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● Magnetocrystalline anisotropy

● Shape anisotropy

● Surface anisotropy

● Stress anisotropy

● Array anisotropy
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Warm-up problem

Find the magnetic induction produced by a magnetized torus of revolution (major radius R, 
minor radius r) on a line x, y=0, when vector M is given by*:

M⃗=M 0(
− y

√(x2
+ y2

)
,

x

√(x2
+ y2

)
,0)

*for the solution see last slides

The torus is 
symmetric about 
z-axis
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Pole avoidance principle*

Consider the following expression:

*see A. Aharoni [2], or W. F. Brown [18]  

∫ B⃗⋅H⃗ dV=−∫ B⃗⋅∇ ϕdV=−∫ (∇⋅(ϕ B⃗)−ϕ∇⋅B⃗ )dV ,

identity: ∇⋅( f a⃗)=f ∇⋅⃗a+ a⃗⋅∇ f

0which using divergence theorem transforms to:

∫ B⃗⋅H⃗ dV=−∫∇⋅(ϕ B⃗)dV=∫
S

n⃗⋅ϕ B⃗ ds

We know that boundary conditions require φ to be continuous everywhere. We assume 
that the surface s contains all ferromagnetic bodies (of the whole system). Outside the 
magnetized bodies we have:

B⃗=μ0 H⃗=−μ0 ∇ϕ

If we allow the surface to tend to infinity the φB goes to zero as r -3 [2] while the surface 
increases as r 2. Finally we have:

∫
all space

B⃗⋅H⃗ dV=0

for the field produced by finite distribution of magnetized bodies (no free currents).



  

Pole avoidance principle*

The expression for the energy of the magnetized bodies in own field is [2]:

*see A. Aharoni [2], or W. F. Brown [18]  

Em=−
1
2∫V

B⃗⋅M⃗ dV

From previous slide we have: 

∫
Space

B⃗⋅H⃗ dV= ∫
Space

μ0 H⃗⋅(M⃗+H⃗ )dV=0 → ∫
Space

μ0 H
2dV=−μ0 ∫

Space

H⃗⋅M⃗ dV

Rewriting Em we get:

Em=−
1
2∫V

μ0(M⃗+H⃗ )⋅M⃗ dV=−
1
2∫V

μ0 M
2 dV−

1
2∫V

μ0 H⃗⋅M⃗ dV
constant

Em=const+μ0
1
2 ∫

Space

H 2 dV

● note that the integrand is never negative

● the smallest possible value for variable part of 
magnetostatic self energy is zero

● this can be achieved only when H is zero everywhere

● in the absence of free currents, only the magnetic 
charges (surface and volume ) produce magnetic field 
strength H



  

Pole avoidance principle*

*see A. Aharoni [2], or W. F. Brown [18]  

Magnetostatic energy term leads to magnetic 

moments configurations with possibly small 

magnetic charges (pole avoidance principle)

● note that the integrand is never negative

● the smallest possible value for variable part of 
magnetostatic self energy is zero

● this can be achieved only when H is zero everywhere

● in the absence of free currents, only the magnetic 
charges (surface and volume ) produce magnetic field 
strength H

Alternatively the magnetostatic energy term can be writte as [2]:

Em=const−
1

2μ0
∫

Space

B2 dV note that the minus sign before the integral makes the equation of little 
use in predicting magnetization configuration [2]: one “never” knows 
whether by changing orientation of some moment we can get even 
higher value of the integral

Em=const+μ0
1
2 ∫

Space

H 2 dV



  

Anisotropy of hysteresis

image source: S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999
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Fe Co

Ni

single crystals
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image source: S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999
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Anisotropy of hysteresis

image source: S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999

easy axis

Fe Co

Ni

single crystals

● hard-axis reversal is characterized by higher field needed to saturate the sample

● the easy-axis reversal is usually characterized by higher hysteresis losses  



  

Anisotropy of hysteresis – hysteresis of a sphere

● In case of large sphere (containing many atoms) the shape of the sample does not 
introduce additional anisotropy

● In small clusters the magnetization reversal is complicated by the reduction of symmetry 
(and the increased relative contribution of surface atoms) 

In Fe sphere of radius 1μm the surface 
atoms constitute roughly 0.04% of all atoms 



  

Anisotropy of hysteresis – hysteresis of a sphere

● In case of large sphere (containing many atoms) the shape of the sample does not 
introduce additional anisotropy

● In small clusters the magnetization reversal is complicated by the reduction of symmetry 
(and the increased relative contribution of surface atoms) 

sphere-like – no 
breaking of crystal 
symmetry for high r

M. Jamet et al., PHYSICAL REVIEW B 69, 024401 (2004)



  

Anisotropy of hysteresis

Free magnetic moment in empty space (without 
the external field) – the energy does not depend 
on the orientation of the moment

E=−m⃗⋅B⃗



  

Anisotropy of hysteresis – a single atom on a crystal surface

●  Co atoms deposited by molecular beam epitaxy on Pt(111) surface
●  Coverage less than 0.03 ML
●  “The XMCD signal (Fig. 1C) is the difference between the XAS* spectra recorded for 
parallel and antiparallel alignment of the photon helicity with the applied field B. Fields of 
up to 7 T were used to magnetize the sample at

P. Gambardella et al., Science 300, 1130 (2003)

 
  angles 0° and 70° with respect to the surface
  normal.”

●  The presence of Pt surface induces 
very high magnetic anisotropy of  
9.3±1.6 meV/atom

●  In SmCo5 magnets the anisotropy is 
0.3 meV/Co atom

isolated Co adatoms

very high saturation field

*XAS – X-ray absorption spectroscopy

It is about 6% of a latent heat 
of melting (243 kJ/kg [14]) of 
bulk Co



  

Anisotropy of hysteresis – a single atom on a crystal surface

The local 
neighborhood 
determines the 
preferential 
direction of the 
magnetic moment 
- spin-orbit 
coupling 



  

Spin-orbit interaction (coupling)

● The electron is orbiting the nucleus of the +Ze charge*
● Looking at the nucleus from electron we have the magnetic field due to the motion of the 

nucleus. The energy of electron in that field is

*the derivation is taken from Einführung in die Quantenmechanik (Physik IV), ETH Zurich [13] 

E⃗=−gμBmsB

Correspondingly every electronic state splits into two (with two orientations of the spin).
We assume that an electron is orbiting the nucleus in xy plane and that its instantaneous 
velocity is along x-direction.
The electric field of the nucleus at the place of an electron is along y-direction then 

E y=
1

4 πϵ0

Z e

r2

From special relativity theory (A. Einstein) for the components of the 
magnetic field in the electron reference frame we have [16] 

Bx
el(ectron)

=B x=0

B y
el
=

1

√1−v2
/c2 (B y+

v e
c2 E z)=0 B z

el
=

1

√1−v2
/ c2 (Bz−

ve
c2 E y)≈−

ve
c2 E y

Electron feels then the magnetic field that is oriented along z-axis
Further, the field seen by the electron can be written as

Bel
=

1

c2
( E⃗× v⃗ )=

1

mc2
( E⃗× p⃗ ) p⃗=

m0 v⃗

√1−v2
/c2

x

y

ve



  

Spin-orbit interaction (coupling)

Inserting the above calculated magnetic field into the expression for energy yields

x

y

ve

The direction of the magnetic field cal-
calculated from Biot-Savart law for a 
moving charge is the same

B⃗=
μ0

4 π
q

r2
v⃗× r⃗

Vn

Δ E spin−orbit=−gμBms B=−gμBms
1

mc2
( E⃗× p⃗ )=−gμBms

1

mc2 ([ 1
4 πϵ0

Z e

r 2 ] r⃗r × p⃗)

Δ E spin−orbit=−gμBms
1

mc2 ([ 1
4 πϵ0

Z e

r3 ] r⃗× p⃗)=−gμBm s
1

mc2 ([ 1
4 π ϵ0

Z e

r3 ] L⃗)

this give the appropriate 
direction of electric field

angular momentum

More exact calculations require taking into account the so called Thomas 
precession* – this leads to factor ½ which leads to “final” expression

*the derivation assumed that electron moves along straight line [13]

Δ E spin−orbit=−
g
2
μB

1

mc2

1
4π ϵ0

Z e

r 3
L⃗

● note that spin-orbit coupling is proportional to  Z

● ...and to orbital moment of an electron



  

Spin-orbit interaction (coupling)

● In a crystal conducting electrons move in the average electric field of the atom cores and 
other electrons

● The core electrons that remain in the vicinity of the nucleus experience strong electric fields 
and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit 
coupling (please see movies at https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html)  

ve

v
e

v
e

v
e

ve

v
e

ve

v e

v
e

ve

ve

ve

ve
ve

ve

paths of itinerary 
electrons

orbits of core 
electrons

https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html


  

Spin-orbit interaction (coupling)

● In a crystal conducting electrons move in the average electric field of the atom cores and 
other electrons

● The core electrons that remain in the vicinity of the nucleus experience strong electric fields 
and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit 
coupling (please see movies at https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html)

● The magnetic fields due the core electron movement can be huge [15]:  

Linear velocity of an electron rotating around a nucleus is ~2.1*106 m/s
The electric field experienced by an electron in the vicinity of nucleus (calculated for 1s 
orbital of hydrogen atom) is roughly 5*1011 V/m
The effective magnetic field of the spin-orbit interaction is about 12 T

For comparison we [15] estimate the effective field in devices in which we try to influence 
the behavior of itinerant electrons applying external electric fields
The maximal electron velocity (saturation velocity, maximal drift speed) ~1*107 m/s
The maximal available electric field (limited by breakdown voltage of the materials), for 
GaAs or Si it is roughly 5*107 V/m
The effective magnetic field of the spin-orbit interaction is about 5*10-4 T (about tenfold 
strength of the earth magnetic field)

https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html


  

Spin-orbit interaction (coupling) – dependence on a atomic number

The SO coupling depends indirectly on the charge of the nucleus (Z)
The dependence is different for different series

image source [19]
● The Z4 dependence for SO in central 

field (near core electrons) comes from 
perturbative correction [18]:

H SO (r )=
1

2m2 c2

∂V (r )
∂ r

L⃗⋅⃗S

E nl=E nl
0
+F (l , j) Z 4

● The Z2 dependence is more relevant 
for solids



  

Anisotropy of hysteresis

In magnetism a magnetic susceptibility tensor is one of the important exemples:
the direction of magnetic moment (in macrospin approximation) is not in general parallel to 
the direction of the external magnetic field

,,Many properties are represented by 
tensors.
Situation always arises if rank of cause is 
not equal to rank of effect or if properties 
are anisotropic (i.e. property varies with 
direction in crystal)” [16]



  

Anisotropy of hysteresis

● For all practical purposes the atomic magnetic moments of a macroscopic homogeneous 
magnetic sphere behave as if placed in infinite crystal of the same shape.

A. Aharoni: ”in ferromagnetism there is no physical meaning to the limit of an infinite crystal 
without a surface” [2]

● We do not know a priori the dependence of the energy of the crystal on the orientation of 
magnetic moment of the sample.

● It can be shown [1] that energy density related to the orientation of magnetic moment in 
a crystal structure can be expanded into power series of direction cosines relative to the 
crystal axes:

α 1 , α 2 , α 3 - direction cosines of magnetization

(α 1 ,α 2 ,α 3)=(sin(θ )cos(ϕ ) , sin(θ )sin(ϕ ) ,cos(θ )) θ , ϕ - polar and azimuthal angles

● The experience shows that it is enough to use very limited number of expansion terms to 
describe the magnetic systems – the usual limit are sixth order anisotropy constants

Ecrystal (M⃗ )=b0+ ∑
i=1,2,3

biαi+ ∑
i , j=1,2,3

bijαiα j+ ∑
i , j , k=1,2,3

bijk αiα jαk+... (1)



  

● An example of the use of sixth order anisotropy constants for hysteresis description:

Anisotropy of hysteresis

B. Barbara et al., J. Phys. C: Solid State Phys. 11 L183 (1978)



  

Magnetic anisotropy

● Intrinsic symmetries of the physical properties reduce the number of independent 
components of anisotropy tensors.

● The energy of the system is the same for both opposite orientations of magnetic 
moment. From Eq. (1) we have:

∑
i=1,2,3

biα i= ∑
i=1,2,3

bi(−α i) for all α i ⇒ b1=b2=b3=0

● The magnetocrystalline anisotropy energy may not depend on odd powers of direction 
cosines α. Consequently all odd rank tensors in the expansion (1) are identically null [1].

the same energy

Ea ( M⃗ )=Ea(−M⃗ )
*rank of a tensor – number of its indices



  

Magnetic anisotropy - symmetry of crystals

● Neumann's Principle:
The symmetry elements of any physical property of crystal must include all the symmetry 
elements of the point group* of the crystal.

● Consider a cubic crystal system with a 3-fold rotation axis [111] and the first 
nonvanishing anisotropy tensor (second rank): 

*A point group is a group of symmetry operations all of which leave at least on point unmoved.

bij=[
b11 b12 b13

b21 b22 b23

b31 b32 b33
]

M=(
0 0 1
1 0 0
0 1 0)

and coordinates transform 
according to the following 
rule:

a ' i=∑
j

M ij a j

● Voigt's Principle:
The conditions of Neumann's principle are fulfilled if the physical property of the crystal is 
described by the tensor which is invariant under point symmetry operations which leave 
the crystal unchanged

● The transformation matrix corresponding to that rotation is: 

● It follows that the physical property tensor must fulfill the condition                 for all 
symmetry operations of the point group.

b=M T bM

[M T
]ij=M ji

Transpose of a matrix – switches 
rows and column indices

Note: isometries (angles and distances 
preserved) of R3 space are described by 
square matrices for which an inverse of 
a matrix is equal to its transpose: 
M T

=M −1



  

Magnetic anisotropy - symmetry of crystals

● Neumann's Principle:
The symmetry elements of any physical property of crystal must include all the symmetry 
elements of the point group* of the crystal.

● Consider a cubic crystal system with a 3-fold rotation axis [111] and the first 
nonvanishing anisotropy tensor (second rank): 

bij=[
b11 b12 b13

b21 b22 b23

b31 b32 b33
]

M=(
0 0 1
1 0 0
0 1 0)

and coordinates transform 
according to the following 
rule:

a ' i=∑
j

M ij a j

● The transformation matrix corresponding to that rotation is: 

[M T
]ij=M ji

Transpose of a matrix – switches 
rows and column indices

Note: isometries (angles and distances 
preserved) of R3 space are described by 
square matrices for which an inverse of 
a matrix is equal to its transpose: 
M T

=M −1

3-fold rotation
axis



  

Magnetic anisotropy - symmetry of crystals

● From Voigt's principle it follows for tensor b: b=M T bM

bij=(
0 1 0
0 0 1
1 0 0) [

b11 b12 b13

b21 b22 b23

b31 b32 b33
](

0 0 1
1 0 0
0 1 0)=[

b22 b23 b21

b32 b33 b31

b12 b13 b11
]

● Comparing the elements of both (identical) tensors we get:

b11=b22 b12=b23 b13=b21

b21=b32 b22=b33 b23=b31

b31=b12 b32=b13 b33=b11

effect of the rotation of 
the crystal on tensor bij

rotation by 120Deg about [111] direction 

b11=b22=b33=a
b21=b32=b13=b
b31=b12=b23=c

● The invariance in respect  the 120 Deg rotation leaves only 3 independent 
components:

bij=[
a c b
b a c
c b a]



  

Magnetic anisotropy - symmetry of crystals

● We apply the same procedure again, but this time with other symmetry element of cubic 
crystal, namely 90Deg rotation around z-axis:

b=M T bM

bij=(
0 1 0
−1 0 0
0 0 1) [

a c b
b a c
c b a ](

0 −1 0
1 0 0
0 0 1)=[

a −b c
−c a −b
b −c a ]

● Comparing the elements of the first row of both (identical) tensors we get:

effect of the rotation of 
the crystal on tensor bij

rotation by 90Deg about [001] direction 

bij=[
a 0 0
0 a 0
0 0 a]

c=−b , b=c ⇒ b=c=0

● It follows that the second rank tensor consistent with the above two symmetry operations 
possesses one independent component:

● Similar analysis can be performed for other tensors in the expansion (1):

Ecrystal (M⃗ )=b0+ ∑
i=1,2 ,3

biα i+ ∑
i , j=1,2,3

bijα iα j+ ∑
i , j , k=1,2,3

bijkα iα jα k+ ... (1)



  

Magnetic anisotropy - symmetry of crystals

● Inserting tensor b into the third term of expansion (1) we get:

∑
i , j=1,2,3

bijα iα j=a(α 1
2
+ α 2

2
+ α 3

2
)=a - independent of the orientation of magnetic moment

● In cubic system there are no second order terms in the expansion of energy in 
directional cosines [1].

● Using similar procedure we obtain the complete expression for the energy contribution 
related to the orientation of magnetic moment in cubic system [1]: 

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )(α 1
2
α 2

2
+α 2

2
α 3

2
+ α 3

2
α 1

2
)+ K 2(T )α 1

2
α 2

2
α 3

2

● For other crystal systems the similar procedure is employed to obtain the Ecrystal(M,T) 
expressions.

● For hexagonal crystals the energy can be expressed as [1]:

-the coefficients K0, K1 … are the linear combinations of tensor components b11, b1111, 
b111111 etc. [4].

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )(α 1
2
+ α 2

2
)+ K 2(T )(α 1

2
+ α 2

2
)
2
+ ...

which is usually expressed, using trigonometric identities, as:

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )sin2
θ + K 2(T )sin4

θ + ... (2)

angle with respect to easy axis

a1
2+a2

2=sin 2θ cos2ϕ+sin 2θ sin2ϕ=sin2θ

α1α2 ,α1α3 , etc. terms are not present because of b ij=0 for j≠i



  

Magnetic anisotropy - symmetry of crystals

● Inserting tensor b into the third term of expansion (1) we get:

∑
i , j=1,2,3

bijα iα j=a(α 1
2
+ α 2

2
+ α 3

2
)=a - independent of the orientation of magnetic moment

● In cubic system there are no second order terms in the expansion of energy in 
directional cosines [1].

● Using similar procedure we obtain the complete expression for the energy contribution 
related to the orientation of magnetic moment in cubic system [1]: 

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )(α 1
2
α 2

2
+α 2

2
α 3

2
+ α 3

2
α 1

2
)+ K 2(T )α 1

2
α 2

2
α 3

2

●The terms of the type αi
4 are omitted since because of the identity [4,5]:

-the coefficients K0, K1 … are the linear combinations of tensor components b11, b1111, 
b111111 etc. [4].

2(α 1
2
α 2

2
+α 2

2
α 3

2
+ α 3

2
α 1

2
)+ α 1

4
+α 2

4
+α 3

4
=1

they can be incorporated into K0, K1 terms.

●The terms of the type αi
6 can be similarly replaced by            and                   terms [6].α i

2
α j

2
α 1

2
α 2

2
α 3

2



  

Magnetic anisotropy - symmetry of crystals

● Number of independent components 
of the (second rank) tensor depends 
on the crystal symmetry

● In crystals of cubic system there is 
one independent component of the 
tensor.

● Hexagonal systems are characterized 
by two independent components of 
the second rank tensors.

image source: Дж. Най Физические Свойства Кристаллов,
Издательство МИР 1967

or see original version: J. F. Nye, Physical Properties of Crystals



  

Magnetic anisotropy – energy surfaces

● Energy surface – the distance from origin along the given direction is proportional to 
magnetocrystalline energy of the crystal with magnetization along that direction.

● We start from the expression of the magnetocrystalline energy for cubic crystals:

Ecrystal (M⃗ ,T )=K 0(T )+ K 1(T )(α 1
2
α 2

2
+α 2

2
α 3

2
+ α 3

2
α 1

2
)+ K 2(T )α 1

2
α 2

2
α 3

2
+ ...

● For K0=1, K1=0 and K2=0 we have isotropic energy surface:

(*Mathematica6.0 code 
for energy surface:*)
K0=1;K1=0;K2=0;
a1=Sin[teta] Cos[fi];
a2=Sin[teta] Sin[fi];
a3=Cos[teta];
Energy=K0+K1(a1^2  a2^2+a3^2  a2^2+a1^2  a3^2)+K2(a1^2   a2^2    a3^2);
xsurface=Energy a1;
ysurface=Energy a2;
zsurface=Energy a3;
obrazek=ParametricPlot3D[{xsurface,ysurface,zsurface},{fi,0,2\[Pi]},{teta,-\[Pi],\[Pi]},PlotStyle->{Orange,Specularity[White,10]},
ImageSize->600,PlotRange->{-1.2,1.2},Axes->None,AxesLabel->{X,Y,Z},BoxStyle->Directive[Thickness[0.01],Black]];
osdiag=Line[{{0,0,0},{1,1,1}}];
osx=Line[{{0,0,0},{1.2,0,0}}];
moment=Sphere[{1,1,1},1];
obrazekwy=Show[obrazek,Graphics3D[{Blue,Thickness[0.02],osx}],Graphics3D[{Blue,Thickness[0.02],osdiag}]]

● Energy does not depend on the orientation of the 
magnetic moment

● The magnetization reversal (hysteresis) itself does not 
depend on K0 but to show the difference between the 
cases of K1>0 and K1<0 we need a reference level – 
the surface of the sphere (r=K0).   



  

● Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

energy surface for K0=1, K1=2 and K2=0 energy surface for K0=1, K1=-2 and K2=0

*both images have the same scale

[111] direction

[100] direction

typical for bcc cubic crystals (Fe) typical for fcc cubic crystals (Ni)

easy axis

Magnetic anisotropy – energy surfaces



  

● Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

[111] direction

[100] direction

[010] direction

energy surface for K0=1, K1=2 and K2=0

*both images have the same scale

typical for bcc cubic crystals (Fe)

Magnetic anisotropy – energy surfaces



  

Magnetic anisotropy – energy surfaces

● Hexagonal crystals magnetocrystalline energy surfaces:

[001] direction

Ecrystal (M⃗ )=K 0+ K 1sin2
θ + K 2 sin4

θ

energy surface for K0=0, K1=-1 and K2=0

typical for hcp cobalt crystals                                                         [0,0,1] - easy direction 

[001] direction



  

Energy surfaces – the influence of the external field

● Cubic crystals magnetocrystalline energy surfaces for different values 
of the external field applied along [111] direction*:

energy surfaces for K0=1, K1=2 and K2=0

*images do not have the same scale

H=0 H=0.5

H=1

H=1.5

E crystal(M⃗ , H⃗ )=K 0+ K 1(α 1
2
α 2

2
+α 2

2
α 3

2
+α 3

2
α 1

2
)+

K 2α 1
2
α 2

2
α 3

2
+ H (α 1β 1+α 2β 2+ α 3β 3)

β 1, β 2, β 1 - direction cosines of H

field direction



  

Energy surfaces – the influence of the external field

● Cubic crystals magnetocrystalline energy surfaces for different values 
of the external field applied along [111] direction*:

energy surfaces for K0=1, K1=2 and K2=0

*images do not have the same scale

H=0 H=0.5

H=1

H=1.5

● with increasing field H the number of local 
minima decreases

● above saturation there is only one local minimum



  

Anisotropy constants of ferromagnetic elements

● Bulk magnetocrystalline anisotropy constants of basic ferromagnetic elements at 4.2K 
[1]:

Fe (bcc) Co (hcp) Ni (fcc)

K1 [J/m3]
       

[meV/atom]

54800

4.02×10-3

760000

5.33×10-2

-126300

-8.63×10-3

K2 [J/m3]

[meV/atom]

1960

1.44×10-5

100500

7.31×10-3

57800

3.95×10-3

● Magnetocrystalline anisotropy of permalloy (Ni81Fe19):

K≈0 kJ/m3

● Magnetocrystalline anisotropy of rare-earth magnets [3]:

YCo5     K≈5.5×106 J/m3

SmCo5  K≈7.7×106 J/m3



  

Mixed anisotropies

● Consider the crystal in which two uniaxial anisotropies are present together [3]. We limit 
our discussion to second order terms [see Eq.(2)]:

EA=K 0+ K Asin2
θ , EB=K 0+ K Bsin2

(90−θ )=K 0+ K B cos2
θ

● The total energy of the moment is:

E total=K '0+ K Asin2
θ + K Bcos2

θ

● If KA=KB the energy is independent of θ:

E total=K '0+ K B(sin2
θ + cos2

θ )+ (K A−K B)sin 2
θ=K '0+ K B

Two equal uniaxial anisotropies at right angle
are not equivalent to biaxial anisotropy.

● If KA and KB are not equal the equilibrium angle is given by:

Polar plots of
 EA and EB (with K0=0.5)

EA + EB

∂E total
∂θ

=
∂

∂θ
(K A−K B)sin2

θ=
∂

∂θ
(K A−K B)(1−cos(2θ )

2 )=
(K A−K B)sin (2θ )=0

●Solutions are θ=00 , 900 , 1800

A-axis

B-axis



  

Mixed anisotropies

● From the second derivative (must be positive for minimum) we obtain [3]:

The direction of easy magnetization is not along some axis lying between AA and BB axes 
but is along the axis pertaining to higher anisotropy.

∂
2 E total

∂θ
2 =2(K A−K B)cos(2θ ) ⇒

KA>KB KA<KB

Easy axis – θ=0 Deg Easy axis – θ=90 Deg

● Case of the two uniaxial anisotropies which are not 
perpendicular:

-in case of anisotropies of equal strength the resultant easy
 axis  CC lies midway between axes AA and BB

-otherwise the CC axes makes smaller angle with axis
 pertaining to stronger anisotropy

easy
axis

an
g

le
 b

et
w

ee
n 

ax
es

 A
A

 a
nd

 B
B

 is
 3

6 
D

eg

Polar plots of
 EA and EB (with K0=0.5)



  

Microscopic mechanism of magnetocrystaline anisotropy

● The spin of electron interacts with the crystal structure via spin orbit coupling

● Due to spin-orbit 
coupling different 
orientations of electron 
spins correspond to 
different orientations of 
atomic orbitals relative 
to crystal structure

● As a consequence some 
orientations of the 
resultant magnetic 
moment are 
energetically favorable – 
easy directions. 

● the moment of a spin (red arrow) is strongly coupled to the electron cloud (blue orbitals) – spin orbit coupling
● when external magnetic field rotates the spin the electron “attempts” cloud follows but its energy depends on the 

orientation relative to neighboring atoms/orbitals
● if the orbitals overlap there is additional energy due to coulomb repulsion (on the other hand it can lower the 

energy of repulsion between ions) - IT IS A QUALITATIVE DESCRIPTION!

Higher energy

Lower energysmall overlap

overlap



  

Stoner-Wohlfarth model*

● Describes magnetization reversal in single domain magnetic particles/films
● The reversal is characterized by the orientation of single magnetic moment
● The anisotropy may be of magnetocrystalline, shape etc. origin
● For the uniaxial anisotropy case the energy can be described as (compare 

magnetocrystalline anisotropy energy expression for hexagonal system) [8]:

E total=K 0+ K 1sin2
θ−B⃗⋅M⃗=K 0+ K 1sin2

θ−M B cos(γ −θ )

Zeeman energy

● The energy landscape for different values of B (K0=0,K1=1,M=1, γ=300):

direction of the
applied field

● On increasing the field the minima 
shift toward its direction

● The angle antiparallel to field 
corresponds to absolute maximum

**

*some times called macrospin model ** this expression is for a unit volume of the material: M:=MV [Am2], K=KV [J]



  

Stoner-Wohlfarth model

● The dependence angle(field) obtained from the energy landscapes of the previous slide 
gives hysteresis loops:

● For field applied along 
easy-axis the reversal is 
completely irreversible

● For field applied 
perpendicularly to EA 
direction the reversal is 
completely reversible

● For field applied in 
arbitrary direction 
magnetization is “partly 
reversible and partly 
irreversible” [9]



  

Stoner-Wohlfarth model

● Hard axis reversal. We can rewrite the expression for the total energy using components 
of the field parallel (Bx) and perpendicular (By) to easy axis [9]: 

E total=K 0+ K 1sin2
θ−M B cos(γ −θ )=K0+ K 1 sin2

θ−B xM x−B yM y=

K 0+ K 1 sin2
θ−BxM cos(θ )−B yM sin(θ )

● Energy becomes minimum at a specific angle which can be determined setting:

∂E total
∂θ

=2K 1 sinθ cosθ + B xM sin (θ )−B yM cos(θ )=0

● With                 this can be written as:α=
2K 1

M
α sinθ cosθ + B xsin(θ )−B ycos(θ )=0

B y
sin(θ )

−
B x

cos(θ )
=αor

● If field is applied perpendicularly to EA we have (Bx=0, By=B):

sin(θ )=
B
α

If field is applied perpendicularly to the easy axis the component of magnetization parallel 
to the field is a linear function of the external field up to saturation which happens at*:

BS=
2K 1

M

B=
2K1

M

*in practical applications K[Jm-3], M[Am-1]
B [1T= kg

s2⋅A
]

[
K
M

=
J /m3

A /m
=

J

A⋅m
2
=
kg⋅m⋅m /s 2

A⋅m
2

=
kg

s
2
⋅A

=1T ]

proportional to M⃗ component parallel to B⃗



  

Stoner-Wohlfarth model – astroid* curve

* it happens people call it ,,asteroid” [S.U. Jen and C.C. Liu, Journal of Applied Physics 115, 013909 (2014)]

● Depending on the value of the external field there may one or two equilibrium orientations  
of magnetic moment. For a given field orientation the two minima collapse to one when [9]:

∂
2 E total

∂θ
2

=0

● From the expression for derivative of energy (previous slide) we have:

∂
2 E total

∂θ
2

=α (cos2
θ−sin2

θ )+ Bx cos(θ )+ B ysin (θ )=0 α=
B y

sin (θ )
−

B x
cos(θ )

From previous slide:

∂
2 E total

∂θ
2 =cos2

θ sin2
θ (

B y
sin3

(θ )
+

Bx
cos3

(θ ) )=0

● We are looking for the solution of the set (the first and the second derivatives equal to 0):

α=
B y

sin (θ )
−

B x
cos(θ )

,
B y

sin3
(θ )

+
Bx

cos3
(θ )

=0

● By a direct substitution of the first equation into the second we get:

Bx=−α cos3
θ , B y=α sin 3

θ

● Introducing reduced fields (                         ) it may be written as:b x=
B x
α

=−cos3
θ

b x
2/3
+ b y

2 /3
=1 =cos2

θ + sin2
θ equation of astroid

α+
B x

cos(θ )
=

B y
sin (θ )

,
B y

sin(θ )

1

sin2
(θ )

+
B x

cos3
(θ )

=0

∂E total

∂ θ
=α sinθcosθ+Bxsin (θ)−B y cos (θ)=0one of the minima ceases to exist



  

Stoner-Wohlfarth model – astroid curve

● Stoner-Wohlfarth astroid separates region, in (bx,by) plane, with two minima of energy 
from that with only one minimum*

● When the external field is changed so that the astroid is crossed the discontinuous 
changes of the orientation of magnetization can take place

*Y. Henry et al.  PHYSICAL REVIEW B 79, 214422 (2009)

● we start with magnetic moment pointing in negative direction           
(180 Deg, parallel to easy axis) and zero applied field

● we increase then the field (parallel to easy axis) into positive values 
and the minimum at 180 Deg becomes less deep

● finally, at B=2 (b
x
=1), the 180 Deg orientation ceases to be a 

minimum (first and second derivatives are zero – we cross Stoner-
Wohlfart astroid) and we end up with a single minimum at 0 Deg – 
magnetic moment switches to that minimum

start

bx

by

inside: two minima



  

Stoner-Wohlfarth model – astroid curve

● Stoner-Wohlfarth astroid separates region, in (bx,by) plane, with two minima of energy 
from that with only one minimum*

● When the external field is changed so that the astroid is crossed the discontinuous 
changes of the orientation of magnetization can take place

bx

by

1

2



  

● Stoner-Wohlfarth astroid separates region, in μ
0
(hx,hy) plane, with two minima of energy 

from that with only one minimum

Stoner-Wohlfarth model – astroid curve

M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon,and A. Pérez, Phys. Rev.Lett 86, 4676 (2001)

a strong decrease of anisotropy with increasing temperature!



  

Shape anisotropy – “magnetizing” thin film

● Consider a thin magnetic film in which all 
magnetic moments point perpendicularly to 
its plane

● If the film is thin we can assume that that its 
thickness is negligible relative to its lateral 
size (no fringing field)

● The magnetic moments create “magnetic 
charges” on the surface of the film

● ...and the charges produce H field

ϕm( r⃗ )=
1

4π∮S
M⃗⋅d⃗s
|⃗r|

−
1

4 π∫V
∇ '⋅M⃗
|r⃗|

d3 r '

H⃗=−∇φ

∇⋅H⃗=ρmagn

● For an infinite sheet of magnetic charge the field H 
is perpendicular to the sheet and can be calculated 
using Gauss law*:

*use Gaussian surface in form of a cylinder bisected by a sheet

H⃗ 2π r 2
=M⃗ sπ r

2

|H|=
1
2
|M s|



  

Shape anisotropy – “magnetizing” thin film

● The field produced by both sides of the film (two charge sheets) is then*:

B⃗=μ0( M⃗ s−2⋅
1
2
M⃗ s)=0

*you can arrive at the same result arguing that the field is produced by a equivalent current loop of infinite radius

● If, on the other hand, the magnetization is parallel to film surface the charges are 
created at infinity and they produce no H field in the film. The induction produced by 
magnetization is

B⃗=μ0( M⃗ s−0)=μ0 M⃗ s

● The energy, per unit volume, of the magnetic material in the external field is given by:

E=−M⃗⋅B⃗
● If the field is produced by the magnetization itself the increment of energy associated 

with a small increase in magnetization M is given by

dE=−dM⋅B

… and the magnetostatic energy associated with magnetization is:

we drop vector signs because the
vectors M and B are parallel

E=− ∫
0

M in-plane

μ0M dM=−
1
2
μ0M in-plane

2



  

Shape anisotropy – “magnetizing” thin film

● If we now apply the external magnetic field perpendicularly (along z axis) to the plane of 
the film which has no intrinsic anisotropy (magnetocrystalline etc.) the expression for its 
magnetostatic energy is:

E=−BzM z−
1
2
μ0M in-plane

2

or:

E=−B zM ssin (θ)−
1
2
μ0M s

2 cos2
(θ)

● The equilibrium orientation of magnetization is given by:

∂
∂θ
E=−B zM s cos (θ)+

1
2
μ0M s

2 2 cos(θ)sin (θ)=0

sin (θ)=
B z

μ0M s

M z=
Bz
μ0

Shape anisotropy in thin film:

● up to saturation the magnetization 
component along the external field 
direction is proportional to it

● saturation field is then equal to magnetic 
polarization (μ

0
M

s
)

shape anisotropy



  

Shape anisotropy

● Polycrystalline spherical samples without a preferred orientation of the grains do not 
show, in macroscopic experiments, any magneto crystalline anisotropy [9].

● If the sample is not spherical the magnetostatic energy of the system depends on the 
orientation of magnetic moments within the sample (or macrospin in a simplified picture).

● The effect is of purely magnetostatic origin and is closely related to demagnetizing fields 
(see my lecture 2 from 2019):

If and only if the surface of uniformly magnetized body is of second order the magnetic 
induction inside is uniform and can be written as:

B⃗=μ0(−N⋅M⃗+ M⃗ )

N is called the demagnetizing tensor [5]. If magnetization is parallel to one of principle axes 
of the ellipsoid N contracts to three numbers called demagnetizing (or demagnetization) 
factors sum of which is one:

N x+ N y+ N z=1

For a general ellipsoid magnetization and induction are not necessarily parallel.

Demagnetization decreases the field inside ferromagnetic body.

● Demagnetizing field is just the name of the 
field produced by the body itself



  

Shape anisotropy

● Polycrystalline spherical samples without a preferred orientation of the grains do not 
show, in macroscopic experiments, any magneto crystalline anisotropy [9].

● If the sample is not spherical the magnetostatic energy of the system depends on the 
orientation of magnetic moments within the sample (or macrospin in a simplified picture).

● The effect is of purely magnetostatic origin and is closely related to demagnetizing fields.

● The energy of the sample in its own stray field is given by the integral [9]:

E demag=−
1
2∫

B⃗demag⋅M⃗ dV=
1
2∫

μ 0(N⋅M⃗ )⋅M⃗ dV B⃗demag=−μ 0N⋅M⃗

● If the sample is an ellipsoid the demagnetizing field is uniform throughout the sample:

E demag=
1
2
V μ0(N⋅M⃗ )⋅M⃗ , V−volume of the sample

● N is a diagonal tensor if the semiaxes of the ellipsoid coincide with the axes of the 
coordination system.



  

Shape anisotropy

●For the general ellipsoid sample we have [9]:

N=[
1 /3 0 0
0 1 /3 0
0 0 1 /3] ⇒ E demag=

1
2
μ 0M

21
3
(α 1

2
+ α 2

2
+α 3

2
)=

1
6
μ 0M

2

●For a spherical sample we have:

no dependence on the 
magnetic moment orientation

●For an infinitely long cylinder* Nc is null:

N=[
1 /2 0 0
0 1/2 0
0 0 0] ⇒ E demag=

1
2
μ0M

2 1
2
(α 1

2
+α 2

2
)=

1
2
μ 0M

2 1
2
(sin2

(θ )cos2
(ϕ )+ sin2

(θ )sin2
(ϕ )

2
)=

E demag=
1
4
μ0M

2 sin2
(θ )

(α 1 ,α 2 ,α 3)=(sin(θ )cos(ϕ ) , sin(θ )sin(ϕ ) ,cos(θ ))

*polar axis is a symmetry axis

Uniaxial anisotropy- 
characteristic for elongated 
particles (see Stoner-
Wohlfarth model)

N ellipsoid=[
N a 0 0
0 N b 0
0 0 N c

]

Edemag=
1
2

V μ0(N⋅M⃗ )⋅M⃗=
1
2
μ0 M

2
(N aα1

2
+N bα2

2
+N cα3

2
) M⃗=M (α1 ,α2 ,α3)



  

Shape anisotropy

●For infinitely expanded and/or very thin ellipsoid we have [9] (θ=90o – moments in-plane):

N=[
0 0 0
0 0 0
0 0 1] ⇒ E demag=

1
2
μ0M

2
α 3

2
=

1
2
μ0M

2 cos2
(θ )

The in-plane orientation of 
magnetic moment of thin plate is 
energetically favorable*

*in case magnetocrystalline and other anisotropies favoring perpendicular orientation are absent
**magnetization data from: Francois Cardelli Materials Handbook, Springer 2008 (p.502), http://books.google.pl

●The equation can be rewritten to often used form:

E demag=
1
2
μ0M

2
(1−sin2

(θ ))=
1
2
μ0M

2
−

1
2
μ0M

2 sin2
(θ )=K0+ K shape

V sin2
(θ ) ,

with K shape
V

=−
1
2
μ0M

2

Fe (bcc) Co (hcp) Ni (fcc)

K1 [J/m3] 54 800 760 000 -126 300

KV
 [J/m3] 1 910 000 1 290 000 171 000

●Magnetocrystalline and thin films shape anisotropy constants for thin films of elements at 
4 K**:

Shape anisotropy in thin films 
usually dominates over 
magnetocrystalline anisotropy



  

Shape anisotropy

●From Stoner-Wohlfarth model we have:

BS=μ 0M S H S=M S

BS=
2K 1

M
●Substituting the expression for shape anisotropy of thin films                            we get:K shape

V
=−

1
2
μ0M

2

In macrospin approximation the perpendicular saturation field of thin film is equal to its 
magnetization.

or

Assuming that the wire and the plate are 
both thin and of the same material:
Which one is easier to saturate?



  

Shape anisotropy – purely magnetostatic interactions

Example:
● n  n  magnetic moments (spins) placed in plane on a square-lattice (a=0.2 nm)
●  magnetic moments interact purely magnetostatically
●  each moment is a 1 Bohr magneton (≈110-24 Am2) 



  

Shape anisotropy – purely magnetostatic interactions

B=
0

4
3 m⋅r r−mr⋅r 

r⋅r 5/2
E=−m⃗⋅B⃗



  

Shape anisotropy – purely magnetostatic interactions

E
┴

E||

Magnetostatic interactions favor in-plane orientation of magnetic 
moments (spins) in thin magnetic films

E⊥≥E∥

E
┴

 is less negative than E‖*

* E=−m⃗⋅B⃗



  

Surface anisotropy – reorientation phase transition

presence of an interface:
- orbital motion of electrons is affected by the         
  introduced   symmetry breaking
- the asymmetry of the averaged orbital moments
  defines the interface contribution to the magnetic
  anisotropy
 -in ultrathin magnetic films the interface part            
  becomes  even  dominating in some cases



  

Surface anisotropy – reorientation phase transition

● Due to broken symmetry at interfaces the anisotropy energy contains terms with lower 
order in direction cosines than in the infinite crystal.

● Energy of magnetic moments of atoms 
occupying lattice sites in the vicinity of the 
surface is different for two shown 
orientations

● Each of the magnetocrystalline anisotropy 
constants can be phenomenologically 
divided into two parts, one related to 
volume contribution and the one to surface 
contribution [9]:

where t is the crystal thickness.

K eff=K v+ K s / t

● Energy of magnetic moments of atoms 
occupying lattice sites far from the outer 
boundary of the crystal depends on the 
intrinsic symmetry of the crystal



  

Surface anisotropy – reorientation phase transition

● Let us assume that volume contribution to the anisotropy favors in-plane alignment of 
magnetic moments (it could be magnetocrystalline, shape, stress etc. anisotropy).

● Due to perpendicular surface anisotropy the moments close 
to the surface (black arrows) are deflected out of plane

● If the thickness of the sample/film is high the exchange 
coupling of the surface moments with the bulk ones keeps 
the overall moment of the sample nearly in plane

● If the thickness of the film is low, and the surface anisotropy 
is strong enough all moments point perpendicular to plane.

● Using macrospin approximation the total energy of the 
sample dependent on the orientation of magnetic moment 
can be written as [10] (we assume that the energy does not 
depend on azimuthal angle):

-positive Ki favor perpendicular orientation

E a=K 0−K 2 cos2
(θ )−K 4 cos4

(θ )+ .... *

*different notations of anisotropy constants can be encountered: R. Skomski et. al, Phys. Rev. B 58, 11138 (1998)



  

Surface anisotropy – reorientation phase transition

● Minimizing Ea with respect to θ yields the equilibrium angle:

∂
2 E a/∂θ

2
=2K 2 cos(θ )sin(θ )+ 4 K 4 cos3

(θ )sin (θ )=0 ⇒ cos(θ )sin (θ )(2K 2+ 4K 4 cos2
(θ ))=0

● We have extrema for:

θ=0, π /2, cos2
(θ )=

−K 2

2 K 4

● It can be shown that [10]:

-for K2>0 and K4>0 the magnetization is 
perpendicular to the plane

-for K2>0 and 2K4<-K2 the canted 
magnetization is a ground state

-the region for K2<0 and 2K4>-K2 is called a 
coexistence region – both perpendicular and 
in-plane orientations of magnetization 
correspond to local minimum; they are 
separated by energy barrier 

image source: P.J. Jensen, K.H. Bennemann, 
Surface Science Reports 61, 129 (2006)



  

Surface anisotropy – reorientation phase transition

●Recalling the presence of surface anisotropy terms we get:

Ea=K 0−(K 2
v
+ K 2

s
/ t)cos2

(θ )−(K 4
v
+ K 4

s
/ t)cos4

(θ )+ ....
each anisotropy constant is divided into

bulk (volume) and surface term

●Neglecting higher order terms we get the sample thickness for which the effective 
anisotropy is zero (neglecting constant K0):

tRPT=−
K 2
s

K 2
v

●Usually, when considering thin films, the sample has two surfaces contributing surface 
anisotropy. As a consequence the multiplier 2 is added*:

tRPT=−
2K 2

s

K 2
v

*in general both surfaces can be characterized by different surface anisotropy constants.

●For film thickness > tRPT the magnetization of the film lies in-plane (if the external field is 
absent).

●RPT may be caused by:
-temperature change
-change of the thickness of magnetic layer
-change of the thickness of the overlayer

RPT – reorientation phase transition 
SRT -spin reorientation transition



  

Perpendicular magnetic anisotropy in Co based multilayers

Co based multilayers in which magnetic layer is sandwiched between noble metal spacer 
possess perpendicular magnetic anisotropy (PMA) in limited thickness range – this is due 
to surface anisotropy of the interfaces

in the thickness range 0.3-1.4nm* 
sputtered Co/noble metal MLs can 
display PMA

*for Co/Au MLs the PMA range is approximately 0.5-1.2nm

above a critical thickness shape         
                     anisotropy dominates



  

Perpendicular magnetic anisotropy in Co based multilayers

●From the expression with surface anisotropy we have:

RPT – reorientation phase transition 
SRT -spin reorientation transition
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/ t
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●Plotting                 one can determine 
volume and surface contributions to 
anisotropy with a linear fit:

-KV - slope
-KS – ½Keff t for t=0

K eff t vs t

tRPT=−
2K 2

s

K 2
v



  

Perpendicular magnetic anisotropy in Co based multilayers

Kisielewski et al., J. Appl. Phys. 93, 7628 (2003)

● RPT may be caused by:
-temperature change
-change of the thickness of magnetic layer
-change of the thickness of the overlayer

K eff=K v+ 2K s / t



  

Perpendicular magnetic anisotropy in Co based multilayers

● RPT may be caused by:
-temperature change
-change of the thickness of magnetic layer
-change of the thickness of the overlayer
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Stress anisotropy and magnetostriction

● Magnetostriction is a change of materials physical dimensions as a result of the change 
of the orientation of magnetization

● The direction of magnetization changes under the influence of external field or 
temperature.

The relative deformation is usually small; of the order of 10-6 to 10-5 [6]; in Tb λ is approx. 
0.002 at RT.
● The typical strain versus field dependence shows saturation which is expressed by the 

value of magnetostriction constants λ:

● In giant magnetostriction materials the 
strain exceeds 0.5%
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Stress anisotropy and magnetostriction

● Magnetostriction is a change of materials physical dimensions as a result of the change 
of the orientation of magnetization

● The direction of magnetization changes under the influence of external field or 
temperature.

The relative deformation is usually small; of the order of 10-6 to 10-5 [6]; in Tb λ is approx. 
0.002 at RT.
● The typical strain versus field dependence shows saturation which is expressed by the 

value of magnetostriction constants λ:

● The dependence dl/l(H) is different for 
different orientations of applied field 
relative to crystal axes R
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Stress anisotropy and magnetostriction

● In most practical applications the saturation distortion can be described by expression 
with small number of constants [11]: 

λ=
3
2
λ100 (α 1

2
β 1

2
+ α 2

2
β 2

2
+α 3

2
β 3

2
−

1
3
)+ 3λ111(α 1α 2β 1β 2+ α 2α 3β 2β 3+ α 3α 1β 3β 1) ,

where α1, α2 , α3 – direction cosines of magnetic moment direction;β1 ,β2, β3- direction 
cosines of the direction along which the deformation is measured.

● In amorphous and polycrystalline materials (without the texture) the above expression 
simplifies to:

λ=
3
2
λ S (cos2

θ−
1
3
)

● Distortion along the magnetization 
direction is twice that observed for plane 
perpendicular to the field (see the 
drawing→)

● Below Curie temperature the 
spontaneous  magnetization leads to 
spontaneous  distortion of lattice [9]: 
cubic cell deforms  to tetragonal system

initial shape of the sample

field directions

distorted specimen

λ> 0
distorsion at angle θ relative to 
magnetization (which may be 
different from the external field 
direction)



  

Stress anisotropy – magnetomechanical effect*

● Stress applied to a ferromagnetic body will affect the orientation of magnetization 
through magnetostriction [6].

● The applied stress changes the magnetization reversal characteristics: 

*called inverse magnetostrictive effect, too

Fig. 8.16 Effect of applied tensile stress on the magnetization of
                68 Permalloy. After Bozorth [G.4].
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Stress anisotropy – magnetomechanical effect

●The part of the energy of a cubic crystal depending on magnetic moment orientation and 
the stress applied to crystal can be shown to be [3]:

E=K 1(α 1
2
α 2

2
+α 2

2
α 3

2
+ α 3

2
α 1

2
)+ ...−

3
2
λ100σ (α 1

2
γ 1

2
+ α 2

2
γ 2

2
+α 3

2
γ 3

2
)

−3λ111σ (α 1α 2γ 1γ 2+ α 2α 3γ 2γ 3+ α 3α 1γ 3γ 1) , γ 1, γ 2, γ 3 - direction cosines of 
the external stress σ

magnetocrystalline anisotropy

●When the magnetostriction is isotropic (                      ) the last two terms reduce to*:λ100=λ111=λ si

*with (α 1 ,α 2 ,α 3)=(sin (θ )cos(ϕ ) , sin(θ )sin (ϕ ) ,cos(θ ))

where θ is the angle between macrospin (magnetization) 
and the the stress directions

●The effect of stress on isotropic sample depends on the sign of the λsiσ product

●The effect of stress is to introduce additional anisotropy to the ferromagnetic system

Estress=−
3
2
λ siσ cos2

θ



  

Stress anisotropy – magnetomechanical effect

● The effect of the stress on magnetization reversal for positive λsiσ product [3]:
1) the magnetic moments within the specimen point in one of four easy directions
2) the application of tensile stress causes domains with magnetic moment perpendicular to 
    the stress to dwindle
3) still higher stress leaves only magnetic moments parallel to the stress
4) Application of the weak magnetic field is sufficient to move 180 Deg domain wall and 
    saturate the specimen

● If compressive stress was applied instead “vertical domains” would disappear and the 
field  would initially (for small H) be perpendicular to magnetic moments.

● In Ni samples the stress of 6.4×106 Pa [3] causes stress anisotropy to be roughly equal 
to magnetocrystalline anisotropy.

Estress=−
3
2
λ siσ cos2

θ

lower energy under stress



  

Array (or configurational) anisotropy

● In present days many applications (sensors, recording, magnonic devices etc.) make 
use of patterned magnetic samples

● If the elements of the pattern form a more or less regular array and if the distances 
between the individual elements are comparable with their sizes the magnetostatic 
interactions between the elements can lead to additional, separable, contribution to 
anisotropy apart from that characterizing the elements alone (magnetoscrystalline, 
shape etc.) [19,20]

The individual elements of the array (spheres) have no shape anisotropy (they may show other anisotropies)
but the array as a whole favors orientation of the moments along its longer edge. 



  

Array (or configurational) anisotropy

● For an array of iron ellipses with 1:3 aspect ratio there is a significant dependence of the 
hysteresis on the repetition period of the array [20]

● The in-plane proportions of the array (the ratio 
of the ellipsoid size to the period) are constant 
here

● The slimness of iron islands changes along 
rows of hysteresis loops

● The array can be 1D, 2D or 3D [19]

field direction
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Solution to the warm-up problem:

● the divergence of magnetization is zero – no volume magnetic charges

● the surface is always parallel to magnetization vector or magnetic moments [in spherical 
coordinates (r, φ, θ) the surface normal has no φ components; magnetic moments have 
only φ components] – no surface magnetic charges

● with no magnetic charges and no free currents the magnetic field strength H is zero 
everywhere

● and because of

the magnetic induction is                   inside the torus and zero outside.

B⃗=μ0(M⃗+H⃗ )

B⃗=μ0 M⃗
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