∂ x

γ
d x
d t
=−

∂ g
∂ x

←  force γ - friction constant (like viscosity in a fluid)

●In this form the equation gives no oscillations of magnetization. 

Rate independent hysteresis is only possible when the system has multiple metastable 
states

γ
dx
dt
=h−hF hF :=∂

∂ x
f ( x)

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – rate dependence

F= ∂
∂ x

f (x)−h
First term describes the force due to the system (internal forces, e.g. anisotropy energy)
and the second the influence of the external field (e.g. magnetic)



● Assuming that the input (field) changes with time we can write (putting γ=1):

d x
d t
=h−hF

d h
d t
=r (t )

Phase portrait of equation- sets 
of points (x(t),h(t)) on xh-plane 
for different starting values x(t0) 
and h(t0).

starting points: x=-1.5 and 1.5 (two red 
dots)
●Trajectories for different starting values 
(and the same r) do not intersect [1].

decreasing field

hF

hF :=∂
∂ x

f (x)

- time varying field (eg field of VSM electromagnet) 

some starting points of x(h) 
trajectories

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – rate dependence
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● Exemplary phase portrait of above equation for f=x4-x2 and r=0.25 (and r=-0.25 – 
decreasing field).

To numerically calculate the trajectory x(h(t)) we choose some initial point (x(t0),h(t0)), then 
change x by Δt𐄁(dx/dt), advance the time by Δt, change h accordingly (H depends linearly 
on time t) and so on...
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h

x

r=0.25

● Assuming that the input (field) changes with time we can write (putting γ=1):

d x
d t
=h−hF

d h
d t
=r (t )

● Exemplary phase portrait of above equation for f=x4-x2 and r=0.25 (and r=-0.25 – 
decreasing field).

starting points: x=-1.5 and 1.5 (two red 
dots)

To obtain a hysteresis corresponding to 
given r one identifies trajectories for 
opposite r that intersect at desired peak 
input values of h.

decreasing field

increasing field

hF :=∂
∂ x

f (x)

- time varying field (e g field of VSM electromagnet) 

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – rate dependence
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●Assuming that the input(field) changes with time we can write (putting γ=1):

d x
d t
=h−hF

d h
d t
=r (t )

Phase portrait of equation - sets of points (x(t),h(t)) on xh-plane for 
different starting values x(t0) and h(t0).

●Exemplary phase portrait of above equation for f=x4-x2 and r=2.5 (and r=-2.5 – decreasing 
field).

starting points: x=-1.5 and 1.5 (plus two red 
dots)

To obtain a hysteresis corresponding to 
given r one identifies trajectories for 
opposite r that intersect at desired peak 
input values of h.

decreasing field

increasing field

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●Assuming that the input(field) changes with time we can write (putting =1):

d x
d t
=h−hF

d h
d t
=r (t )

Phase portrait of equation- sets of points (x(t),h(t)) on xh-plane for 
different starting values x(t0) and h(t0).

●Exemplary phase portrait of above equation for f=x4-x2 and r=2.5 (and r=-2.5 – decreasing 
field).

starting points: x=-1.5 and 1.5 (plus two red 
dots)

To obtain a hysteresis corresponding to 
given r one identifies trajectories for 
opposite r that intersect at desired peak 
input values of h.

decreasing field

increasing field

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●Exemplary loops obtained for two input rates of change (see previous slides):

● The shape of loop depends on the rate 
 of change of input (magnetic field)

● With increasing frequency f the area of 
 the saturation loop increases – this 
 means that the amount of energy 
 irreversibly turned into heat in on          
 period increases  with f.

● The shape of loop depends not only on 
 the frequency of the input and its 
 peak values (hmin and hmax) but also on 
 the waveform applied, i.e., the x(h) 
 dependence is different for  
 sinusoidally  varying h from the one 
 obtained for  triangular excitations.  

 both curves obtained for the same field amplitude (h≈2.5)

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●There is a qualitative agreement with experimental dependencies:

V. Basso, G. Bertotti, O. Bottauscio, F. Fiorillo, M. Pasquale, M. Chiampi and M. Repetto,  J. Appl. Phys. 81, 5606 (1997)

Hysteresis – rate dependence
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●In many magnetic materials the hysteresis is a sequence of Barkhausen jumps
●The jump is associated with the system leaving metastable state in favor of state with 
lower energy
●Preisach proposed [2] to treat magnetic material as a set of units characterized by 
elementary rectangular hystereses with randomly distributed values of coercive field and 
shift field:

●In the analysis both H and M are usually treated as scalar quantities [1].
●It is assumed that rate dependent dissipation phenomena play no role in the 
magnetization reversal.
●It assumed too that thermal relaxation is absent.
●The above assumptions mean that the hysteresis is rate-independent and corresponds to 
zero temperature. 

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – Preisach model



●In many magnetic materials the hysteresis is a sequence of Barkhausen jumps
●The jump is associated with the system leaving metastable state in favor of state with 
lower energy
●Preisach proposed [2] to treat magnetic material as a set of units characterized by 
elementary rectangular hystereses with randomly distributed values of coercive field and 
shift field:

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●Each Preisach unit can be characterized by different associated magnetic moment (Δm)
●Preisach distribution p(hc,hu)– is a function describing relative abundance of Preisach 
 units with given coercivity and shift field hu.
●Preisach approach is expected to give approximate description of certain systems.
●Once Preisach distribution is known the magnetization reversal can be calculated.

●In ferromagnetic materials usually a input-output history {H(t),M(t)} implies that 
{-H(t),-M(t)} is also a admissible history for the system* [1]. It follows that:

p(hc , hu)= p(hc ,−hu) in ferromagnetic materials

*it may not be the case in systems with exchange anisotropy if the 
antiferromagnetic material is not saturated (minor loops)[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Hysteresis – Preisach model



hu≥H+ hc (H≤hu−hc)

H−hc< hu< H+ hc (hu−hc< H< hu+ hc)

hu≤H−hc (H≥hu+ hc)

●Preisach plane:

●The boundary of the cone (yellow region), position of which depends on the external field 
 H, is a set of points where the Barkhausen jumps can take place.
●The different points on the Preisach plane correspond to elementary loops of different Hc 
 and shift.
●The total number of metastable states is 2N, where N is the number of Preisach units in 
 yellow region.

m=+Δm

m=−Δm

in this field range the 
Preisach unit can be 
magnetized up or down

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●Preisach plane:

hu=H−hc

●The boundary of the cone (yellow region), position of which depends on the external field 
 H, is a set of points where the Barkhausen jumps can take place.
●The different points on the Preisach plane correspond to elementary loops of different Hc 
 and shift.
●The total number of metastable states is 2N, where N is the number of Preisach units in 
 yellow region.

m=+Δm

m=−Δm

hu=H +hc

hu≥H+ hc (H≤hu−hc)

H−hc< hu< H+ hc (hu−hc< H< hu+ hc)

hu≤H−hc (H≥hu+ hc)

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●Exemplary hystereses from Preisach model
-1000 Preisach units, hc – Gaussian distribution with average μ=1 and σ2=0.01; 
  hu – Gaussian distribution with μ=0 and σ2=0.01:

Gaussian distribution

image source: 

Wikimedia Commons; author: Inductiveload 

●For narrow distribution of Preisach units on Preisach plane we essentially recover the 
elementary square loop of a single element.

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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Gaussian distribution

●The shapes of the hysteresis depend mainly (assuming zero average shift hu) on the 
width of the distribution
●In systems composed of individual physical entities (grains etc.) one often uses 
factorization (Preisach distribution which is a product of distributions for hc and hu):

●Exemplary hystereses from Preisach model
-1000 Preisach units, hc – Gaussian distribution with average μ=1 and σ2=0.5; 
  hu – Gaussian distribution with μ=0 and σ2=0.01:

p(hc , hu)= f (hc)g (hu)

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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image source: 

Wikimedia Commons; author: Inductiveload 



●Evolution of hysteresis with increasing spread of coercive fields
-2000 Preisach units, hc – Gaussian distribution with average μ=1 and changing σ2 *; 
  hu – Gaussian distribution with μ=0 and σ2=0.01:

●In systems with structural 
imperfections one often 
observes a spread of 
coercivities.

*care must be take not to have 
negative coercivities in the 

distribution

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●Exemplary major and corresponding minor hystereses 
-5000 Preisach units, hc – absolute values from Gaussian distribution with average μ=4 
and σ2 =1.5; hu – Gaussian distribution with μ=0 and σ2=0.01:

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●A necessary condition for the Preisach model to be applicable is that the system exhibits 
return-point memory [1]

When the field returns back to H=H1 the system 
returns back to the exactly same state it occupied 
when the point H=H1 was reached for the first 
time.

5000 Preisach units, hc – absolute values from 
Gaussian distribution with average μ=4 and 
σ2 =1.5; hu – Gaussian distribution with μ=0 and 
σ2=0.01.

image source: M. Pardavi-Horvath and G. Vertesy, 
IEEE Trans. Magn. 33 3975 (1997)
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[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●A necessary condition for the Preisach model to be applicable is that the system exhibits 
congruency [1]

5000 Preisach units, hc – absolute values from 
Gaussian distribution with average μ=4 and 
σ2 =1.5; hu – Gaussian distribution with μ=0 and 
σ2=1.

image source: M. Pardavi-Horvath and G. Vertesy, 
IEEE Trans. Magn. 33 3975 (1997)

H1

H2

Field cycling between field values H1 
and H2 produces the minor 
hysteresis loop of the same 
geometrical shape (congruent).

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998
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●In nucleation-type magnets, the virgin curve (obtained after thermal demagnetization of 
the sample) is steep and saturation is reached in fields small compared to coercive field of 
the saturation loop:
-domain walls are present in virgin state
-the formation of reverse domains is difficult and the demagnetization curve (second 
 quadrant) is characterized by high coercivity
●In pinning-type magnets domain wall pinning is substantial also in the virgin state

[1] G. Bertotti, Hysteresis in Magnetism, Academic Press, 1998

Nucleation and pinning-type magnets



H. J. Williams and Matilda Goertz, J. Appl. Phys. 23, 316 (1952)

●The nucleation of walls often requires much higher fields than those required to sustain 
 the domain wall motion.
●If one measures the hystersis keeping the rate of change of magnetization very slow the 
 so called reentrant loop can be obtained [1,3].

domain walls start to move

weaker field is sufficient
to sustain wall motion

Reentrant hysteresis



●The spin-flop transition* can be induced in an uniaxial  antiferromagnet with low 
anisotropy  by the field applied parallelly to anisotropy axis:

J. E. Rives and V. Benedict, Phys. Rev. B 12, 1908 (1975)

spin-flop

Spin-flop in bulk antiferromagnet

Field induced spin-flop phase transition

*an example of a matamagnetic transition. ”A metamagnetic transition is a general term for (qualitative) changes in 
magnetic order due to the application of a magnetic field”, Kai Fauth, University of Würzburg



Spin-flop in bulk antiferromagnet

spin-flop

Stoner-Wohlfarth like model:

M(H) dependence is obtained by minimizing the above energy expression with respect to α-s for
consecutive values of H.

●The spin-flop transition can be induced in an uniaxial  antiferromagnet with low anisotropy 
 by the field applied parallelly to anisotropy axis:

Field induced spin-flop phase transition
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Spin-flop

●The spin-flop transition can be induced in an uniaxial  antiferromagnet with low anisotropy 
 by the field applied parallelly to anisotropy axis:

Field induced spin-flop phase transition
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Spin-flop in [NiFe/Cu]N thin film

E=−B M 1 cos(α 1)−B M 2 cos(α 2)

−K a cos2
(α 1)−K a cos2

(α 2)−

J coupling cos [α 1−α 2]

spin-flop

Stoner-Wohlfarth like model:

●In [NiFe/Cu]N multilayer each NiFe 
layer  can be treated as a macrospin
 

●The NiFe sublayers are coupled by 
 RKKY-like coupling

●The spin-flop transition can be induced in an uniaxial  antiferromagnet with low anisotropy 
 by the field applied parallelly to anisotropy axis:

Field induced spin-flop phase transition



●The spin-flop transition is classified as first order field induced phase transition because of 
 discontinuous change of magnetization of the sample*.
●When the angle between the external field and the easy axis of ferromagnet (α) exceeds 
 some critical value the phase transition is suppressed and the magnetization changes 
 continuously

*K.W. Blazey, H. Rohrer and R. Webster, Phys.Rev. B 4, 2287 (1971)

●The critical angle is very sensitive to 
 demagnetizing fields: “the critical angle 
 of a cylinder is nearly three times that of 
 a disk”*. 

Field induced spin-flop phase transition
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