3

$\mathbf{M} \mathbf{M} \mathbf{A H}$
 A ANY
 GTDS
 N
 ER E
 T I A C

 Magnetic Anisotropy
Magnetic Anisotropy

- Magnetocrystalline anisotropy
- Shape anisotropy
- Surface anisotropy
- Stress anisotropy
- Array anisotropy

Warm-up problem

Find the magnetic induction produced by a magnetized torus of revolution (major radius R , minor radius r) on a line $x, y=0$, when vector \mathbf{M} is given by*:

Warm-up problem

Find the magnetic induction produced by a magnetized torus of revolution (major radius R , minor radius r) on a line $x, y=0$, when vector \mathbf{M} is given by*:

Pole avoidance principle*

Consider the following expression:

$$
\text { identity: } \nabla \cdot(f \vec{a})=f \nabla \cdot \vec{a}+\vec{a} \cdot \nabla f
$$

$\int \vec{B} \cdot \vec{H} d V=-\int \vec{B} \cdot \nabla \phi d V=-\int(\nabla \cdot(\phi \vec{B})-\phi \nabla \vec{B}) d V$,
which using divergence theorem transforms to:
$\int \vec{B} \cdot \vec{H} d V=-\int \nabla \cdot(\phi \vec{B}) d V=\int_{S} \vec{n} \cdot \phi \vec{B} d s$
We know that boundary conditions require φ to be continuous everywhere. We assume that the surface s contains all ferromagnetic bodies (of the whole system). Outside the magnetized bodies we have:
$\vec{B}=\mu_{0} \vec{H}=-\mu_{0} \nabla \phi$
If we allow the surface to tend to infinity the $\varphi \mathbf{B}$ goes to zero as r^{-3} [2] while the surface increases as r^{2}. Finally we have:
$\int_{\text {all space }} \vec{B} \cdot \vec{H} d V=0$
for the field produced by finite distribution of magnetized bodies (no free currents).

Pole avoidance principle*

The expression for the energy of the magnetized bodies in own field is [2]:

$$
E_{m}=-\frac{1}{2} \int_{V} \vec{B} \cdot \vec{M} d V
$$

From previous slide we have:

$$
\begin{aligned}
& \int_{\text {Space }} \vec{B} \cdot \vec{H} d V=\int_{\text {Space }} \mu_{0} \vec{H} \cdot(\vec{M}+\vec{H}) d V=0 \rightarrow \int_{\text {Space }} \mu_{0} H^{2} d V=-\mu_{0} \int_{\text {Space }} \vec{H} \cdot \vec{M} d V \\
& \text { Rewriting E }{ }_{m} \text { we get: } \\
& E_{m}=-\frac{1}{2} \int_{V} \mu_{0}(\vec{M}+\vec{H}) \cdot \vec{M} d V=-\frac{1}{2} \int_{V}^{\text {constant }} \mu_{0} M^{2} d V-\frac{1}{2} \int_{V} \mu_{0} \vec{H} \cdot \vec{M} d V
\end{aligned}
$$

$$
E_{m}=\text { const }+\mu_{0} \frac{1}{2} \int_{\text {Space }} H^{2} d V
$$

- note that the integrand is never negative
- the smallest possible value for variable part of magnetostatic self energy is zero
- this can be achieved only when \mathbf{H} is zero everywhere
- in the absence of free currents, only the magnetic charges (surface and volume) produce magnetic field strength H

Pole avoidance principle*

$$
E_{m}=\text { const }+\mu_{0} \frac{1}{2} \int_{\text {Space }} H^{2} d V
$$

- note that the integrand is never negative
- the smallest possible value for variable part of magnetostatic self energy is zero
- this can be achieved only when \mathbf{H} is zero everywhere
- in the absence of free currents, only the magnetic charges (surface and volume) produce magnetic field strength H

Magnetostatic energy term leads to magnetic moments configurations with possibly small magnetic charges (pole avoidance principle)

Alternatively the magnetostatic energy term can be writte as [2]:
$E_{m}=$ const $-\frac{1}{2 \mu_{0}} \int_{\text {space }} B^{2} d V$
note that the minus sign before the integral makes the equation of little use in predicting magnetization configuration [2]
higher value of the integral

image source: S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999

Anisotropy of hysteresis
Fe single crystals

- hard-axis reversal is characterized by higher field needed to saturate the sample
- the easy-axis reversal is usually characterized by higher hysteresis losses

Anisotropy of hysteresis - hysteresis of a sphere

- In case of large sphere (containing many atoms) the shape of the sample does not introduce additional anisotropy
- In small clusters the magnetization reversal is complicated by the reduction of symmetry (and the increased relative contribution of surface atoms)

In Fe sphere of radius $1 \mu \mathrm{~m}$ the surface atoms constitute roughly 0.04% of all atoms

- In case of large sphere (containing many atoms) the shape of the sample does not introduce additional anisotropy
- In small clusters the magnetization reversal is complicated by the reduction of symmetry (and the increased relative contribution of surface atoms)

> sphere-like - no breaking of crystal symmetry for high r

FIG. 6. (a) high-resolution transmission electron microscopy (HRTEM) observation of a cobalt cluster along a [110] direction. Interplanar distances $d_{(111)}=2.04 \pm 0.02 \& d_{(}=1.77 \pm 0.02 \AA$ Interplanar distances $d_{(111)}=2.04 \pm 0.02 \AA, d_{(200)}=1.77 \pm 0.02 \AA$ and angles correspond to bulk fcc cobalt. Moreover faceting is consistent with the Wulff theorem (Ref. 27). (b) HRTEM observation of an iron cluster along a [110] direction. The interplanar distance $d_{(110)}=2.01 \pm 0.03 \AA$ corresponds to the bulk bcc iron one. Faceting
sistent with the Wulff theorem (Ref 27) (b) HRTEM of an iron cluster along a [110] direction. The interplan $d_{(110)}=2.01 \pm 0.03 \AA$ corresponds to the bulk bcc iron on is atsonsistent with the Wulff theorem (Ref. 27).

- Co atoms deposited by molecular beam epitaxy on $\operatorname{Pt}(111)$ surface
- Coverage less than 0.03 ML
- "The XMCD signal (Fig. 1C) is the difference between the XAS* spectra recorded for parallel and antiparallel alignment of the photon helicity with the applied field B. Fields of up to 7 T were used to magnetize the sample at
angles 0° and 70° with respect to the surface ${ }^{A}$ normal."
- The presence of Pt surface induces very high magnetic anisotropy of $9.3 \pm 1.6 \mathrm{meV} / \mathrm{atom}$
- In SmCo_{5} magnets the anisotropy is $0.3 \mathrm{meV} / \mathrm{Co}$ atom

It is about 6\% of a latent heat of melting ($243 \mathrm{~kJ} / \mathrm{kg}$ [14]) of bulk Co
very high saturation field isolated Co adatoms

Fig. 1. (A) STM image of isolated Co adatoms (bright dots) on $\mathrm{Pt}(111)$. The Co coverage is 0.010 ML , and the image size is $85 \AA$ by $85 \AA$. (B) $L_{2,3}$ XAS spectra of isolated Co adatoms (0.010 ML) at $T=5.5 \pm 0.5 \mathrm{~K}, \mathrm{~B}=7 \mathrm{~T}$ taken with parallel $\left(\mu_{+}\right)$and antiparallel (μ_{-}) alignment of light helicity with respect to B at $\theta_{0}=0^{\circ}, 70^{\circ}$ relative to the surface normal (inset). The spectra at 70° have been normalized to the $\left(\mu_{+}+\mu_{-}\right) L_{3}$ intensity at 0° to eliminate the dependence of the electron yield on the sample orientation. (C) XMCD spectra ($\mu_{+}-\mu_{-}$) obtained for the $\theta_{0}=0^{\circ}$ and 70°
 curves $\mathrm{t} \theta_{0}=0^{\circ}$ (black squares) and 70° (red squares) measured at $T=5.5 \mathrm{~K}$. The points represent
 function of \mathbf{B}. The difference between the $\theta_{0}=0^{\circ}$ and 70° curves was checked for consistency with the XAS-normalized XMCD spectra. The solid lines are fits to the data according to Eq. 3.
P. Gambardella et al., Science 300, 1130 (2003)

Spin-orbit interaction (coupling)

- The electron is orbiting the nucleus of the +Ze charge*
- Looking at the nucleus from electron we have the magnetic field due to the motion of the nucleus. The energy of electron in that field is
$\vec{E}=-g \mu_{B} m_{s} B$
Correspondingly every electronic state splits into two (with two orientations of the spin). We assume that an electron is orbiting the nucleus in xy plane and that its instantaneous velocity is along x-direction.
The electric field of the nucleus at the place of an electron is along y-direction then

$$
E_{y}=\frac{1}{4 \pi \epsilon_{0}} \frac{Z e}{r^{2}}
$$

From special relativity theory (A. Einstein) for the components of the magnetic field in the electron reference frame we have [16]

$$
\begin{aligned}
& B_{x}^{\mathrm{el}(\text { ectron })}=B_{x}=0 \\
& B_{y}^{\mathrm{el}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}\left(B_{y}+\frac{v_{e}}{c^{2}} E_{z}\right)=0 \quad B_{z}^{\mathrm{el}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}\left(B_{z}-\frac{v_{e}}{c^{2}} E_{y}\right) \approx-\frac{v_{e}}{c^{2}} E_{y}
\end{aligned}
$$

Electron feels then the magnetic field that is oriented along z-axis Further, the field seen by the electron can be written as
$B^{\mathrm{el}}=\frac{1}{c^{2}}(\vec{E} \times \vec{v})=\frac{1}{m c^{2}}(\vec{E} \times \vec{p})$

$$
\vec{p}=\frac{m_{0} \vec{v}}{\sqrt{1-v^{2} / c^{2}}}
$$

Spin-orbit interaction (coupling)

Inserting the above calculated magnetic field into the expression for energy yields
$\Delta E_{\text {spin -orbit }}=-g \mu_{B} m_{s} B=-g \mu_{B} m_{s} \frac{1}{m c^{2}}(\vec{E} \times \vec{p})=-g \mu_{B} m_{s} \frac{1}{m c^{2}} \underbrace{\substack{N \\ \hline}}_{\left.\frac{1}{4 \pi \epsilon_{0}} \frac{Z e}{r^{2}} \frac{\vec{r}}{r} \times \vec{p}\right) \begin{array}{l}\text { this give the approprate } \\ \text { direction of electric field }\end{array}}$
$\left.\Delta E_{\text {spin-oritit }}=-g u_{B} m_{s} \frac{1}{m c^{2}}\left(\left[\frac{1}{4 \pi \epsilon_{0}} \frac{Z e}{r^{3}}\right] \vec{r} \times \vec{p}\right)=-g u_{B} m_{s} \frac{1}{m c^{2}}\left(\left[\frac{1}{4 \pi \epsilon_{0}} \frac{Z e}{r^{3}}\right]\right]_{\vec{L}}^{\hat{L}}\right)$
angular momentum

$$
\square
$$

More exact calculations require taking into account the so called Thomas precession* - this leads to factor $1 / 2$ which leads to "final" expression

$$
\Delta E_{\text {spin-orbit }}=-\frac{g}{2} \mu_{B} \frac{1}{m c^{2}} \frac{1}{4 \pi \epsilon_{0}} \frac{Z e}{r^{3}} \vec{L}
$$

- note that spin-orbit coupling is proportional to Z
- ...and to orbital moment of an electron

The direction of the magnetic field calcalculated from Biot-Savart law for a moving charge is the same

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q}{r^{2}} \vec{v} \times \vec{r}
$$

Spin-orbit interaction (coupling)

- In a crystal conducting electrons move in the average electric field of the atom cores and other electrons
- The core electrons that remain in the vicinity of the nucleus experience strong electric fields and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit coupling (please see movies at https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html)

Spin-orbit interaction (coupling)

- In a crystal conducting electrons move in the average electric field of the atom cores and other electrons
- The core electrons that remain in the vicinity of the nucleus experience strong electric fields and, provided that the orbit is not centrosymmetric, they experience strong spin-orbit coupling (please see movies at https://staff.aist.go.jp/v.zayets/spin3_32_SpinOrbit.html)
- The magnetic fields due the core electron movement can be huge [15]:

Linear velocity of an electron rotating around a nucleus is $\boldsymbol{\sim 2 . 1 * 1 0 ^ { 6 }} \mathbf{~ m} / \mathrm{s}$
The electric field experienced by an electron in the vicinity of nucleus (calculated for 1 s orbital of hydrogen atom) is roughly $5 * 10^{11} \mathrm{~V} / \mathrm{m}$
The effective magnetic field of the spin-orbit interaction is about $12 \mathbf{T}$
For comparison we [15] estimate the effective field in devices in which we try to influence the behavior of itinerant electrons applying external electric fields
The maximal electron velocity (saturation velocity, maximal drift speed) $\sim \mathbf{1 *}^{* 10^{7}} \mathbf{~ m} / \mathrm{s}$
The maximal available electric field (limited by breakdown voltage of the materials), for GaAs or Si it is roughly $\mathbf{5}^{*} \mathbf{1 0}^{\mathbf{7}} \mathrm{V} / \mathrm{m}$
The effective magnetic field of the spin-orbit interaction is about $5^{*} 10^{-4} \mathrm{~T}$ (about tenfold strength of the earth magnetic field)

Spin-orbit interaction (coupling) - dependence on a atomic number

The SO coupling depends indirectly on the charge of the nucleus (Z) The dependence is different for different series
image source [19] PHYSICAL REVIEW B 90, 165108 (2014)

FIG. 1. (Color online) Dependence of the spin-orbit coupling strength $\lambda_{n l}$ for atoms as a function of the atomic number Z. The calculated results of Herman and Skillman [24] using the HartreeFock method (colored lines) are compared to the hydrogenic Z^{4} dependence, which is computed from Eq. (4) for the $3 d$ series (upper dashed line). For the outermost electrons (indicated by the circles and the shaded area), which are the relevant electrons in the solid, the quantum numbers $n l$ change with Z and the spin-orbit interaction increases much more slowly, following roughly the Landau-Lifshitz Z^{2} scaling [lower dashed line, calculated from Eq. (5) with $A=0.10$].

- The Z^{4} dependence for SO in central field (near core electrons) comes from perturbative correction [18]:

$$
\begin{aligned}
& H_{S O}(r)=\frac{1}{2 m^{2} c^{2}} \frac{\partial V(r)}{\partial r} \vec{L} \cdot \vec{S} \\
& E_{n l}=E_{n l}^{0}+F(l, j) Z^{4}
\end{aligned}
$$

- The Z^{2} dependence is more relevant for solids

In magnetism a magnetic susceptibility tensor is one of the important exemples: the direction of magnetic moment (in macrospin approximation) is not in general parallel to the direction of the external magnetic field

- For all practical purposes the atomic magnetic moments of a macroscopic homogeneous magnetic sphere behave as if placed in infinite crystal of the same shape.
A. Aharoni: "in ferromagnetism there is no physical meaning to the limit of an infinite crystal without a surface" [2]
- We do not know a priori the dependence of the energy of the crystal on the orientation of magnetic moment of the sample.
- It can be shown [1] that energy density related to the orientation of magnetic moment in a crystal structure can be expanded into power series of direction cosines relative to the crystal axes:

$$
\begin{equation*}
E_{\text {crystal }}(\vec{M})=b_{0}+\sum_{i=1,2,3} b_{i} \alpha_{i}+\sum_{i, j=1,2,3} b_{i j} \alpha_{i} \alpha_{j}+\sum_{i, j, k=1,2,3} b_{i j k} \alpha_{i} \alpha_{j} \alpha_{k}+\ldots \tag{1}
\end{equation*}
$$

$\alpha_{1}, \alpha_{2}, \alpha_{3}$ - direction cosines of magnetization
$\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(\sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi), \cos (\theta)) \quad \theta, \phi \quad$ - polar and azimuthal angles

- The experience shows that it is enough to use very limited number of expansion terms to describe the magnetic systems - the usual limit are sixth order anisotropy constants

Anisotropy of hysteresis

- An example of the use of sixth order anisotropy constants for hysteresis description:

Figure 3. Magnetisation curves calculated for $\theta=0^{\circ}, 6 \cdot 5^{\circ}, 13 \cdot 7^{\circ}\left(\simeq \theta_{\mathrm{T}}\right), 17 \cdot 3^{\circ}$ and $35 \cdot 3^{\circ}$ [110].
The parameters K_{4} and K_{6} are phenomenological and not directly related to DyAl_{2}.
To see qualitatively that a sixth-order anisotropy term may indeed increase the discontinuity and the tricritical angle θ_{r}, consider the classical mean field energy

$$
\begin{aligned}
E=-\boldsymbol{H} \cdot \frac{\boldsymbol{M}}{M_{0}} & +K_{4}\left(M_{x}^{4} M_{y}^{4}+M_{z}^{4}\right) / M_{0}^{4}+K_{6}\left[M_{x}^{6}+M_{y}^{6}+M_{z}^{6}\right. \\
& -\frac{15}{4}\left(M_{x}^{4} M_{y}^{2}+M_{y}^{4} M_{x}^{2}+M_{z}^{2} M_{y}^{4}+M_{y}^{2} M_{z}^{4}+M_{z}^{2} M_{x}^{4}\right. \\
& \left.\left.+M_{x}^{2} M_{z}^{4}\right)\right] / M_{0}^{6}
\end{aligned}
$$

where K_{4} and K_{6} are phenomenological anisotropy constants. We have calculated magnetisation curves by minimising E with respect to \boldsymbol{M} for various directions of \boldsymbol{H}. In figure 3 are shown calculated magnetisation curves with $K_{4}=-1$ and $K_{6}=0.5$. The discontinuity for $\theta=0$ is 15% which corresponds to the situation for DyAl_{2} at $T \simeq 20 \mathrm{~K}$.
B. Barbara et al., J. Phys. C: Solid State Phys. 11 L183 (1978)

Magnetic anisotropy

- Intrinsic symmetries of the physical properties reduce the number of independent components of anisotropy tensors.
- The energy of the system is the same for both opposite orientations of magnetic moment. From Eq. (1) we have:

$$
\sum_{i=1,2,3} b_{i} \alpha_{i}=\sum_{i=1,2,3} b_{i}\left(-\alpha_{i}\right) \quad \text { for all } \alpha_{i} \Rightarrow b_{1}=b_{2}=b_{3}=0
$$

- The magnetocrystalline anisotropy energy may not depend on odd powers of direction cosines α. Consequently all odd rank tensors in the expansion (1) are identically null [1].

[^0]- Neumann's Principle:

The symmetry elements of any physical property of crystal must include all the symmetry elements of the point group* of the crystal.

- Consider a cubic crystal system with a 3-fold rotation axis [111] and the first nonvanishing anisotropy tensor (second rank):

$$
b_{i j}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

Transpose of a matrix - switches rows and column indices

$$
\left[M^{T}\right]_{i j}=M_{j i}
$$

- The transformation matrix corresponding to that rotation is:

$$
M=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Note: isometries (angles and distances
preserved) of R^{3} space are described by square matrices for which an inverse of a matrix is equal to its transpose: $M^{T}=M^{-1}$
and coordinates transform according to the following rule:

$$
a_{i}^{\prime}=\sum_{j} M_{i j} a_{j}
$$

- Voigt's Principle:

The conditions of Neumann's principle are fulfilled if the physical property of the crystal is described by the tensor which is invariant under point symmetry operations which leave the crystal unchanged

- It follows that the physical property tensor must fulfill the condition $b=M^{T} b M$ for all symmetry operations of the point group.
*A point group is a group of symmetry operations all of which leave at least on point unmoved.

Magnetic anisotropy - symmetry of crystals

- Neumann's Principle:

The symmetry elements of any physical property of crystal must include all the symmetry elements of the point group* of the crystal.

- Consider a cubic crystal system with a 3-fold rotation axis [111] and the first nonvanishing anisotropy tensor (second rank):
$b_{i j}=\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$

Transpose of a matrix - switches rows and column indices
$\left[M^{T}\right]_{i j}=M_{j i}$

- The transformation matrix corresponding to that rotation is:
$M=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

3-fold rotation
axis

Note: isometries (angles and distances preserved) of R^{3} space are described by square matrices for which an inverse of a matrix is equal to its transpose: $M^{T}=M^{-1}$

and coordinates transform according to the following rule:

$$
a_{i}^{\prime}=\sum_{j} M_{i j} a_{j}
$$

Magnetic anisotropy - symmetry of crystals

- From Voigt's principle it follows for tensor b:

$$
b=M^{T} b M
$$

$b_{i j}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)=\left[\begin{array}{lll}b_{22} & b_{23} & b_{21} \\ b_{32} & b_{33} & b_{31} \\ b_{12} & b_{13} & b_{11}\end{array}\right]$

- Comparing the elements of both (identical) tensors we get:

$b_{11}=b_{22}$	$b_{12}=b_{23}$	$b_{13}=b_{21}$
$b_{21}=b_{32}$	$b_{22}=b_{33}$	$b_{23}=b_{31}$
$b_{31}=b_{12}$	$b_{32}=b_{13}$	$b_{33}=b_{11}$

$$
\square \begin{aligned}
& b_{11}=b_{22}=b_{33}=\boldsymbol{a} \\
& b_{21}=b_{32}=b_{13}=\boldsymbol{b} \\
& b_{31}=b_{12}=b_{23}=\boldsymbol{c}
\end{aligned}
$$

- The invariance in respect the 120 Deg rotation leaves only 3 independent components:

$$
b_{i j}=\left[\begin{array}{lll}
a & c & b \\
b & a & c \\
c & b & a
\end{array}\right]
$$

Magnetic anisotropy - symmetry of crystals

$$
b=M^{T} b M
$$

- We apply the same procedure again, but this time with other symmetry element of cubic crystal, namely 90Deg rotation around z-axis:

$$
\left.\left.b_{i j}=\left(\begin{array}{lll}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{lll}
a & c & b \\
b & a & c \\
c & b & a
\end{array}\right] \right\rvert\, \begin{array}{lll}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\left[\begin{array}{lll}
a & -b & c \\
-c & a & -b \\
b & -c & a
\end{array}\right]
$$

- Comparing the elements of the first row of both (identical) tensors we get:
$c=-b, \quad b=c \quad \Rightarrow \quad b=c=0$
- It follows that the second rank tensor consistent with the above two symmetry operations possesses one independent component:

$$
b_{i j}=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right]
$$

- Similar analysis can be performed for other tensors in the expansion (1):

$$
\begin{equation*}
E_{\text {cryssal }}(\vec{M})=b_{0}+\sum_{i=1,2,3} b_{i} \alpha_{i}+\sum_{i, j=1,2,3} b_{i j} \alpha_{i} \alpha_{j^{+}} \sum_{i, j, k=1,2,3} b_{i j k} \alpha_{i} \alpha_{j} \alpha_{k}+\ldots \tag{1}
\end{equation*}
$$

- Inserting tensor b into the third term of expansion (1) we get:
$\sum_{i, j=1,2,3} b_{i j} \alpha_{i} \alpha_{j}=a\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)=\underset{\substack{\alpha_{1} \alpha_{2}, \alpha_{1} \alpha_{3}, \text { etc. terms are not present because of } b_{i j}=0 \\ \text { - for } \\ j \neq i}}{ }$ independent of the orientation moment
- In cubic system there are no second order terms in the expansion of energy in directional cosines [1].
- Using similar procedure we obtain the complete expression for the energy contribution related to the orientation of magnetic moment in cubic system [1]:

$$
E_{\text {crystal }}(\vec{M}, T)=K_{0}(T)+K_{1}(T)\left(\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}+\alpha_{3}^{2} \alpha_{1}^{2}\right)+K_{2}(T) \alpha_{1}^{2} \alpha_{2}^{2} \alpha_{3}^{2}
$$

-the coefficients $K_{0}, K_{1} \ldots$ are the linear combinations of tensor components $\mathrm{b}_{11}, \mathrm{~b}_{1111}$, b_{111111} etc. [4].

- For other crystal systems the similar procedure is employed to obtain the $E_{\text {crystal }}(M, T)$ expressions.
- For hexagonal crystals the energy can be expressed as [1]:
$E_{\text {crystal }}(\vec{M}, T)=K_{0}(T)+K_{1}(T)\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)+K_{2}(T)\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)^{2}+\ldots$
which is usually expressed, using trigonometric identities, as:

$$
\left.\begin{array}{rl}
E_{\text {crystal }}(\vec{M}, T)=K_{0}(T)+K_{1}(T) \sin ^{2} \theta+ & K_{2}(T) \sin ^{4} \theta+\ldots \tag{2}\\
\text { angle with respect to easy axis }
\end{array}\right\}
$$

- Inserting tensor b into the third term of expansion (1) we get:
$\sum_{i, j=1,2,3} b_{i j} \alpha_{i} \alpha_{j}=a\left(\alpha_{1}{ }^{2}+\alpha_{2}{ }^{2}+\alpha_{3}{ }^{2}\right)=a$-independent of the orientation of magnetic moment
- In cubic system there are no second order terms in the expansion of energy in directional cosines [1].
- Using similar procedure we obtain the complete expression for the energy contribution related to the orientation of magnetic moment in cubic system [1]:

$$
E_{\text {cryssal }}(\vec{M}, T)=K_{0}(T)+K_{1}(T)\left(\alpha_{1}{ }^{2} \alpha_{2}{ }^{2}+\alpha_{2}{ }^{2} \alpha_{3}{ }^{2}+\alpha_{3}{ }^{2} \alpha_{1}{ }^{2}\right)+K_{2}(T) \alpha_{1}{ }^{2} \alpha_{2}{ }^{2} \alpha_{3}{ }^{2}
$$

-the coefficients $K_{0}, K_{1} \ldots$ are the linear combinations of tensor components $\mathrm{b}_{11}, \mathrm{~b}_{1111}$, b_{111111} etc. [4].
-The terms of the type α_{i}^{4} are omitted since because of the identity [4,5]:
$2\left(\alpha_{1}{ }^{2} \alpha_{2}{ }^{2}+\alpha_{2}{ }^{2} \alpha_{3}{ }^{2}+\alpha_{3}{ }^{2} \alpha_{1}{ }^{2}\right)+\alpha_{1}{ }^{4}+\alpha_{2}{ }^{4}+\alpha_{3}{ }^{4}=1$
they can be incorporated into K_{0}, K_{1} terms.

- The terms of the type α_{i}^{6} can be similarly replaced by $\alpha_{i}{ }^{2} \alpha_{j}{ }^{2}$ and $\alpha_{1}{ }^{2} \alpha_{2}{ }^{2} \alpha_{3}{ }^{2}$ terms [6].

Magnetic anisotropy - symmetry of crystals

- Number of independent components of the (second rank) tensor depends on the crystal symmetry
- In crystals of cubic system there is one independent component of the tensor.
- Hexagonal systems are characterized by two independent components of the second rank tensors.

Оптическая класск- фикация	Системы	Характеризующая симметрия *	Вид характеристической поверхности и ее ориентация	Число незави- симых коэф- фициен- тов	Тензор, ириведенный к осям принятой ориентации *
$\begin{gathered} \text { Изотроп- } \\ \text { ная } \\ \text { среда } \end{gathered}$	Кубическая	Четыре оси третьего порядка	Сфера	1	$\left[\begin{array}{lll}S & 0 & 0 \\ 0 & S & 0 \\ 0 & 0 & S\end{array}\right]$
$\begin{gathered} \text { Одно- } \\ \text { осные } \\ \text { кри- } \\ \text { сталлы } \end{gathered}$	Teтparoнальная Гексагональная Тригональная	Одна ось четвертого порядка Одна ось шестого порядка Одна ось третьero порядка	Поверхность вращения вокруг главной оси симметрии $x_{3}(z)$	2	$\left[\begin{array}{ccc}S_{1} & 0 & 0 \\ 0 & S_{1} & 0 \\ 0 & 0 & S_{3}\end{array}\right]$
Двуосные кристаллы	Орто- ромбиче- ская	Три взаимно перпендикулярные оси второго порядка; осей высшего порядка нет	Произвольная поверхность второго порядка с осями x_{1}, x_{2}, x_{3}, параллельными осям второго порядка x, y, z	3	$\left[\begin{array}{ccc}S_{1} & 0 & 0 \\ 0 & S_{2} & 0 \\ 0 & 0 & S_{3}\end{array}\right]$
	Моноклинная	Одна ось второго порядка	Произвольная поверхность второго порядка с одной осью x_{2}, параллельной оси второго порядка у	4	$\left[\begin{array}{ccc}S_{11} & 0 & S_{31} \\ 0 & S_{22} & 0 \\ S_{31} & 0 & S_{33}\end{array}\right]$
	Триклинная	Центр симметрии или отсутствие симметрии	Произвольная поверхность второго порядка. Положение относительно кристаллографических осей не фиксировано	6	$\left[\begin{array}{lll}S_{11} & S_{12} & S_{31} \\ S_{12} & S_{22} & S_{23} \\ S_{31} & S_{23} & S_{33}\end{array}\right]$

* Оси симметрии могут быть поворотными или инверсионными; см. также стр. 335 ,
* Ориентация осей x_{1}, x_{2}, x_{3} поверхности второго порядка по отношенио к кристаллографическим осям x, y, z и элементам симметрии указана в табл. 4. Добавочные замечания о выборе систем коордннат см. в приложении 3 .

Magnetic anisotropy - energy surfaces

- Energy surface - the distance from origin along the given direction is proportional to magnetocrystalline energy of the crystal with magnetization along that direction.
- We start from the expression of the magnetocrystalline energy for cubic crystals:

$$
E_{\text {crystal }}(\vec{M}, T)=K_{0}(T)+K_{1}(T)\left(\alpha_{1}{ }^{2} \alpha_{2}{ }^{2}+\alpha_{2}^{2} \alpha_{3}{ }^{2}+\alpha_{3}{ }^{2} \alpha_{1}{ }^{2}\right)+K_{2}(T) \alpha_{1}{ }^{2} \alpha_{2}{ }^{2} \alpha_{3}{ }^{2}+\ldots
$$

- For $K_{0}=1, K_{1}=0$ and $K_{2}=0$ we have isotropic energy surface:

- Energy does not depend on the orientation of the magnetic moment
- The magnetization reversal (hysteresis) itself does not depend on K_{0} but to show the difference between the cases of $K_{1}>0$ and $K_{1}<0$ we need a reference level the surface of the sphere $\left(r=K_{0}\right)$.

Magnetic anisotropy - energy surfaces

- Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

energy surface for $K_{0}=1, K_{1}=2$ and $K_{2}=0$
typical for bcc cubic crystals (Fe)
energy surface for $K_{0}=1, K_{1}=-2$ and $K_{2}=0$

typical for fcc cubic crystals (Ni)
*both images have the same scale
- Cubic crystals magnetocrystalline energy surfaces* for different anisotropy coefficients:

energy surface for $K_{0}=1, K_{1}=2$ and $K_{2}=0$
typical for bcc cubic crystals (Fe)
*both images have the same scale

Magnetic anisotropy - energy surfaces

- Hexagonal crystals magnetocrystalline energy surfaces:

$$
E_{c r y s t a l}(\vec{M})=K_{0}+K_{1} \sin ^{2} \theta+K_{2} \sin ^{4} \theta
$$

energy surface for $K_{0}=0, K_{1}=-1$ and $K_{2}=0$
typical for hcp cobalt crystals
[0,0,1] - easy direction

Energy surfaces - the influence of the external field

- Cubic crystals magnetocrystalline energy surfaces for different values of the external field applied along [111] direction*:

$E_{\text {crystal }}(\vec{M}, \vec{H})=K_{0}+K_{1}\left(\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}+\alpha_{3}^{2} \alpha_{1}^{2}\right)+$ $K_{2} \alpha_{1}{ }^{2} \alpha_{2}{ }^{2} \alpha_{3}{ }^{2}+H\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}\right)$
$\beta_{1}, \beta_{2}, \beta_{1}$ - direction cosines of H
energy surfaces for $K_{0}=1, K_{1}=2$ and $K_{2}=0$
*images do not have the same scale

Energy surfaces - the influence of the external field

- Cubic crystals magnetocrystalline energy surfaces for different values of the external field applied along [111] direction*:

- Bulk magnetocrystalline anisotropy constants of basic ferromagnetic elements at 4.2K [1]:

	Fe (bcc)	Co (hcp)	$\mathrm{Ni}(\mathrm{fcc})$
$\mathrm{K}_{1}\left[\mathrm{~J} / \mathrm{m}^{3}\right]$	54800	760000	-126300
$[\mathrm{meV} /$ atom $]$	4.02×10^{-3}	5.33×10^{-2}	-8.63×10^{-3}
$\mathrm{~K}_{2}\left[\mathrm{~J} / \mathrm{m}^{3}\right]$	1960	100500	57800
$[\mathrm{meV} /$ atom $]$	1.44×10^{-5}	7.31×10^{-3}	3.95×10^{-3}

- Magnetocrystalline anisotropy of permalloy ($\mathrm{Ni}_{81} \mathrm{Fe}_{19}$):
$\mathrm{K} \approx 0 \mathrm{~kJ} / \mathrm{m}^{3}$
- Magnetocrystalline anisotropy of rare-earth magnets [3]:
$\mathrm{YCO}_{5} \quad \mathrm{~K} \approx 5.5 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}$
$\mathrm{SmCo}_{5} \mathrm{~K} \approx 7.7 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}$

Mixed anisotropies

- Consider the crystal in which two uniaxial anisotropies are present together [3]. We limit our discussion to second order terms [see Eq.(2)]:

$$
E_{A}=K_{0}+K_{A} \sin ^{2} \theta, \quad E_{B}=K_{0}+K_{B} \sin ^{2}(90-\theta)=K_{0}+K_{B} \cos ^{2} \theta
$$

- The total energy of the moment is:

$$
E_{\text {total }}=K_{0}^{\prime}+K_{A} \sin ^{2} \theta+K_{B} \cos ^{2} \theta
$$

- If $K_{A}=K_{B}$ the energy is independent of θ :

$$
E_{\text {total }}=K_{0}^{\prime}+K_{B}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left(K_{A}-K_{B}\right) \sin ^{2} \theta=K_{0}^{\prime}+K_{B}
$$

Two equal uniaxial anisotropies at right angle are not equivalent to biaxial anisotropy.

- If K_{A} and K_{B} are not equal the equilibrium angle is given by:
$\frac{\partial E_{\text {total }}}{\partial \theta}=\frac{\partial}{\partial \theta}\left(K_{A}-K_{B}\right) \sin ^{2} \theta=\frac{\partial}{\partial \theta}\left(K_{A}-K_{B}\right)\left(\frac{1-\cos (2 \theta)}{2}\right)=$
$\left(K_{A}-K_{B}\right) \sin (2 \theta)=0$
B-axis
- Solutions are $\theta=0^{\circ}, \quad 90^{\circ}, 180^{\circ}$

- From the second derivative (must be positive for minimum) we obtain [3]:

$\frac{\partial^{2} E_{\text {total }}}{\partial \theta^{2}}=2\left(K_{A}-K_{B}\right) \cos (2 \theta) \Rightarrow$	$\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{B}}$	$\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{B}}$
	Easy axis $-\theta=0$ Deg	Easy axis $-\theta=90$ Deg

The direction of easy magnetization is not along some axis lying between AA and BB axes but is along the axis pertaining to higher anisotropy.

- Case of the two uniaxial anisotropies which are not perpendicular:
-in case of anisotropies of equal strength the resultant easy axis CC lies midway between axes AA and BB
-otherwise the CC axes makes smaller angle with axis pertaining to stronger anisotropy

Microscopic mechanism of magnetocrystaline anisotropy

- The spin of electron interacts with the crystal structure via spin orbit coupling
- the moment of a spin (red arrow) is strongly coupled to the electron cloud (blue orbitals) - spin orbit coupling
- when external magnetic field rotates the spin the electron "attempts" cloud follows but its energy depends on the orientation relative to neighboring atoms/orbitals
- if the orbitals overlap there is additional energy due to coulomb repulsion (on the other hand it can lower the energy of repulsion between ions) - IT IS A QUALITATIVE DESCRIPTION!

- Due to spin-orbit coupling different orientations of electron spins correspond to different orientations of atomic orbitals relative to crystal structure
- As a consequence some orientations of the resultant magnetic moment are energetically favorable easy directions.
Higher energy

small overlap
Lower energy
- Describes magnetization reversal in single domain magnetic particles/films
- The reversal is characterized by the orientation of single magnetic moment
- The anisotropy may be of magnetocrystalline, shape etc. origin
- For the uniaxial anisotropy case the energy can be described as (compare magnetocrystalline anisotropy energy expression for hexagonal system) [8]:

$$
E_{\text {total }}=K_{0}+K_{1} \sin ^{2} \theta-\vec{B} \cdot \vec{M}=K_{0}+K_{1} \sin ^{2} \theta-M B \cos (\gamma-\theta) * *
$$

Zeeman energy

- The energy landscape for different values of $\boldsymbol{B}\left(\mathrm{K}_{0}=0, \mathrm{~K}_{1}=1, \mathrm{M}=1, \mathrm{Y}=30^{\circ}\right)$:

- On increasing the field the minima shift toward its direction
- The angle antiparallel to field corresponds to absolute maximum

[^1]- The dependence angle(field) obtained from the energy landscapes of the previous slide gives hysteresis loops:

- For field applied along easy-axis the reversal is completely irreversible
- For field applied perpendicularly to EA direction the reversal is completely reversible
- For field applied in arbitrary direction magnetization is "partly reversible and partly irreversible" [9]

Stoner-Wohlfarth model

- Hard axis reversal. We can rewrite the expression for the total energy using components of the field parallel (B_{x}) and perpendicular (B_{y}) to easy axis [9]:
$E_{\text {total }}=K_{0}+K_{1} \sin ^{2} \theta-M B \cos (\gamma-\theta)=K_{0}+K_{1} \sin ^{2} \theta-B_{x} M_{x}-B_{y} M_{y}=$
$K_{0}+K_{1} \sin ^{2} \theta-B_{x} M \cos (\theta)-B_{y} M \sin (\theta)$
- Energy becomes minimum at a specific angle which can be determined setting:
$\frac{\partial E_{\text {total }}}{\partial \theta}=2 K_{1} \sin \theta \cos \theta+B_{x} M \sin (\theta)-B_{y} M \cos (\theta)=0$
- With $\alpha=\frac{2 K_{1}}{M}$ this can be written as: $\alpha \sin \theta \cos \theta+B_{x} \sin (\theta)-B_{y} \cos (\theta)=0 \quad$ or

$$
\frac{B_{y}}{\sin (\theta)}-\frac{B_{x}}{\cos (\theta)}=\alpha
$$

- If field is applied perpendicularly to EA we have ($B_{\mathrm{x}}=0, B_{\mathrm{y}}=\mathrm{B}$):
 $\sin (\theta)=\frac{B}{\alpha} \quad$ proportional to \vec{M} component parallel to \vec{B}

If field is applied perpendicularly to the easy axis the component of magnetization parallel to the field is a linear function of the external field up to saturation which happens at*:

$$
B_{S}=\frac{2 K_{1}}{M}
$$

- Depending on the value of the external field there may one or two equilibrium orientations of magnetic moment. For a given field orientation the two minima collapse to one when [9]:
$\frac{\partial^{2} E_{\text {total }}}{\partial \theta^{2}}=0 \quad$ one of the minima ceases to exist
- From the expression for derivative of energy (previous slide) we have: From previous slide:
$\frac{\partial^{2} E_{\text {total }}}{\partial \theta^{2}}=\alpha\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+B_{x} \cos (\theta)+B_{y} \sin (\theta)=0 \quad \alpha=\frac{B_{y}}{\sin (\theta)}-\frac{B_{x}}{\cos (\theta)}$
$\frac{\partial^{2} E_{\text {total }}}{\partial \theta^{2}}=\cos ^{2} \theta \sin ^{2} \theta\left(\frac{B_{y}}{\sin ^{3}(\theta)}+\frac{B_{x}}{\cos ^{3}(\theta)}\right)=0$
- We are looking for the solution of the set (the first and the second derivatives equal to 0):

$$
\alpha=\frac{B_{y}}{\sin (\theta)}-\frac{B_{x}}{\cos (\theta)} \quad, \quad \frac{B_{y}}{\sin ^{3}(\theta)}+\frac{B_{x}}{\cos ^{3}(\theta)}=0
$$

- By a direct substitution of the first equation into the second we get:

$$
B_{x}=-\alpha \cos ^{3} \theta, \quad B_{y}=\alpha \sin ^{3} \theta
$$

- Introducing reduced fields $\left(b_{x}=\frac{B_{x}}{\alpha}=-\cos ^{3} \theta\right)$ it may be written as:

$$
\left(b_{x}^{2 / 3}+b_{y}^{2 / 3}=1\right) \quad=\cos ^{2} \theta+\sin ^{2} \theta \quad \text { equation of astroid }
$$

Stoner-Wohlfarth model - astroid curve

- Stoner-Wohlfarth astroid separates region, in (bx,by) plane, with two minima of energy from that with only one minimum*
- When the external field is changed so that the astroid is crossed the discontinuous changes of the orientation of magnetization can take place

we start with magnetic moment pointing in negative direction (180 Deg, parallel to easy axis) and zero applied field
- we increase then the field (parallel to easy axis) into positive values and the minimum at 180 Deg becomes less deep
-• finally, at $B=2\left(b_{x}=1\right)$, the 180 Deg orientation ceases to be a minimum (first and second derivatives are zero - we cross StonerWohlfart astroid) and we end up with a single minimum at 0 Deg magnetic moment switches to that minimum

*Y. Henry et al. PHYSICAL REVIEW B 79, 214422 (2009)
- Stoner-Wohlfarth astroid separates region, in (bx,by) plane, with two minima of energy from that with only one minimum*
- When the external field is changed so that the astroid is crossed the discontinuous changes of the orientation of magnetization can take place

- Stoner-Wohlfarth astroid separates region, in $\mu_{0}(\mathrm{hx}, \mathrm{hy})$ plane, with two minima of energy from that with only one minimum

Temperature dependence of the switching fields of a 3 nm Co cluster

a strong decrease of anisotropy with increasing temperature!

Shape anisotropy - "magnetizing" thin film

- Consider a thin magnetic film in which all magnetic moments point perpendicularly to its plane
- If the film is thin we can assume that that its thickness is negligible relative to its lateral size (no fringing field)
- The magnetic moments create "magnetic charges" on the surface of the film
- ...and the charges produce \mathbf{H} field
$\nabla \cdot \vec{H}=\rho_{\text {mag }}$

- For an infinite sheet of magnetic charge the field H is perpendicular to the sheet and can be calculated

$$
\phi_{m}(\vec{r})=\frac{1}{4 \pi} \oint_{S} \xlongequal{\overrightarrow{\vec{M} \cdot \vec{d} s}} \frac{1}{4 \pi} \int_{V} \frac{\nabla^{\prime} \cdot \vec{M}}{|\vec{r}|} d^{3} r^{\prime}
$$ using Gauss law*:

$$
\begin{aligned}
& \vec{H} 2 \pi r^{2}=\vec{M}_{s} \pi r^{2} \\
& |H|=\frac{1}{2}\left|M_{s}\right|
\end{aligned}
$$

Shape anisotropy - "magnetizing" thin film

- The field produced by both sides of the film (two charge sheets) is then*:

$$
\vec{B}=\mu_{0}\left(\vec{M}_{s}-2 \cdot \frac{1}{2} \vec{M}_{s}\right)=0
$$

- If, on the other hand, the magnetization is parallel to film surface the charges are created at infinity and they produce no \mathbf{H} field in the film. The induction produced by magnetization is
$\vec{B}=\mu_{0}\left(\vec{M}_{s}-0\right)=\mu_{0} \vec{M}_{s}$
- The energy, per unit volume, of the magnetic material in the external field is given by:

$$
E=-\vec{M} \cdot \vec{B}
$$

- If the field is produced by the magnetization itself the increment of energy associated with a small increase in magnetization M is given by

$$
d E=-d M \cdot B
$$

... and the magnetostatic energy associated with magnetization is:

$$
E=-\int_{0}^{M_{\text {inhane }}} \mu_{0} M d M=-\frac{1}{2} \mu_{0} M_{\mathrm{in-plane}}^{2}
$$

Shape anisotropy - "magnetizing" thin film

- If we now apply the external magnetic field perpendicularly (along z axis) to the plane of the film which has no intrinsic anisotropy (magnetocrystalline etc.) the expression for its magnetostatic energy is:

$$
E=-B_{z} M_{z}-\frac{1}{2} \mu_{0} M_{\mathrm{in} \text {-plane }}^{2}
$$

or:

> shape anisotropy

$$
E=-B_{z} M_{s} \sin (\theta)-\frac{1}{2} \mu_{0} M_{s}^{2} \cos ^{2}(\theta)
$$

- The equilibrium orientation of magnetization is given by:

$$
\frac{\partial}{\partial \theta} E=-B_{z} M_{s} \cos (\theta)+\frac{1}{2} \mu_{0} M_{s}^{2} 2 \cos (\theta) \sin (\theta)=0
$$

$$
\sin (\theta)=\frac{B_{z}}{\mu_{0} M_{s}} \quad M_{z}=\frac{B_{z}}{\mu_{0}}
$$

Shape anisotropy in thin film:

- up to saturation the magnetization component along the external field direction is proportional to it
- saturation field is then equal to magnetic polarization $\left(\mu_{0} \mathrm{M}_{s}\right)$
- Polycrystalline spherical samples without a preferred orientation of the grains do not show, in macroscopic experiments, any magneto crystalline anisotropy [9].
- If the sample is not spherical the magnetostatic energy of the system depends on the orientation of magnetic moments within the sample (or macrospin in a simplified picture).
- The effect is of purely magnetostatic origin and is closely related to demagnetizing fields (see my lecture 2 from 2019):
If and only if the surface of uniformly magnetized body is of second order the magnetic induction inside is uniform and can be written as:
$\vec{B}=\mu_{0}(-N \cdot \vec{M}+\vec{M})$
N is called the demagnetizing tensor [5]. If magnetization is parallel to one of principle axes of the ellipsoid N contracts to three numbers called demagnetizing (or demagnetization) factors sum of which is one:
$N_{x}+N_{y}+N_{z}=1$
For a general ellipsoid magnetization and induction are not necessarily parallel.
Demagnetization decreases the field inside ferromagnetic body.
- Demagnetizing field is just the name of the field produced by the body itself

Shape anisotropy

- Polycrystalline spherical samples without a preferred orientation of the grains do not show, in macroscopic experiments, any magneto crystalline anisotropy [9].
- If the sample is not spherical the magnetostatic energy of the system depends on the orientation of magnetic moments within the sample (or macrospin in a simplified picture).
- The effect is of purely magnetostatic origin and is closely related to demagnetizing fields.

- The energy of the sample in its own stray field is given by the integral [9]:

$$
E_{\text {demag }}=-\frac{1}{2} \int \vec{B}_{\text {demag }} \cdot \vec{M} d V=\frac{1}{2} \int \mu_{0}(N \cdot \vec{M}) \cdot \vec{M} d V
$$

$$
\vec{B}_{\text {demag }}=-\mu_{0} N \cdot \vec{M}
$$

- If the sample is an ellipsoid the demagnetizing field is uniform throughout the sample:
$E_{\text {demag }}=\frac{1}{2} V \mu_{0}(N \cdot \vec{M}) \cdot \vec{M}, \quad V$-volume of the sample
- N is a diagonal tensor if the semiaxes of the ellipsoid coincide with the axes of the coordination system.

Shape anisotropy

- For the general ellipsoid sample we have [9]:

$$
E_{\text {demag }}=\frac{1}{2} V \mu_{0}(N \cdot \vec{M}) \cdot \vec{M}=\frac{1}{2} \mu_{0} M^{2}\left(N_{a} \alpha_{1}^{2}+N_{b} \alpha_{2}^{2}+N_{c} \alpha_{3}^{2}\right) \quad \vec{M}=M\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)
$$

-For a spherical sample we have:

$$
N=\left[\begin{array}{lll}
1 / 3 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1 / 3
\end{array}\right] \Rightarrow E_{\text {demag }}=\frac{1}{2} \mu_{0} M^{2} \frac{1}{3}\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)=\frac{1}{6} \mu_{0} M^{2} \begin{aligned}
& \text { no dependence on the } \\
& \text { magnetic moment orientation }
\end{aligned}
$$

-For an infinitely long cylinder* N_{c} is null: $\quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(\sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi), \cos (\theta))$

$$
\begin{array}{r}
N=\left[\begin{array}{lll}
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow E_{\text {demag }}=\frac{1}{2} \mu_{0} M^{2} \frac{1}{2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)=\frac{1}{2} \mu_{0} M^{2} \frac{1}{2}\left(\sin ^{2}(\theta) \cos ^{2}(\phi)+\sin ^{2}(\theta) \sin ^{2}(\phi)^{2}\right)= \\
E_{\text {demag }}=\frac{1}{4} \mu_{0} M^{2} \sin ^{2}(\theta) \quad \begin{array}{l}
\text { Uniaxial anisotropy- } \\
\text { characteristic for elongated } \\
\text { particles (see Stoner- } \\
\text { Wohlfarth model) }
\end{array}
\end{array}
$$

*polar axis is a symmetry axis

$$
N_{\text {ellipsoid }}=\left[\begin{array}{lll}
N_{a} & 0 & 0 \\
0 & N_{b} & 0 \\
0 & 0 & N_{c}
\end{array}\right]
$$

Shape anisotropy

-For infinitely expanded and/or very thin ellipsoid we have [9] ($\theta=90^{\circ}$ - moments in-plane):

$$
N=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow E_{\text {demag }}=\frac{1}{2} \mu_{0} M^{2} \alpha_{3}^{2}=\frac{1}{2} \mu_{0} M^{2} \cos ^{2}(\theta)
$$

The in-plane orientation of magnetic moment of thin plate is energetically favorable*
-The equation can be rewritten to often used form:
$E_{\text {demag }}=\frac{1}{2} \mu_{0} M^{2}\left(1-\sin ^{2}(\theta)\right)=\frac{1}{2} \mu_{0} M^{2}-\frac{1}{2} \mu_{0} M^{2} \sin ^{2}(\theta)=K_{0}+K_{\text {shape }}^{V} \sin ^{2}(\theta)$,
with $\quad K_{\text {shape }}^{V}=-\frac{1}{2} \mu_{0} M^{2}$

- Magnetocrystalline and thin films shape anisotropy constants for thin films of elements at $4 K^{* *}$:

	Fe (bcc)	Co (hcp)	$\mathrm{Ni}(\mathrm{fcc})$
$\mathrm{K}_{1}\left[\mathrm{~J} / \mathrm{m}^{3}\right]$	54800	760000	-126300
$\mathrm{~K}^{\vee}\left[\mathrm{J} / \mathrm{m}^{3}\right]$	1910000	1290000	171000

Shape anisotropy in thin films usually dominates over magnetocrystalline anisotropy

Shape anisotropy

- From Stoner-Wohlfarth model we have: $B_{S}=\frac{2 K_{1}}{M}$
- Substituting the expression for shape anisotropy of thin films $K_{\text {shape }}^{V}=-\frac{1}{2} \mu_{0} M^{2}$ we get: $B_{S}=\mu_{0} M_{S} \quad$ or $\quad H_{S}=M_{S}$

> In macrospin approximation the perpendicular saturation field of thin film is equal to its magnetization.

Shape anisotropy - purely magnetostatic interactions

Shape anisotropy - purely magnetostatic interactions

Shape anisotropy - purely magnetostatic interactions

Surface anisotropy - reorientation phase transition
presence of an interface:

- orbital motion of electrons is affected by the introduced symmetry breaking
- the asymmetry of the averaged orbital moments

- Due to broken symmetry at interfaces the anisotropy energy contains terms with lower order in direction cosines than in the infinite crystal.

- Energy of magnetic moments of atoms occupying lattice sites in the vicinity of the surface is different for two shown orientations
- Each of the magnetocrystalline anisotropy constants can be phenomenologically divided into two parts, one related to volume contribution and the one to surface contribution [9]:

$$
K^{e f f}=K^{v}+K^{s} / t
$$

where t is the crystal thickness.

- Energy of magnetic moments of atoms occupying lattice sites far from the outer boundary of the crystal depends on the intrinsic symmetry of the crystal
- Let us assume that volume contribution to the anisotropy favors in-plane alignment of magnetic moments (it could be magnetocrystalline, shape, stress etc. anisotropy).

- Due to perpendicular surface anisotropy the moments close to the surface (black arrows) are deflected out of plane
- If the thickness of the sample/film is high the exchange coupling of the surface moments with the bulk ones keeps the overall moment of the sample nearly in plane
- If the thickness of the film is low, and the surface anisotropy is strong enough all moments point perpendicular to plane. - Using macrospin approximation the total energy of the
 sample dependent on the orientation of magnetic moment can be written as [10] (we assume that the energy does not depend on azimuthal angle):
$E_{a}=K_{0}-K_{2} \cos ^{2}(\theta)-K_{4} \cos ^{4}(\theta)+\ldots$.
-positive K_{i} favor perpendicular orientation
*different notations of anisotropy constants can be encountered: R. Skomski et. al, Phys. Rev. B 58, 11138 (1998)

Surface anisotropy - reorientation phase transition

- Minimizing E_{a} with respect to θ yields the equilibrium angle:
$\partial^{2} E_{a} / \partial \theta^{2}=2 K_{2} \cos (\theta) \sin (\theta)+4 K_{4} \cos ^{3}(\theta) \sin (\theta)=0 \quad \Rightarrow \quad \cos (\theta) \sin (\theta)\left(2 K_{2}+4 K_{4} \cos ^{2}(\theta)\right)=0$
- We have extrema for:
$\theta=0, \pi / 2, \quad \cos ^{2}(\theta)=\frac{-K_{2}}{2 K_{4}} \longleftarrow$
- It can be shown that [10]:
-for $\mathrm{K}_{2}>0$ and $\mathrm{K}_{4}>0$ the magnetization is perpendicular to the plane
-for $\mathrm{K}_{2}>0$ and $2 \mathrm{~K}_{4}<-\mathrm{K}_{2}$ the canted magnetization is a ground state
-the region for $\mathrm{K}_{2}<0$ and $2 \mathrm{~K}_{4}>-\mathrm{K}_{2}$ is called a coexistence region - both perpendicular and in-plane orientations of magnetization correspond to local minimum; they are separated by energy barrier
- Recalling the presence of surface anisotropy terms we get:
$E_{a}=K_{0}-\left(K_{2}^{v}+K_{2}^{s} / t\right) \cos ^{2}(\theta)-\left(K_{4}^{v}+K_{4}^{s} / t\right) \cos ^{4}(\theta)+\ldots . \quad \begin{array}{r}\text { each anisotropy constant is divided into } \\ \text { bulk (volume) and surface term }\end{array}$
- Neglecting higher order terms we get the sample thickness for which the effective anisotropy is zero (neglecting constant K_{o}):
$t_{R P T}=-\frac{K_{2}^{s}}{K_{2}^{v}}$
- Usually, when considering thin films, the sample has two surfaces contributing surface anisotropy. As a consequence the multiplier 2 is added*:
$t_{R P T}=-\frac{2 K_{2}^{s}}{K_{2}^{v}}$
RPT - reorientation phase transition SRT -spin reorientation transition
-For film thickness $>t_{\text {RPT }}$ the magnetization of the film lies in-plane (if the external field is absent).
-RPT may be caused by:
-temperature change
-change of the thickness of magnetic layer
-change of the thickness of the overlayer
*in general both surfaces can be characterized by different surface anisotropy constants.

Perpendicular magnetic anisotropy in Co based multilayers

Co based multilayers in which magnetic layer is sandwiched between noble metal spacer possess perpendicular magnetic anisotropy (PMA) in limited thickness range - this is due to surface anisotropy of the interfaces

\mathbf{A}
\mathbf{K}
K 2019 *for Co/Au MLs the PMA range is approximately 0.5-1.2nm

- From the expression with surface anisotropy we have:
$K_{e f f}=K_{2}^{v}+2 K_{2}^{s} / t$
$K_{\text {eff }} t=K_{2}^{v} t+2 K_{2}^{s}$
- Plotting $K_{\text {eff }} t$ vs t one can determine volume and surface contributions to anisotropy with a linear fit:
-Kv - slope
$-K_{s}-1 / 2 K_{\text {eff }} t$ for $t=0$

Fig. 2. Dependence of $K t_{\mathrm{Co}}$ on t_{Co} for polycrystalline $\mathrm{Co} / \mathrm{Pd}$ multilayers, deposited at $T_{\mathrm{s}}=20$ and $200^{\circ} \mathrm{C}$.

Perpendicular magnetic anisotropy in Co based multilayers

- RPT may be caused by: -temperature change
-change of the thickness of magnetic layer -change of the thickness of the overlayer

FIG. 1. Cobalt wedge remnant state image $P(i, j)$ determined for a fully saturated sample in both $H_{\perp}>0$ and $H_{\perp}<0$ directions. On the basis of magnetometric analysis, localization of different magnetization states is marked. Points show the coercivity wall positions registered for different H_{\perp} field pulse ($\Delta=900 \mathrm{~ms}$) magnitudes (measured in Oe). Solid black lines have been fitted to the coercivity wall data, registered at $H_{\perp}=135 \mathrm{Oe}$, using $H_{\mathrm{C}}(x, y)$ function with $h_{\mathrm{C}}^{*}=0.8 \mathrm{~nm}$ as the best fitting parameter. Below the horizontal dashed line in the gold region growth imperfections are clearly visible.

Perpendicular magnetic anisotropy in Co based multilayers

- RPT may be caused by:
-temperature change
-change of the thickness of magnetic layer -change of the thickness of the overlayer

FIG. 4. Hysteresis loop with H perpendicular (1) and parallel ($\|_{i}$) to tho film plane, for $\mathrm{Au} / \mathrm{Co} / \mathrm{Au}$ sandwiches with $t=5.4,9.5$, and 15.4 A , a $T=10 \mathrm{~K}$.

- Magnetostriction is a change of materials physical dimensions as a result of the change of the orientation of magnetization
- The direction of magnetization changes under the influence of external field or temperature.
The relative deformation is usually small; of the order of 10^{-6} to 10^{-5} [6]; in $\mathrm{Tb} \lambda$ is approx. 0.002 at RT.
- The typical strain versus field dependence shows saturation which is expressed by the value of magnetostriction constants λ :

- In giant magnetostriction materials the strain exceeds 0.5\%

FIG. 4. Magnetostriction of an ordered $\mathrm{Fe}_{3} \mathrm{Pt}$. Strain of 1.5×10^{-2} is obtained by application of a magnetic field of 4 T , which is indicated by (I). The total strain comes to about 2.0×10^{-2} including the strain due to the thermally induced martensitic transformation shown in Fig. 3. The reversible strain is 5×10^{-3} by applying and removing the magnetic field, which is indicated by (II) and (III). .

- Magnetostriction is a change of materials physical dimensions as a result of the change of the orientation of magnetization
- The direction of magnetization changes under the influence of external field or temperature.
The relative deformation is usually small; of the order of 10^{-6} to 10^{-5} [6]; in $\mathrm{Tb} \lambda$ is approx. 0.002 at RT.
- The typical strain versus field dependence shows saturation which is expressed by the value of magnetostriction constants λ :

- The dependence $\mathrm{d} / \mathrm{l} / \mathrm{H})$ is different for different orientations of applied field relative to crystal axes
- In most practical applications the saturation distortion can be described by expression with small number of constants [11]:
$\lambda=\frac{3}{2} \lambda_{100}\left(\alpha_{1}^{2} \beta_{1}^{2}+\alpha_{2}^{2} \beta_{2}^{2}+\alpha_{3}^{2} \beta_{3}^{2}-\frac{1}{3}\right)+3 \lambda_{111}\left(\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}+\alpha_{2} \alpha_{3} \beta_{2} \beta_{3}+\alpha_{3} \alpha_{1} \beta_{3} \beta_{1}\right)$,
where $\alpha_{1}, \alpha_{2}, \alpha_{3}$-direction cosines of magnetic moment direction; $\beta_{1}, \beta_{2}, \beta_{3}$ - direction cosines of the direction along which the deformation is measured.
- In amorphous and polycrystalline materials (without the texture) the above expression simplifies to:
$\lambda=\frac{3}{2} \lambda_{S}\left(\cos ^{2} \theta-\frac{1}{3}\right)$
distorsion at angle θ relative to magnetization (which may be different from the external field direction)
- Distortion along the magnetization direction is twice that observed for plane perpendicular to the field (see the drawing \rightarrow)
- Below Curie temperature the spontaneous magnetization leads to spontaneous distortion of lattice [9]: cubic cell deforms to tetragonal system

Stress anisotropy - magnetomechanical effect*

- Stress applied to a ferromagnetic body will affect the orientation of magnetization through magnetostriction [6].
- The applied stress changes the magnetization reversal characteristics:

Stress anisotropy - magnetomechanical effect
-The part of the energy of a cubic crystal depending on magnetic moment orientation and the stress applied to crystal can be shown to be [3]:

$$
\begin{aligned}
& E=K_{1}\left(\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}+\alpha_{3}^{2} \alpha_{1}^{2}\right)+\ldots-\frac{3}{2} \lambda_{100} \sigma\left(\alpha_{1}^{2} \gamma_{1}^{2}+\alpha_{2}^{2} \gamma_{2}^{2}+\alpha_{3}^{2} \gamma_{3}^{2}\right) \\
& -3 \lambda_{111} \sigma\left(\alpha_{1} \alpha_{2} \gamma_{1} \gamma_{2}+\alpha_{2} \alpha_{3} \gamma_{2} \gamma_{3}+\alpha_{3} \alpha_{1} \gamma_{3} \gamma_{1}\right), \\
& \text { magnetocrystalline anisotropy }
\end{aligned} \quad \gamma_{1,} \gamma_{2,} \gamma_{3}-\text { - direction cosines of } \begin{array}{lll}
\text { the external stress } \sigma
\end{array}
$$

-When the magnetostriction is isotropic ($\lambda_{100}=\lambda_{111}=\lambda_{s i}$) the last two terms reduce to*: $E_{\text {stress }}=-\frac{3}{2} \lambda_{s i} \sigma \cos ^{2} \theta \quad \begin{aligned} & \text { where } \theta \text { is the angle between macrospin (magnetization) } \\ & \text { and the the stress directions }\end{aligned}$

- The effect of stress on isotropic sample depends on the sign of the $\lambda_{\text {si }} \sigma$ product
-The effect of stress is to introduce additional anisotropy to the ferromagnetic system
- The effect of the stress on magnetization reversal for positive $\lambda_{\mathrm{si}} \sigma$ product [3]:

1) the magnetic moments within the specimen point in one of four easy directions
2) the application of tensile stress causes domains with magnetic moment perpendicular to the stress to dwindle
3) still higher stress leaves only magnetic moments parallel to the stress
4) Application of the weak magnetic field is sufficient to move 180 Deg domain wall and saturate the specimen

- If compressive stress was applied instead "vertical domains" would disappear and the field would initially (for small H) be perpendicular to magnetic moments.
- In Ni samples the stress of $6.4 \times 10^{6} \mathrm{~Pa}$ [3] causes stress anisotropy to be roughly equal to magnetocrystalline anisotropy.
- In present days many applications (sensors, recording, magnonic devices etc.) make use of patterned magnetic samples
- If the elements of the pattern form a more or less regular array and if the distances between the individual elements are comparable with their sizes the magnetostatic interactions between the elements can lead to additional, separable, contribution to anisotropy apart from that characterizing the elements alone (magnetoscrystalline, shape etc.) $[19,20]$

The individual elements of the array (spheres) have no shape anisotropy (they may show other anisotropies) but the array as a whole favors orientation of the moments along its longer edge.

- For an array of iron ellipses with 1:3 aspect ratio there is a significant dependence of the hysteresis on the repetition period of the array [20]

FIG. 2. (Color online) Size and thickness dependence of hysteresis curves of Fe ellipses with the field applied along the long axes. The interparticle separation is twice the lateral size of corresponding ellipses. The film thicknesses and the long axes are noted in the figure. All curves are drawn to scale with an ofset for all except the central one.

- The in-plane proportions of the array (the ratio of the ellipsoid size to the period) are constant here
- The slimness of iron islands changes along rows of hysteresis loops
- The array can be 1D, 2D or 3D [19]

References

1. S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999
2. A. Aharoni, Introduction to the Theory of Ferromagnetism, Clarendon Press, Oxford 1996
3. B. D. Cullity, Introduction to magnetic materials, Addison-Wesley, Reading, Massachusetts 1972
4. A.P. Cracknell, Magnetyzm Kryształów, PWN Warszawa 1982
5. R.M. Bozorth, Ferromagnetism, D.van Nostrand Company, 1951
6. S. Chikazumi, Physics of Magnetism, John Wiley \& Sons, Inc., 1964
7. R. Gross, A. Marx, Spinelektronik, www.wmi.badw-muenchen.de/teaching/Lecturenotes/
8. P. Bruno, Phsical origins and theoretical models of magnetic anisotropy, from Schriften des Forschungszentrums Jülich ISBN 3-89336-110-3, 1993
9. M. Getzlaff, Fundamentals of Magnetism, Springer-Verlag Berlin Heidelberg 2008
10. P.J. Jensen, K.H. Bennemann, Surface Science Reports 61, 129 (2006)
11. G. Dietz, Die Gestaltungsmagnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-110-3, 1993
12. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Physics Reports 422, 65 (2005)
13. Einführung in die Quantenmechanik (Physik IV), ETH Zurich (http://qudev.ethz.ch/content/courses/phys4/phys4_fs11/PhysikIV.pdf, retrieved 2017.01.18)
14. www.engineeringtoolbox.com/latent-heat-melting-solids-d_96.html, retrieved 2018.03.13
15. V. Zayets, https://staff.aist.go.jp/v.zayets/spin3 32 SpinO-rbit.html, retrieved 2017.01.19
16. J. Evans, T. Grove, Structure of Earth Materials, 2004, MIT Course Number 12.108
17. M. Wolf, C. Patschureck, R. Schäfer, I. Mönch, L. Schultz, J. McCord, Journal of Magnetism and Magnetic Materials 323, 1703 (2011)
18. W. F. Brown, Jr., Magnetostatic Principles in Ferromagnetism, North-Holland, Amsterdam, 1962
19. M. Pardavi-Horvath, Phys. Status Solidi A 211, 1030 (2014)
20. M. Hanson, R. Bručas, T.J. Antosiewicz, R.K. Dumas, B. Hjörvarsson, V. Flovik, and E. Wahlström, Phys. Rev. B 92, 094436 (2015)
21. M. Kateb, J.T. Gudmundsson, and S. Ingvarsson, AIP Advances 9, 035308 (2019)

Solution to the warm-up problem:

- the divergence of magnetization is zero - no volume magnetic charges
- the surface is always parallel to magnetization vector or magnetic moments [in spherical coordinates ($\mathrm{r}, \varphi, \theta$) the surface normal has no φ components; magnetic moments have only φ components] - no surface magnetic charges
- with no magnetic charges and no free currents the magnetic field strength H is zero everywhere
- and because of

$$
\vec{B}=\mu_{0}(\vec{M}+\vec{H})
$$

the magnetic induction is $\vec{B}=\mu_{0} \vec{M}$ inside the torus and zero outside.

[^0]: $\mathbf{K} 2019$ *rank of a tensor - number of its indices

[^1]: *some times called macrospin model ** this expression is for a unit volume of the material: $\mathrm{M}:=\mathrm{MV}\left[\mathrm{Am}^{2}\right], \mathrm{K}=\mathrm{KV}[\mathrm{J}]$

