3

Magnetic Anisotropy

Poznan 2019

MIVIA H
AANY
G DS
NE T
ER E
TI R
| A E
CL S
S |

S

Maciej Urbaniak



3
Magnetic Anisotropy

* Magnetocrystalline anisotropy
* Shape anisotropy

» Surface anisotropy

* Stress anisotropy

* Array anisotropy
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Warm-up problem

Find the magnetic induction produced by a magnetized torus of revolution (major radius R,
minor radius r) on a line x, y=0, when vector M is given by*:
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Warm-up problem

Find the magnetic induction produced by a magnetized torus of revolution (major radius R,
minor radius r) on a line x, y=0, when vector M is given by*:
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Pole avoidance principle*

1dent1ty Vfda)=fV-aHa-

Consider the following expressmn

| BEAV=-]

B-V¢

dv_—f (¢ B) q)Ndv

which using divergence theorem transforms to:

|B-Hdv=— V-(¢B)dv=]T7i-¢pBds

We know that boundary conditions require ¢ to be continuous everywhere. We assume
that the surface s contains all ferromagnetic bodies (of the whole system). Outside the

magnetized bodies we have:

-

B=u,H Movq)

If we allow the surface to tend to infinity the ¢B goes to zero as r 3 [2] while the surface

increases as r?. Finally we have:

| B-Hdv=0

all space

for the field produced by finite distribution of magnetized bodies (no free currents).

*see A. Aharoni [2], or W. F. Brown [18]
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Pole avoidance principle*

The expression for the energy of the magnetized bodies in own field is [2]:
1 - -

E,=—— [ B-Mdv
2 \%

From previous slide we have:

— —

| BHAV= [ wH-(M+H)dv=0 » [ wH*dv=-y, [ H-MdV

Space Space Space Space |
Rewriting En, we get: l
constant
E, ——fuo M+H)-MdV=— %fqude %fuoﬁl Mdv
\% \%

* note that the integrand is never negative
E _COHSI+M02 f H°dV

Space * the smallest possible value for variable part of

magnetostatic self energy is zero

* this can be achieved only when H is zero everywhere

* in the absence of free currents, only the magnetic
charges (surface and volume ) produce magnetic field
strength H

*see A. Aharoni [2], or W. F. Brown [18]
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Pole avoidance principle*

Em:constﬂ&o% f

Space

* note that the integrand is never negative
H°dV | |
* the smallest possible value for variable part of

magnetostatic self energy is zero
* this can be achieved only when H is zero everywhere
* in the absence of free currents, only the magnetic

charges (surface and volume ) produce magnetic field
strength H

/

\_

\
Magnetostatic energy term leads to magnetic

moments configurations with possibly small

magnetic charges (pole avoidance principle) /

Alternatively the magnetostatic energy term can be writte as [2]:

Emzconst—L f

MO Space

B2 dVv note that the minus sign before the integral makes the equation of little
use in predicting magnetization configuration [2]

*see A. Aharoni [2], or W. F. Brown [18]
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Anisotropy of hysteresis

single crystals :
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Abbildung 4: Magnetisierungskurven von
Einkristallen von (a) Fe nach Honda et al. [7],
(b) Co nach Kaya [8] und (¢) Ni nach Kaya
[9]. Die leichten Achsen von Fe sind die [100]
Richtungen, fiir Ni die [111] Richtungen und
fir Co die [0001] Achse. Die leichten Rich-
tungen sind dadurch ausgezeichnet, daf kleine
Magnetfelder geniigen um die S&ttigungsma-

M (emiiferm?)

gnetisierung zu erreichen.

image source: S. Blugel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jilich ISBN 3-89336-235-5, 1999
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Anisotropy of hysteresis

1.0 4

0.5

hard-axis reversal

0.0

M/M

-0.5 1

-1.0

0 5 0 5 10
H[a.u]
* hard-axis reversal is characterized by higher field needed to saturate the sample

* the easy-axis reversal is usually characterized by higher hysteresis losses
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Anisotropy of hysteresis — hysteresis of a sphere

* In case of large sphere (containing many atoms) the shape of the sample does not
introduce additional anisotropy

* In small clusters the magnetization reversal is complicated by the reduction of symmetry
(and the increased relative contribution of surface atoms)

iFinz
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In Fe sphere of radius 1um the surface
atoms constitute roughly 0.04% of all atoms
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Anisotropy of hysteresis — hysteresis of a sphere

* In case of large sphere (containing many atoms) the shape of the sample does not
introduce additional anisotropy

* In small clusters the magnetization reversal is complicated by the reduction of symmetry
(and the increased relative contribution of surface atoms)

sphere-like — no
breaking of crystal
symmetry for high r

FIG. 6. (a) high-resolution transmission electron microscopy
(HRTEM) observation of a cobalt cluster along a [110] direction.
Interplanar distances™ d = 2-04==6-02 A oo =1.7720.02 A

and angles correspond to bulk fcc cobalt. Moreover facet] — -+ . - +

sistent with the Wulff theorem (Ref. 27). (b) HRTEM d IlltEl'plﬂIlﬂl distances d(“l) 2.04x 0 02 & d (200) =177% 0 02 &
of an iron cluster along a [110] direction. The interplan{ ~ and angles correspond to bulk fcc cobalt. Moreover faceting 1s con-
d(110)=2.0120.03 A corresponds to the bulk bee iron on - - 710 . ) el
W&dth the Wulff theorem (Ref. 27). sistent with the Wulff theorem (REf 27] (b) HRTEM observation
of an iron cluster along a [110] direction. The interplanar distance
d110)=2.0120.03 A corresponds to the bulk bee iron one. Faceting

APp=2ZP>pRINC-=

2019 M. Jamet et al., PHYSICAL REVIEW B 69, 024401 (2004)
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Anisotropy of hysteresis

Free magnetic moment in empty space (without
the external field) — the energy does not depend
on the orientation of the moment
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Anisotropy of hysteresis — a single atom on a crystal surface

* Co atoms deposited by molecular beam epitaxy on Pt(111) surface

* “The XMCD signal (Fig. 1C) is the difference between the XAS* spectra recorded for
parallel and antiparallel alignment of the photon helicity with the applied field B. Fields of

Coverage less than 0.03 ML

up to 7 T were used to magnetize the sample at

angles 0° and 70° with respect to the surface #

normal.”

r

N
* The presence of Pt surface induces

very high magnetic anisotropy of
9.31£1.6 meV/atom

* In SmCos magnets the anisotropy is
0.3 meV/Co atom

Y L J
It is about 6% of a latent heat

f melting (243 kJ/kg [14)) of |

of melting (243 kikg 14D o | jsolated Co adatoms

APp=Z>PWIC-=S

very high saturation field

2b —po(0) T—
— M4 (70%)
ol —H- (70°) ~_
D C 0.0 prmmir—— el -
\¥ / - (09)
= : |3 /| -t (0
3 o |I : I| == [Pt - po)ge 0.5
© - i
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-8 6 4 -2 0 2 4 6 8 775 780 785 790 795 800
B (Tesla) Photon Energy (eV)

Fig. 1. (A) STM image of isolated Co adatoms (bright dots) on Pt(111). The Co coverage is 0.010
ML, and the image size is 85 A by 85 A. (B) Lz 3 XAS spectra of isolated Co adatoms (0.010 ML) at
T =55 = 05K, B = 7 T taken with parallel (. ) and antiparallel (i ) alignment of light helicity

with respect to B at 6, = 0°, 70° relative to the surface normal (inset). The spectra at 70° have been

*XAS — X-ray absorption spectroscopy

normalized to the (. + p_) L, intensity at 0° to eliminate the dependence of the electron yield
on the sample orientation. (C) XMCD spectra (n., — p_) obtained for the 6, = 0° and 70°
magne EgasTTe e e TTrE T atey o, — 9. (D) Magnetization
curves gt 6, = 0° = 5.5 K{The points represent
the pe B ¥ B S - ¥ sity at 775 eV as a

function of B. Theadifference between the l[-} — 0° and 70° curves was checked for consistency with
the XAS-normalized XMCD spectra. The solid lines are fits to the data according to Eq. 3.

P. Gambardella et al., Science 300, 1130 (2003)




Anisotropy of hysteresis — a single atom on a crystal surface

O=—-=- mMmZO> =2

M
A
T
E
R
I
A
L
S

ozZz>

The local
neighborhood
determines the
preferential
direction of the
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Spin-orbit interaction (coupling)

* The electron is orbiting the nucleus of the +Ze charge*

* Looking at the nucleus from electron we have the magnetic field due to the motion of the

nucleus. The energy of electron in that field is

-

E=—gu,mB

O=-=- mMZO> =S

Correspondingly every electronic state splits into two (with two orientations of the spin).

We assume that an electron is orbiting the nucleus in xy plane and that its instantaneous

velocity is along x-direction.

The electric field of the nucleus at the place of an electron is along y-direction then

e, r

From special relativity theory (A. Einstein) for the components of the
magnetic field in the electron reference frame we have [16]

el(ectron) __ _
B =p =(

Bel — 1 — 0 Belz 1

T2 T V1=V

Electron feels then the magnetic field that is oriented along z-axis
Further, the field seen by the electron can be written as

ve
By+—2EZ
C

l - 1 = m, v
BY'=—|Exv|=——|EX7 - TV
cz( ) mcz( p) P V1=v*/c?

*the derivation is taken from Einftihrung in die Quantenmechanik (Physik 1V), ETH Zurich [13]
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Spin-orbit interaction (coupling)

Inserting the above calculated magnetic field into the expression for energy yields

Z 0> =

1 - 1 1 Zel? . this give the appropriate g
AE i oy =—8WpM B=—gUzm,— (Exp)=—gMBms 5 S| =XPp direction of electric field
mc me” ||47E, r i :
L c
1 1 Ze|._|_ 1 1 Ze | angular momentum
AEspin—orbit:_gMBms 2 4 3 I"Xp __gMBmS 2 4 3 L M
mc ey r mc L€ 7 |A A
|— T
. : .. E
More exact calculations require taking into account the so called Thomas A y R
precession* — this leads to factor ¥2 which leads to “final” expression |
A
1 1 Ze -
AES in—ori:_gu L Ve X
- bit 2 Bmcz 4TE€0 r3
B
: : .. : N
* note that spin-orbit coupling is proportional to Z D
 ...and to orbital moment of an electron % H
Y
s
The direction of the magnetic field cal- T
calculated from Biot-Savart law fora | ©
moving charge is the same R
> W g E
_E_ZVX r S
- i e
s

*the derivation assumed that electron moves along straight line [13]
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Spin-orbit interaction (coupling)

In a crystal conducting electrons move in the average electric field of the atom cores and
other electrons

The core electrons that remain in the vicinity of the nucleus experience strong electric fields
and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit
coupling (please see movies at https://staff.aist.go.jp/v.zayets/spin3 32 SpinOrbit.html)

paths of itinerary
electrons

orbits of core
electrons

2019
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Spin-orbit interaction (coupling)

* In a crystal conducting electrons move in the average electric field of the atom cores and
other electrons

* The core electrons that remain in the vicinity of the nucleus experience strong electric fields
and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit
coupling (please see movies at https://staff.aist.go.jp/v.zayets/spin3 32 SpinOrbit.html)

* The magnetic fields due the core electron movement can be huge [15]:

Linear velocity of an electron rotating around a nucleus is ~2.1*10° m/s

The electric field experienced by an electron in the vicinity of nucleus (calculated for 1s
orbital of hydrogen atom) is roughly 5*10** Vim

The effective magnetic field of the spin-orbit interaction is about 12 T

For comparison we [15] estimate the effective field in devices in which we try to influence
the behavior of itinerant electrons applying external electric fields

The maximal electron velocity (saturation velocity, maximal drift speed) ~1*10” m/s

The maximal available electric field (limited by breakdown voltage of the materials), for
GaAs or Si it is roughly 5107 Vim

The effective magnetic field of the spin-orbit interaction is about 5*10* T (about tenfold
strength of the earth magnetic field)
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Spin-orbit interaction (coupling) — dependence on a atomic number

The SO coupling depends indirectly on the charge of the nucleus (2)

The dependence is different for different series

image source [19] PHYSICAL REVIEW B 90, 165108 (2014)

10

1 Illlld L Loy

—
T |||||I'I'| T T rrm

Spin-orbit coupling A, (Ry)
o

20 40 60 80 100
Atomic number (Z)

FIG. 1. (Color online) Dependence of the spin-orbit coupling
strength A,; for atoms as a function of the atomic number Z. The
calculated results of Herman and Skillman [24] using the Hartree-
Fock method (colored lines) are compared to the hydrogenic Z*
dependence, which is computed from Eq. (4) for the 3d series (upper
dashed line). For the outermost electrons (indicated by the circles
and the shaded area), which are the relevant electrons in the solid,
the quantum numbers n/ change with Z and the spin-orbit interaction
increases much more slowly, following roughly the Landau-Lifshitz
Z? scaling [lower dashed line, calculated from Eq. (5) with A = 0.10].

* The Z* dependence for SO in central
field (near core electrons) comes from
perturbative correction [18]:

1 oVir) = <
H = L-S
SO(r) 2m2 C2 8r

E,=E.+F(l,j) Z"

* The Z2 dependence is more relevant
for solids
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Anisotropy of hysteresis

. A

,Many properties are represented by
tensors.

Situation always arises if rank of cause is
not equal to rank of effect or if properties
are anisotropic (i.e. property varies wit
direction in crystal)” [16]

In magnetism a magnetic susceptibility tensor is one of the important exemples:
the direction of magnetic moment (in macrospin approximation) is not in general parallel to
the direction of the external magnetic field

p
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Anisotropy of hysteresis

* For all practical purposes the atomic magnetic moments of a macroscopic homogeneous
magnetic sphere behave as if placed in infinite crystal of the same shape.

A. Aharoni: "in ferromagnetism there is no physical meaning to the limit of an infinite crystal
without a surface” [2]

* We do not know a priori the dependence of the energy of the crystal on the orientation of
magnetic moment of the sample.

It can be shown [1] that energy density related to the orientation of magnetic moment in
a crystal structure can be expanded into power series of direction cosines relative to the
crystal axes:

Ecrystal(M>:b0+ Z b, o+ Z bijaiaj"' Z bijkaiajak"'--- (1)

i=1,2,3 i,j=1,2,3 i,j,k=1,2,3

a,, a,, a, -direction cosines of magnetization

(a,,a,, a;)=(sin(0)cos(¢),sin(0)sin(¢),cos(6)) €. ¢ -polarand azimuthal angles

* The experience shows that it is enough to use very limited number of expansion terms to
describe the magnetic systems — the usual limit are sixth order anisotropy constants
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Anisotropy of hysteresis

* An example of the use of sixth order anisotropy constants for hysteresis description:

Figure 3. Magnetisation curves calculated for § = 0%, 6:5°, 13-7° (6.}, 17-3° and 35:3° [110].
The parameters K, and K are phenomenological and not directly related to DyAl,.

To see qualitatively that a sixth-order anisotropy term may indeed increase the
discontinuity and the tricritical angle 6., consider the classical mean field energy
M

E= ——H.Mn

+ K (MIM + MM + K[MS + MS + M?

— L(MM? + MEM? + MAM? + M2M? + M2M?
+ MIM;))/Mg

where K, and K, are phenomenological anisotropy constants. We have calculated
magnetisation curves by minimising E with respect to M for various directions of H. In
figure 3 are shown calculated magnetisation curves with K, = —1 and K, = 05, The
discontinuity for # = 01is 15%, which corresponds to the situation for DyAl, at T = 20 K.

B. Barbara et al., J. Phys. C: Solid State Phys. 11 L183 (1978)
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Magnetic anisotropy

* Intrinsic symmetries of the physical properties reduce the number of independent
components of anisotropy tensors.

* The energy of the system is the same for both opposite orientations of magnetic
moment. From Eq. (1) we have:

> b=, b(—a,) for all a; = b=b,=b,=0

i=1,2,3 i=1,2,3

* The magnetocrystalline anisotropy energy may not depend on odd powers of direction
cosines a. Consequently all odd rank tensors in the expansion (1) are identically null [1].

2019 *rank of a tensor — number of its indices
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Magnetic anisotropy - symmetry of crystals

* Neumann's Principle:
The symmetry elements of any physical property of crystal must include all the symmetry
elements of the point group* of the crystal.

* Consider a cubic crystal system with a 3-fold rotation axis [111] and the first
nonvanishing anisotropy tensor (second rank):

Transpose of a matrix — switches

bu b12 b13 rows and column indices
by=|b, by by [MT]I-,:Mﬁ
_b31 b32 b33 |
* The transformation matrix corresponding to that rotation is:
Note: isometries (angles and distances and coordinates transform
0 0 1 preserved) of R® space are described by according to the following
M=|1 0 0 square matrices for which an inverse of le:
a matrix is equal to its transpose: ruie. .
01 0 M'=Mm"" a l:ZM,-jaj
J

* Voigt's Principle:

The conditions of Neumann's principle are fulfilled if the physical property of the crystal is
described by the tensor which is invariant under point symmetry operations which leave
the crystal unchanged

* It follows that the physical property tensor must fulfill the conditionb=M"5 M for all
symmetry operations of the point group.

*A point group is a group of symmetry operations all of which leave at least on point unmoved.
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Magnetic anisotropy - symmetry of crystals

* Neumann's Principle:
The symmetry elements of any physical property of crystal must include all the symmetry
elements of the point group* of the crystal.

* Consider a cubic crystal system with a 3-fold rotation axis [111] and the first

nonvanishing anisotropy tensor (second rank):

b11
bij: b21

b12
b22

_b31 b32 b33.

b13
bys

Transpose of a matrix — switches
rows and column indices

(M'],=M

i i

* The transformation matrix corresponding to that rotation is:

M=

o = O

0
0
1

oS O =

3-fold rotation
axis

Note: isometries (angles and distances and coordinates transform

preserved) of R® space are described by according to the following
square matrices for which an inverse of

a matrix is equal to its transpose: rule:

— I —
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ij

||
_—0 O
SO -

0
1
0

bll

b21

.b31

b12 b13
b22 b23
b32

b33.

Magnetic anisotropy - symmetry of crystals

* From Voigt's principle it follows for tensor b:

]

S = O
_0 O
OO =

b1 =b2||01,=b||03= by,
b5 =03, (|05,=b33|| D53 =05,
by =b,, ||b3=by3||03:=b;

components:
s

b.=

g

o S Q

S Q O

S O &

~

b22

b32

I b12

b
b
b

23

33

13

b
b

, .

21

31

11.

b=M"bM

rotation by 120Deg about [111] direction

effect of the rotation of
the crystal on tensor bj;

* Comparing the elements of both (identical) tensors we get:

by, =by,,=by;=a
by =b3,=b;=b
by =b,=b,;=c

* The invariance in respect the 120 Deg rotation leaves only 3 independent

O=-=- mMZO> =S
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Magnetic anisotropy - symmetry of crystals
g Py - Sy y y b=MThM

* We apply the same procedure again, but this time with other symmetry element of cubic
crystal, namely 90Deg rotation around z-axis:

|
1

a —b rotation by 90Deg about [001] direction

—Cc a —b :
b effect of the rotation of

¢ a the crystal on tensor bj

b,=| -1
0

S O =
_—O O
o o Q
o = O

0
0=
1

>~ Q 0
8 0 o
o o |

* Comparing the elements of the first row of both (identical) tensors we get:
c=—b, b=c = b=c=0

* It follows that the second rank tensor consistent with the above two symmetry operations
possesses one independent component:

4 )
a 0 0
b,=|0 a 0
0 0 a
\_ J

e Similar analysis can be performed for other tensors in the expansion (1):

Ec,ystal(]\_;[):b0+ Z ba.a; + ... (1)

i,j=123

O==-mMmZ 06 > =
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Magnetic anisotropy - symmetry of crystals

* Inserting tensor b into the third term of expansion (1) we get:

Z b, aia]:a(alz+ a,+ ay’ )=a - independent of the orientation of magnetic moment

i,j=123 @, 0,, 0, O, etc. terms are not present because of b, =0 for j#i

* In cubic system there are no second order terms in the expansion of energy in
directional cosines [1].

» Using similar procedure we obtain the complete expression for the energy contribution
related to the orientation of magnetic moment in cubic system [1]:

E (M, T)=K,(T)+ K \(T)a e, + @) o+ aa )+ K, (T)a, a, ay

crystal

-the coefficients Ko, K1 ... are the linear combinations of tensor components b1, b1111,
b111111 etc. [4].

* For other crystal systems the similar procedure is employed to obtain the Ecrystal(M,T)
expressions.
* For hexagonal crystals the energy can be expressed as [1]:

E.(M,T)=K,(T)+ KI(T)(alz-II- a,’ )+ K, (T) (o, + a,’ )+ ...

which is usually expressed, using trigonometric identities, as:

crystal

E

crystal

angle with respect to easy axis

as+a;=sin’0 cos’ ¢ +sin’0 sin* p=sin’0 <«

(M,T)ZKO(T)+K1(T)sin2<9+ K,(T)sin* 0+ ... (2)

O=-=- mMZO> =S
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Magnetic anisotropy - symmetry of crystals

* Inserting tensor b into the third term of expansion (1) we get:

Z b, aiaj:a(a12+ a,+a’)=a -independent of the orientation of magnetic moment
i,j=123

* In cubic system there are no second order terms in the expansion of energy in
directional cosines [1].

* Using similar procedure we obtain the complete expression for the energy contribution
related to the orientation of magnetic moment in cubic system [1]:

E (M, T)=K,(T)+ K\(T)(a, o, + o, a+ a; e, )+ K,(T)a e, a;’

crystal

-the coefficients Ko, K1 ... are the linear combinations of tensor components b1, b1111,
b111111 etc. [4].

* The terms of the type a;* are omitted since because of the identity [4,5]:
2(a’a,’+ a22a32+ a32a12)+ o+ a,t+ a34:1
they can be incorporated into Ko, K1 terms.

*The terms of the type a° can be similarly replaced by aizajz and a,’a,’a, terms [6].
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Magnetic anisotropy - symmetry of crystals

O=—-=- mMmZO> =2

Or>=2m=5>»-=S

ozZz>

Hucao
-l T , NpHBes
O Cucro | Mpsproer | VSIS | S| s £
- HKAWHA H €€ OpHEHTalHT a
* Number of independent components Pron | P
of the (second rank) tensor depends
HMzorpon-| Ky6u- |Yernpe ocu Cdhepa 1 7TS007
on the crystal symmetry Has | ueckasn | TpeThero mo- 0S50
cpena paaka 00S
. . Terparo-| Oxna oce uer-| [Mosepxhocts 2 'Sy 0 07
* In crystals of cubic system there is Onio. || #aabkas | meproro mo-|  ppaueenna so- 05 0 }
. ; paika KpYr rJaaBHOl
one independent component of the ocaie | Pexcaro-| Ousa_ocs, we- ock crwerpin =0 0 52
CTOro nopsaaxka XglZ
tensor. CTadIbt Tpuro- | Ozna ock Tperhb- !
HaJbHas €ro nopfankKa
. Opto- | Tpu B3aumHo | ITpousBoabHas 3 TS; 0 07
* Hexagonal systems are characterized poMGute-| mepneimuKy- |  NOBEPXHOCTS 0 S 0
- CKasn MAPHLIE OCH BTOpOro no-
by two independent components of BTODOr0 NO-| pAIKa C OCAMH LO 0 S5l
paaka; oceH Xy, Xg, X3, ma-
the second rank tensors. BHCWEro Mo-|  pAnnenbHEIMH
pAlka Her OCsM BTOPOTO
nopaaka x,y,z
Mono- | Omsa oce BrO- | [IponssoabHasn 4 [7Sn 0 Sy
.[[By- KIHHHAA pOFO nopﬂ,u,xa HOBBPKHOC‘I‘I: 0 Sgg 0
BTOPOTO MOpAn-
ﬁﬁe ) Ka ¢ OAHOH 0CBI0 ~Sa1 0 Sgg!
CTaNABl Xg, Napannens-
HOH OCH BTO-
poro mopsgka y
Tpu- |Llentp cumme- | [lponsBoabHan 6 |7 S11 S1aSs
KJHHHaa TPHH HJIH OT- NOBEPXHOCTDb Sl S22 32
CYTCTBHE CHM- BTOPOTO Nopai- S : Sor S ?
METpHH ka. [Tonowenne —-'81 Y28 V8
OTHOCHTENBHO
KpuCTaanorpa-
(uueckux oceift
| He (PMKCHPOBaHO

* OcH CHMMETPHH MOryT GHTh NOBOPOTHHIMH HAH HHDEPCHOMHLIMM, CM, Takwe cTp. 335,

*» OpHEItTﬂl.I,Iﬂ oced Xy, X3 X3 MOBEPXHOCTH BTQPOro MOPAAKA N0 OTHOMEHHI) K KPH-
) . . craanorpaduiecKHM OCAM X, ¥, Z H SACMENTAM CHMMETDHH Ykasama p Taba. 4. JloGapounsia
image source: k. Han ®unsunyeckme Ceonctea Kpuctasios, saMeqanus O BLOOPE CHCTEM KOOPAHHAT CM, B NpHAOKemMi 3.

M3patensctBo MP 1967

or see original version: J. F. Nye, Physical Properties of Crystals
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Magnetic anisotropy — energy surfaces

* Energy surface — the distance from origin along the given direction is proportional to
magnetocrystalline energy of the crystal with magnetization along that direction.
* We start from the expression of the magnetocrystalline energy for cubic crystals:

E (M, T)=K(T)+ K \(T)a o, '+ a,’ @'+ ai’a )+ Ky (T)a a) a+ ..

crystal

* For Ko=1, K1=0 and K>=0 we have isotropic energy surface:

* Energy does not depend on the orientation of the
magnetic moment

* The magnetization reversal (hysteresis) itself does not
depend on Ko but to show the difference between the
cases of K1>0 and K1<0 we need a reference level —
the surface of the sphere (r=Ko).

(*Mathematica6.0 code
for energy surface:*)
K0=1;K1=0;K2=0;
al=Sin[teta] Coslfi];
a2=Sin[teta] Sin[fi];
a3=Costeta];
Energy=K0+K1(al"2 a2"2+a3"2 a2"2+al"2 a3"2)+K2(al"2 a2"2 a3"2);

xsurface=Energy al;

ysurface=Energy a2;

zsurface=Energy a3;

obrazek=ParametricPlot3D[{xsurface,ysurface,zsurface} {fi,0,2\[Pi]},{teta,-\[Pi],\[Pi]},PlotStyle->{Orange, Specularity[White,10]},
ImageSize->600,PlotRange->{-1.2,1.2},Axes->None,AxesLabel->{X,Y,Z},BoxStyle->Directive[ Thickness[0.01],Black]];
osdiag=Line[{{0,0,0},{1,1,1}}];

osx=Line[{{0,0,0},{1.2,0,0}}];

moment=Sphere[{1,1,1},1];

obrazekwy=Show[obrazek,Graphics3D[{Blue, Thickness[0.02],0sx}],Graphics3D[{Blue, Thickness[0.02],0sdiag}]]
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Magnetic anisotropy — energy surfaces

* Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

O=-=- mMZO> =S

[111] direction

M
A
T
E
R
[
direction A
L
S
A
N
_ D
——1€asy axis
H
Y
S
energy surface for Ko=1, K1=2 and K2=0 energy surface for Ko=1, K1=-2 and K»=0 '
E
- = R
typical for bcc cubic crystals (Fe) typical for fcc cubic crystals (Ni) E
S
*pboth images have the same scale I
S



APp=Z>PWIC-=S

N
o
=
©

Magnetic anisotropy — energy surfaces

* Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

[111] direction

[010] direction

direction

energy surface for Ko=1, K1=2 and K2=0

typical for bcc cubic crystals (Fe)

*both images have the same scale
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Magnetic anisotropy — energy surfaces

* Hexagonal crystals magnetocrystalline energy surfaces:

[001] direction

1.0 A

energy surface for Ko=0, K1=-1 and K>=0

typical for hcp cobalt crystals

E (M):KO+ K sin’6+ K,sin*@

crystal

[001] direction

04

_o4L

[0,0,1] - easy direction
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Energy surfaces — the influence of the external field

* Cubic crystals magnetocrystalline energy surfaces for different values
of the external field applied along [111] direction*:

field direction

| l A“A\:

v L) — 2 2 2 2 2 2
E M,H)=K+ K, (o o, +a, a; +a;, a, )+ 0

crystal(
2 2 2

K,a, a, a; +H(O{1/31+O{2/32+ 0‘3ﬁ3) Z_1

B, B, B, -direction cosines of H

energy surfaces for Ko=1, K1=2 and K>=0

*images do not have the same scale
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Energy surfaces — the influence of the external field

* Cubic crystals magnetocrystalline energy surfaces for different values
of the external field applied along [111] direction*:

' .Q“A

g S|
—— w -
* with increasing field H the number of local 0 4‘),.-—
minima decreases 7, -3
-2
. . . . -1Y
* above saturation there is only one local minimum -2
N ’ H=1.5
energy surfaces for Ko=1, K1=2 and K>=0 -3 -2 -1 0 1

APp=2ZP>pRINC-=

2019 *images do not have the same scale
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Anisotropy constants of ferromagnetic elements

* Bulk magnetocrystalline anisotropy constants of basic ferromagnetic elements at 4.2K
[1]:
Fe (bcc) Co (hcp) Ni (fcc)

K1 [3/m3] 54800 760000 -126300

[meV/atom] 4.02x10° 5.33x102 -8.63x1073
Ko [3/m3] 1960 100500 57800

[meV/atom] 1.44x10° 7.31x103 3.95x103

» Magnetocrystalline anisotropy of permalloy (NigiFe1o):

K=0 kJ/m3

* Magnetocrystalline anisotropy of rare-earth magnets [3]:

YCos K=5.5%x10° J/m3

SmCos K=7.7x108 J/m3
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Mixed anisotropies

* Consider the crystal in which two uniaxial anisotropies are present together [3]. We limit

our discussion to second order terms [see EQ.(2)]:
E,=K,2+ K ;sin’0, E,=K,+ K,sin’(90—0)=K + K ,cos’ 6
* The total energy of the moment is:
E

B

total

=K'+ K ;sin’0+ K ,cos’6 A
* If Ka=Kpg the energy is independent of 6:

E, =K' +K,(sin®0+ cos’0)+ (K ,—K,)sin’0=K '+ K,

total

Two equal uniaxial anisotropies at right angle
are not equivalent to biaxial anisotropy.

O=-=- mMZO> =S

FP>=2m=>»S=

—»
» If Ka and Kg are not equal the equilibrium angle is given by:
OF i 0 : 0 1—cos(260
5= K Kalsin'o =05 (K K| 5 )):

(K ,—K,)sin(20)=0

B-axis

* Solutions are 6=0°, 90°, 180°

1 s |

Polar plots of
and Eg (with Ko=0.5)
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Mixed anisotropies

* From the second derivative (must be positive for minimum) we obtain [3]:

O E Ka>Kg

Ka<Kpg

aeztom =2(K,—K,)cos(20) =

Easy axis — 6=0 Deg Easy axis — 6=90 Deg

The direction of easy magnetization is not along some axis lying between AA and BB axes}

[ but is along the axis pertaining to higher anisotropy.

* Case of the two uniaxial anisotropies which are not
perpendicular:

-in case of anisotropies of equal strength the resultant easy
axis CC lies midway between axes AA and BB

-otherwise the CC axes makes smaller angle with axis

pertaining to stronger anisotropy

%
A A

Polar plots of

and Eg (with Ko=0.5)

angle between axes AA and BB is 36 Deg
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Microscopic mechanism of magnetocrystaline anisotropy

* The spin of electron interacts with the crystal structure via spin orbit coupling

* the moment of a spin (red arrow) is strongly coupled to the electron cloud (blue orbitals) — spin orbit coupling

* when external magnetic field rotates the spin the electron “attempts” cloud follows but its energy depends on the
orientation relative to neighboring atoms/orbitals

 if the orbitals overlap there is additional energy due to coulomb repulsion (on the other hand it can lower the
energy of repulsion between ions) - IT IS A QUALITATIVE DESCRIPTION!

overlap * Due to spin-orbit
coupling different
orientations of electron
spins correspond to
different orientations of
atomic orbitals relative
to crystal structure

* As a conseguence some
Higher energy  orientations of the
resultant magnetic
moment are
energetically favorable —
easy directions.

%%%%%
%%%%%

small overlap Lower energy

O=-=- mMZO> =S

oz>» Or>=22m=>»-=S

w=0mam=- v < I



APp=Z>PWIC-=S

Stoner-Wohlfarth model* l\An
G

Describes magnetization reversal in single domain magnetic particles/films
The reversal is characterized by the orientation of single magnetic moment
The anisotropy may be of magnetocrystalline, shape etc. origin

For the uniaxial anisotropy case the energy can be described as (compare
magnetocrystalline anisotropy energy expression for hexagonal system) [8]:

'Easy axis

_ ) > .2 M
E, =K,z K,sin"0—B-M=K+ K,sin"0—M Bcos(y—0) ** A
Zeeman energy T
« The energy landscape for different values of B (Ko=0,K;=1,M=1, y=309): E
104
[ 1
direction of the A
applied field L
* On increasing the field the minima S
shift toward its direction R
* The angle antiparallel to field N
B corresponds to absolute maximum
Y]

= —
LL] A M H
o Y
x —_ S

— ®

——B=0 s :
— - ® E
B=8 g -
T ! ¥ T ¥ T ¥ T ¥ 1 ) E
0 90 e 180 270 360 easy axis S
1
*some times called macrospin model ** this expression is for a unit volume of the material: M:=MV [Am?], K=KV [J] S
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Stoner-Wohlfarth model

* The dependence angle(field) obtained from the energy landscapes of the previous slide

1.0 -

0.5 -

-1.0

gives hysteresis loops:

— 0 Deg

- 30 Deg
— 45 Deg
— 60 Deg
— 90 Deg

* For field applied along
easy-axis the reversal is
completely irreversible

* For field applied
perpendicularly to EA
direction the reversal is
completely reversible

* For field applied in
arbitrary direction
magnetization is “partly
reversible and partly
irreversible” [9]
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Stoner-Wohlfarth model

* Hard axis reversal. We can rewrite the expression for the total energy using components
of the field parallel (Bx) and perpendicular (By) to easy axis [9]:

E =K.+ K sin’0—M Bcos(y—6)=K,+ K sin’0—B M —B M =
K+ K, sin’6—B_M cos(6)—B,M sin(6)

* Energy becomes minimum at a specific angle which can be determined setting:
OFE
aewml =2K,sinf cosO+ B, M sin(0)—B,M cos(6)=0 B:2K1

2K, | M
« With a=—- this can be written as: E‘”

. , B B = |
asinf cosf+ B _sin(0)—B cos(0)=0 or ——— =a | =
Y sin(@) cos(6)
* If field is applied perpendicularly to EA we have (Bx=0, By=B): D B
B

sin ( 0 ) = p proportional to M component parallel to B

s

If field is applied perpendicularly to the easy axis the component of magnetization parallel
to the field is a linear function of the external field up to saturation which happens at*:

2K,
By=—

~N

J

*in practical applications K[Jm-3], M[Am1]
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Stoner-Wohlfarth model — astroid* curve

* Depending on the value of the external field there may one or two equilibrium orientations
of magnetic moment. For a given field orientation the two minima collapse to one when [9]:

2
0 Emml =( one of the minima ceases to exist ggmml =o.sin@cos0+B,sin(6)—B, cos(6)=0
00’ \
* From the expression for derivative of energy (previous slide) we have: rrom previous slide:
82 Et tal 2 2 By Bx

o’ — —q 1 — o =— —
Py i{(cos 6 —sin"@ )+ B cos(6)+ B sin(6)=0 ‘TSn(0) cos(0)
0*E B B

2””“1 =cos @sin’ 0| — ——t ——— =0
00 sin"(6) cos’(0)
* We are looking for the solution of the set
B B B B B B B ] 1 B

o= y_ X ’ y+ x:O +x:.y,‘y2+3x:O

sin(6) cos(6) sin’ (@)  cos’(0) “" cos(0) sin(0) " sin(0]fin*(9) " cos’(6)

* By a direct substitution of the first equation into the second we get:
B.=—acos’ 8, By:asin39

X

B
* Introducing reduced fields ( 5. =—-=—cos’60) it may be written as:
a

[bi/3+ bi/3: 1] — 0082 0+ sin2 6 equation of astroid
|

* it happens people call it ,,asteroid” [S.U. Jen and C.C. Liu, Journal of Applied Physics 115, 013909 (2014)]
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Stoner-Wohlfarth model — astroid curve

« Stoner-Wohlfarth astroid separates region, in (bx,by) plane, with two minima of energy
from that with only one minimum®*

* When the external field is changed so that the astroid is crossed the discontinuous
changes of the orientation of magnetization can take place

we start with magnetic moment pointing in negative direction
(180 Deg, parallel to easy axis) and zero applied field

O=-=- mMZO> =S

M

we increase then the field (parallel to easy axis) into positive values
and the minimum at 180 Deg becomes less deep A
finally, at B=2 (b =1), the 180 Deg orientation ceases to be a T
minimum (first and second derivatives are zero — we cross Stoner- E
Wohlfart astroid) and we end up with a single minimum at 0 Deg — R
magnetic moment switches to that minimum :
A
L
S
B
N
D

|
| H
I Y
| s
I T
: E
| R
Plot of function: (sin(x*Pi/180))A2-B*cos((x-0)*Pi/180)) c
: i . ini 1 +r fr ' T v 1t v 1 v r°r ' 1T 7°v 1

inside: two minima 0 50 100 150 200 250 300 350 S
|
e S

*Y. Henry et al. PHYSICAL REVIEW B 79, 214422 (2009)
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Stoner-Wohlfarth model — astroid curve

« Stoner-Wohlfarth astroid separates region, in (bx,by) plane, with two minima of energy
from that with only one minimum*

* When the external field is changed so that the astroid is crossed the discontinuous
changes of the orientation of magnetization can take place

—— 0O Deg
—— 45 Deg
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Stoner-Wohlfarth model — astroid curve

« Stoner-Wohlfarth astroid separates region, in g (hx,hy) plane, with two minima of energy
from that with only one minimum

Temperature dependence of the switching fields of a 3 nm Co cluster
0.3

0.2

S~1000 o2 |

PRL 86,

031 | —
676200 3 92 01 0 01 02 03

M
E I-lOHy (T)
A
N

a strong decrease of anisotropy with increasing temperature!

A
K 2019 M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon,and A. Pérez, Phys. Rev.Lett 86, 4676 (2001)
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Shape anisotropy — “magnetizing” thin film

e Consider a thin magnetic film in which all
magnetic moments point perpendicularly to
its plane

* [If the film is thin we can assume that that its
thickness is negligible relative to its lateral

O=-=- mMZO> =S

size (no fringing field) M

* The magnetic moments create “magnetic A

charges” on the surface of the film ;

 ...and the charges produce H field R

= |

V'H:pmagn + + + + + + + + + + + + N

L

Tttttttttttn :

— - - - - - - - — _———C i

* For an infinite sheet of magnetic charge the field H (7)= 1 45 M -ds ) 1 f V''M P :
IS perpendicular to the sheet and can be calculated Oul7)= 4y 7| 4n g |7] 4

using Gauss law*: H

> > H=— Y

H2nr'=M nr’ Ve s

1 T

[H|=[M | -

p) R

E

S

|

S

*use Gaussian surface in form of a cylinder bisected by a sheet
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Shape anisotropy — “magnetizing” thin film

The field produced by both sides of the film (two charge sheets) is then*:
R + + + + + + + +

B (-2 1, =0 Sﬁ_}ﬁ_}iﬁiﬁiﬁi@m@{?i{r 1}

Il:{>+

If, on the other hand, the magnetization is parallel to film surface the charges are
created at infinity and they produce no H field in the film. The induction produced by
magnetization is

l_;:Mo(Ms_O):MoMs

The energy, per unit volume, of the magnetic material in the external field is given by:

E=—M-B

If the field is produced by the magnetization itself the increment of energy associated
with a small increase in magnetization M is given by

dE=—dM-B
.. and the magnetostatic energy associated with magnetization is:
M.
in-plane 1 )
E=— { MOMdM:_Z_MOMin-plane

*you can arrive at the same result arguing that the field is produced by a equivalent current loop of infinite radius
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Shape anisotropy — “magnetizing” thin film

 If we now apply the external magnetic field perpendicularly (along z axis) to the plane of
the film which has no intrinsic anisotropy (magnetocrystalline etc.) the expression for its
magnetostatic energy is:

0
E:—BZMZ—;_MOan_pIane %4+ + + + 4+ + + + +

S//’/ﬂﬂﬂﬂﬂﬂﬂﬂﬂi

E:—BZMSsin(B)cosz(B)

* The equilibrium orientation of magnetization is given by:

26 E=-B.M cos(8)+;—MOM§2cos(6)sin(6):O

B B Shape anisotropy in thin film:

s1n(6):MOMS =T,

* up to saturation the magnetization
component along the external field
direction is proportional to it

 saturation field is then equal to magnetic
polarization (u,M,)

O=-=- mMZO> =S
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Shape anisotropy

* Polycrystalline spherical samples without a preferred orientation of the grains do not
show, in macroscopic experiments, any magneto crystalline anisotropy [9].

 If the sample is not spherical the magnetostatic energy of the system depends on the
orientation of magnetic moments within the sample (or macrospin in a simplified picture).

* The effect is of purely magnetostatic origin and is closely related to demagnetizing fields
(see my lecture 2 from 2019):

(If and only if the surface of uniformly magnetized body is of second order the magnetic
induction inside is uniform and can be written as:

(B=po(—N -1+ it) )

N is called the demagnetizing tensor [5]. If magnetization is parallel to one of principle axes
of the ellipsoid N contracts to three numbers called demagnetizing (or demagnetization)
factors sum of which is one:

N +N,+N. =1

For a general ellipsoid magnetization and induction are not necessarily parallel.

Demagnetization decreases the field inside ferromagnetic body.

 Demagnetizing field is just the name of the _
field produced by the body itself
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Shape anisotropy

If the sample is not spherical the magnetostatic energy of the system depends on the
orientation of magnetic moments within the sample (or macrospin in a simplified picture).

oo

The energy of the sample in its own stray field is given by the integral [9]:

demag —

E __;_f Edemag.M dV:;_f MO(NM)MCZV Edemag:_xuON.M

 |f the sample is an ellipsoid the demagnetizing field is uniform throughout the sample:

E —I—VMO(N-M)-]\_/:/, V —volume of the sample

demag ™~ 2

* Nis a diagonal tensor if the semiaxes of the ellipsoid coincide with the axes of the
coordination system.
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Shape anisotropy

*For the general ellipsoid sample we have [9]:

[Edemag:;_VMO(N.M).M:;_MOMZ(NaO(i-l-NbOL;-'-NcO(;) } M:M<(11,O(2,OL3)
*For a spherical sample we have:
1/3 0 0 P B N
- L 13 _1 no dependence on the
N=0 130 7 Edona 2 oM 3 (o o+ o) = 1 M magnetic moment orientation
0 0 1/3 T
«For an infinitely long cylinder* N¢ is null: (a,,a,,a;)=(sin(0)cos(¢),sin(0)sin(¢),cos(0))
1/2 0 0 | | | |
N={0  1/2 0| = Egp=5 oM >(ai+ay)=>u,M~(sin*(6)cos™(¢)+ sin’(6)sin"(¢)’)=
0 0 0 2 2 2 2

*polar axis is a symmetry axis

[ Edemag:iMOMZSinz(e) J

Uniaxial anisotropy-
characteristic for elongated
particles (see Stoner-
Wohlfarth model)

N

ellipsoid =

o

OZO
ZOO
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Shape anisotropy

* For infinitely expanded and/or very thin ellipsoid we have [9] (6=90° — moments in-plane):

000 1 , o, 1 , The in-plane orientation of
N=0 0 0of = Edemagzz wu,M 053:5M0M COS (‘9) magnetic moment of thin plate is
0 0 1 energetically favorable*

* The equation can be rewritten to often used form:

1 1 1

Edemagzz MOM2<1_Sin2(0)>:5MOM2_5 MOMzSinz(H):KO-'- K:hapeSinz(H)’
: 1
with thape:—z— ugM?

* Magnetocrystalline and thin films shape anisotropy constants for thin films of elements at
4 K**:

Fe (bcc) Co (hcp) Ni (fcc)

Shape anisotropy in thin films
K1 [J/m3] 54 800 /760 000 -126 300 usually dominates over

magnetocrystalline anisotropy

KV [J/m?3] 1910000 1290000 171000

*In case magnetocrystalline and other anisotropies favoring perpendicular orientation are absent
**magnetization data from: Francois Cardelli Materials Handbook, Springer 2008 (p.502), http://books.google.pl
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Shape anisotropy
2K,

* From Stoner-Wohlfarth model we have: B.=

1
* Substituting the expression for shape anisotropy of thin films Kthape:—— ueM* we get:

2
By=ugM; or Hg=M g

In macrospin approximation the perpendicular saturation field of thin film is equal to it
magnetization.

ﬂ

Assuming that the wire and the plate are
both thin and of the same material:
Which one is easier to saturate?
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Shape anisotropy — purely magnetostatic interactions
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Example:
* n X n magnetic moments (spins) placed in plane on a square-lattice (a=0.2 nm)
* magnetic moments interact purely magnetostatically
» each moment is a 1 Bohr magneton (=1x10-24 Am?2)
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Shape anisotropy — purely magnetostatic interactions
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Shape anisotropy — purely magnetostatic interactions
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Surface anisotropy — reorientation phase transition

presence of an interface:

- orbital motion of electrons is affected by the
introduced symmetry breaking

- the asymmetry of the averaged orbital moments
defines the interface contribution to the magnetic
anisotropy

-in ultrathin magnetic films the interface part
becomes even dominating in some cases

- mZOP>=S

outer layer of atoms
(or interface)
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Surface anisotropy — reorientation phase transition

* Due to broken symmetry at interfaces the anisotropy energy contains terms with lower
order in direction cosines than in the infinite crystal.

- mZOP>=S

* Energy of magnetic moments of atoms
occupying lattice sites in the vicinity of the
surface is different for two shown
orientations

« Each of the magnetocrystalline anisotropy
constants can be phenomenologically
divided into two parts, one related to
volume contribution and the one to surface
contribution [9]:

KY=K"+ K*/t

where t is the crystal thickness.

surface/interface

* Energy of magnetic moments of atoms
occupying lattice sites far from the outer
boundary of the crystal depends on the
intrinsic symmetry of the crystal

“=0mam=»w < I
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Surface anisotropy — reorientation phase transition

* Let us assume that volume contribution to the anisotropy favors in-plane alignment of
magnetic moments (it could be magnetocrystalline, shape, stress etc. anisotropy).

- mZO>=

A AN A A A A «Due to perpendicular surface anisotropy the moments close
ndadadadad adad adad to the surface (black arrows) are deflected out of plane

— ) ) ) =) =) =) =) =) =

=P =p = = = = = =5 =P =P .|f the thickness of the sample/film is high the exchange
ndndndndndndndndndnd coupling of the surface moments with the bulk ones keeps
= =) =) =) =) =) =) =) =p =) 9 . P
—) =) =) =) =) =) =) == =) == the overall moment of the sample nearly in plane
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* If the thickness of the film is low, and the surface anisotropy
Is strong enough all moments point perpendicular to plane.

« Using macrospin approximation the total energy of the
sample dependent on the orientation of magnetic moment
can be written as [10] (we assume that the energy does not
depend on azimuthal angle):

EQZKO—chosz(H )—K4cos4(¢9)+
-positive K; favor perpendicular orientation

) m—)
— )

*

e A Ao 2

O“=0mam=l»w < I

*different notations of anisotropy constants can be encountered: R. Skomski et. al, Phys. Rev. B 58, 11138 (1998)
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Surface anisotropy — reorientation phase transition

* Minimizing E, with respect to 6 yields the equilibrium angle:
0*E_[00°=2K cos(0)sin(0)+ 4 K ,cos’(0)sin(6)=0 = cos(0)sin(6)(2K,+ 4K, ,cos’(0))=0

 \We have extrema for:
—K
0=0, x/2, 2(0)=—2 «—
T cos( ) 2K,

* It can be shown that [10]:

-for K,>0 and K,>0 the magnetization is
perpendicular to the plane

-for K>>0 and 2K,<-K; the canted
magnetization is a ground state

-the region for K,<0 and 2K,>-K; is called a
coexistence region — both perpendicular and
in-plane orientations of magnetization
correspond to local minimum; they are
separated by energy barrier

- mZO>=

K, (TN)
A

perpendicular

N K5 TN)
in-plane canted j\

Fig. 50. Phase diagram in the ICQL(T, N)fICi(T, N)-plane for the polar
orientation of a thin film. The ‘perpendicular’ and the ‘in-plane’ phases are
characterized by the polar angles @ = 0 and # = /2, and the ‘canted’ phase
by 0 < 6 < /2. In the ‘coexistence’ region the perpendicular and the in-plane
phase both refer to energy minima, and are separated by an energy barrier.

iImage source: P.J. Jensen, K.H. Bennemann,
Surface Science Reports 61, 129 (2006)
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Surface anisotropy — reorientation phase transition

*Recalling the presence of surface anisotropy terms we get:
each anisotropy constant is divided into

EaZKO—(K;-I;K;/t)Cosz(H)—(KZ+ K’ /t)cos'(0)+ T bulk (volume) and surface term

* Neglecting higher order terms we get the sample thickness for which the effective
anisotropy is zero (neglecting constant Ko):

K
K,
* Usually, when considering thin films, the sample has two surfaces contributing surface
anisotropy. As a consequence the multiplier 2 is added*:

tRPT

s RPT — reorientation phase transition
2 Kz SRT -spin reorientation transition

K

Lppr ="

* For film thickness > trpt the magnetization of the film lies in-plane (if the external field is
absent).

*RPT may be caused by:

-temperature change

-change of the thickness of magnetic layer

-change of the thickness of the overlayer

*In general both surfaces can be characterized by different surface anisotropy constants.

O==-mMmZ 06 > =

oz>» Or>=22mMm=>»-=S

O=0mam=- » < I



Perpendicular magnetic anisotropy in Co based multilayers

Co based multilayers in which magnetic layer is sandwiched between noble metal spacer
possess perpendicular magnetic anisotropy (PMA) in limited thickness range — this is due
to surface anisotropy of the interfaces

O=-=- mZO>=3

above a critical thickness shape
anisotropy dominates

in the thickness range 0.3-1.4nm*
sputtered Co/noble metal MLs can
display PMA
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2019 *for Co/Au MLs the PMA range is approximately 0.5-1.2nm
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Perpendicular magnetic anisotropy in Co based multilayers

mzoe»=s

*From the expression with surface anisotropy we have:

K, =K+ 2K/t
K

sI=Kit+ 2K} T

2 I 1 1 i i ] T
glass tpg= 11 A

*Plotting K, ¢ vs ¢t one can determine
volume and surface contributions to
anisotropy with a linear fit:

-Kv - slope

-Ks — VaKesi t for t=0

image source: F.J.A. Den Broeder et al.,JMMM 93, 562 (1991)

Ico [A] -

Fig. 2. Dependence of Kt on ¢, for polycrystalline Co /Pd
multilayers, deposited at 7, = 20 and 200°C.
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Perpendicular magnetic anisotropy in Co based multilayers

* RPT may be caused by:

-change of the thickness of magnetic layer
-change of the thickness of the overlayer
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s Ag
8 » &€
d S \ h
" 0 easy plane g
Q o ;
g = g state
: ?:- 1
g @ :
= \|
— E "o ;
£ - '-4
- Q e C :
o : 2 S
3 %easy axis © &
i state °
- % *
------ -
0 - y X[mm]
| 1 | | 1 1 1 L 1 | b
0 5 10
) a AT |
|

FIG. 1. Cobalt wedge remnant state image P(7.j) determined for a fully
saturated sample in both #, >0 and A <0 directions. On the basis of
magnetometric analysis, localization of different magnetization states is
marked. Points show the coercivity wall positions registered for different
H | field pulse (A =900 ms) magnitudes (measured in Oe). Solid black lines
have been fitted to the coercivity wall data, registered at #, =135 Oe, using
Hc(x,y) function with #-=0.8 nm as the best fitting parameter. Below the
horizontal dashed line in the gold region growth imperfections are clearly
visible.

Kisielewski et al., J. Appl. Phys. 93, 7628 (2003)
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Perpendicular magnetic anisotropy in Co based multilayers

* RPT may be caused by:

-temperature change

-change of the thickness of magnetic layer
-change of the thickness of the overlayer

l
- mZ 0>

M {arb. units)

Image source: C. Chappert, P. Bruno, J. Appl. Phys. 64, 5736 (1988)

HikOe)

FIG. 4. Hysteresis loop with & perpendicular (L) and parallel () to th
film plane, for Au/Co/Au sandwiches with 7 = 5.4, 9.5, and 154 A, a
= 10K.

2019



Stress anisotropy and magnetostriction

* Magnetostriction is a change of materials physical dimensions as a result of the change
of the orientation of magnetization

* The direction of magnetization changes under the influence of external field or
temperature.

The relative deformation is usually small; of the order of 10 to 10 [6]; in Tb A is approx.

0.002 at RT.

O=-=- mMZO> =S
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* The typical strain versus field dependence shows saturation which is expressed by the g
value of magnetostriction constants A: 0 — : . g
| Fe,Pt Single Crystal \ D S
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* In giant magnetostriction materials the
strain exceeds 0.5%

FIG. 4. Magnetostriction of an ordered Fe;Pt. Strain of 1.5X 1077 is ob-
tained by application of a magnetic field of 4 T, which is indicated by (I).
The total strain comes to about 2.0X 10~ ? including the strain due to the
thermally induced martensitic transformation shown in Fig. 3. The revers-
ible strain is 5 X 1073 by applying and removing the magnetic field, which is

indicated by (II) and (III).
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Stress anisotropy and magnetostriction

* Magnetostriction is a change of materials physical dimensions as a result of the change
of the orientation of magnetization

* The direction of magnetization changes under the influence of external field or
temperature.

The relative deformation is usually small; of the order of 10 to 10 [6]; in Tb A is approx.

0.002 at RT.

* The typical strain versus field dependence shows saturation WhICh Is expressed by the
value of magnetostriction constants A:
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* The dependence dl/I(H) is different for Abb. 186. Sittigungsmagnetostriktion von Ein-
. . . . . kristallen der Nickel - Eisen - Legierungen zwischen
different orientations of applied field 30% und 100% Nickel fiir die drei kristallographischen
; Hduptrnhtlmgen [Nach F. LICHTENBERGER: Ani
relative to crystal axes Phys., Lpz. V, Bd. 10 (1932) S. 45.]

R. Becker, W. Doring, Ferromagnetismus, Verlag von Julius Springer, Berlin 1939 AmzZo» =
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Stress anisotropy and magnetostriction

* In most practical applications the saturation distortion can be described by expression

with small number of constants [11]:
3

2

1
/1:_/1100<0‘12/3’12+ O{i/)’§+ a§ﬁ§_3_>+ 3/1111(0510‘2/31/32"' a,a,f, [+ 0‘30‘1/3)3/3)1))

where a4, a2 , az — direction cosines of magnetic moment direction;f34 ,B2, B3- direction
cosines of the direction along which the deformation is measured.

* In amorphous and polycrystalline materials (without the texture) the above expression

simplifies to:

3 | distorsion at angle 0 relative to
_2 20 1 magnetization (which may be
A= AS (COS 0 ) different from the external field

2 3
direction)

* Distortion along the magnetization
direction is twice that observed for plane
perpendicular to the field (see the
drawing—)

.......
- -
LY

* Below Curie temperature the
spontaneous magnetization leads to
spontaneous distortion of lattice [9]:

ections
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Stress anisotropy — magnetomechanical effect®

» Stress applied to a ferromagnetic body will affect the orientation of magnetization

through magnetostriction [6].

* The applied stress changes the magnetization reversal characteristics:

*called inverse magnetostrictive effect, too

14 - +2 kg/mm? (+ 2840 Ibsin?)

No stress

B (kilogauss)

H{Oe)

Fig. 8.16 Effect of applied tensile stress on the magnetization of
68 Permalloy. After Bozorth [G.4].

image from: B. D. Cullity, Introduction to magnetic materials,

Addison-Wesley, Reading, Massachusetts 1972
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Stress anisotropy — magnetomechanical effect

*The part of the energy of a cubic crystal depending on magnetic moment orientation and
the stress applied to crystal can be shown to be [3]:

_ 2 2. 2 2, 2 2 3 2.2, 2.2, 2.2
E—K1<O{10(2+O{20(3+ a3a1)+ °~_2_/11000'<O‘12V1+ 0‘23/2"'0‘33’3)
3 0@,y y,+ a,as), Y+ asaysyy), Y1, Y2 Y3 -direction cosines of

the external stress o

magnetocrystalline anisotropy

*When the magnetostriction is isotropic (A,,,=4,,,=4,; ) the last two terms reduce to*:

3 : : .
{Emss:—z—%siﬁ cos’0 ] where 0 is the angle between macrospin (magnetization)
and the the stress directions

* The effect of stress on isotropic sample depends on the sign of the Asioc product

[-The effect of stress is to introduce additional anisotropy to the ferromagnetic system]

*with (a,, a,, a;)=(sin(8)cos(¢), sin(6 )sin(¢), cos(8))
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Stress anisotropy — magnetomechanical effect

» The effect of the stress on magnetization reversal for positive Asjo product [3]:
1) the magnetic moments within the specimen point in one of four easy directions
2) the application of tensile stress causes domains with magnetic moment perpendicular to

the stress to dwindle

3) still higher stress leaves only magnetic moments parallel to the stress
4) Application of the weak magnetic field is sufficient to move 180 Deg domain wall and

saturate the specimen
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stress

lower energy under stress

 |If compressive stress was applied instead “vertical domains” would disappear and the
field would initially (for small H) be perpendicular to magnetic moments.
« In Ni samples the stress of 6.4x10° Pa [3] causes stress anisotropy to be roughly equal

to magnetocrystalline anisotropy.

O==-mMmZ 06 > =

oz>» Or>=22mMm=>»-=S

“=0mam=- » < I



APp=Z>PWIC-=S

N
o
-
©

Array (or configurational) anisotropy

* In present days many applications (sensors, recording, magnonic devices etc.) make
use of patterned magnetic samples

* If the elements of the pattern form a more or less regular array and if the distances
between the individual elements are comparable with their sizes the magnetostatic
interactions between the elements can lead to additional, separable, contribution to
anisotropy apart from that characterizing the elements alone (magnetoscrystalline,
shape etc.) [19,20]

The individual elements of the array (spheres) have no shape anisotropy (they may show other anisotropies)
but the array as a whole favors orientation of the moments along its longer edge.
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Array (or configurational) anisotropy

* For an array of iron ellipses with 1:3 aspect ratio there is a significant dependence of the
hysteresis on the repetition period of the array [20]

PHYSICAL REVIEW B 92, 094436 (2015)

60 10 nim thick N R S
oo 7
T Lo -
|
T Lwm 77— T[]
?20 g - l %/’
g /T ]
=L
LV
-500 BO[mT] 500

FIG. 2. (Color online) Size and thickness dependence of hystere-
sis curves of Fe ellipses with the field applied along the long axes.
The interparticle separation is twice the lateral size of corresponding
ellipses. The film thicknesses and the long axes are noted in the figure.
All curves are drawn to scale with an ofset for all except the central

* The in-plane proportions of the array (the ratio
of the ellipsoid size to the period) are constant
here

* The slimness of iron islands changes along
rows of hysteresis loops

one. * The array can be 1D, 2D or 3D [19]
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Solution to the warm-up problem:

* the divergence of magnetization is zero — no volume magnetic charges

* the surface is always parallel to magnetization vector or magnetic moments [in spherical
coordinates (r, @, 8) the surface normal has no ¢ components; magnetic moments have
only @ components] — no surface magnetic charges

* with no magnetic charges and no free currents the magnetic field strength H is zero
everywhere

* and because of
EZMO(M"'I_:I)

- -

the magnetic induction is B=u, M inside the torus and zero outside.
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