\mathbf{M} M A H

Magnetic couplings

A ANY
 GTDS

N ET
ER E

T \| I A

 C
4

Magnetic couplings

- Introduction
-Exchange coupling
- Magnetostatic coupling
- Dzyaloshinskii-Moriya interaction
- RKKY coupling

Introduction Pauli principle - fermions, bosons
In a system composed of indistinguishable particles the exchange of the particles does not change the wave function and related observables (e.g. energy)

The transposition operator T_{12} exchanges two particles:
$T_{12} \psi\left(r_{1}, r_{2}\right)=\psi\left(r_{2}, r_{1}\right)$
But exchanging the particles twice brings us back to the initial state, so:
$T_{12}^{2}=1$
It follows $\mathrm{T}_{12}= \pm 1$

- $\mathbf{T}_{12}=\mathbf{1}$ - symmetric wave functions - bosons (spin 1,2,3,....)
- $\mathrm{T}_{12}=-1$ - antisymmetric wave functions - fermions (electrons, protons, neutrons)

Introduction Pauli principle - fermions, bosons
Assume that two identical particles are confined to a potential well of the infinite depth and width a. The normalized 1-D solutions to Schrödinger equation are of the form [9]:
$\psi(x)=\sqrt{\frac{2}{a}} \sin \left(n \frac{\pi}{a} x\right), \quad n= \pm 1, \pm 2, \ldots$
Depending on whether the particles are distinguishable
 (classical case) or not and on whether they are bosons or fermions the wave function of two non-interacting particles can be written in one of three ways*:

- distinguishable particles

$$
\psi\left(r_{1}, r_{2}\right)=\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)
$$ which means that particle no. 1 is in state $n 1$ at position r_{1} and particle no. 2 is in state n 2 at position r_{2}

- bosons (symmetric wave function)

$$
\psi\left(r_{1}, r_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)+\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right]
$$

- fermions (antisymmetric function)

$$
\psi\left(r_{1}, r_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)-\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right]
$$

Introduction Pauli principle - fermions, bosons

Symmetric wave function [105]:
$\psi\left(r_{1}, r_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)+\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right]$
is not changed when we exchange positions of two particles $r_{1} \leftrightarrow r_{2}$:
$\psi\left(r_{2}, r_{1}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)+\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)\right]=\psi\left(r_{1}, r_{2}\right)$

The sign of antisymmetric wave function:
$\psi\left(r_{1}, r_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)-\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right]$
is changed when we exchange positions of two particles $r_{1} \leftrightarrow r_{2}$:
$\psi\left(r_{2}, r_{1}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)-\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)\right]=-\psi\left(r_{1}, r_{2}\right)$

Introduction Pauli principle - fermions, bosons
Assume that two identical particles are confined to a potential well of the infinite depth and width a. The normalized 1-D solutions to Schrödinger equation are of the form [9]:

$$
\psi(x)=\sqrt{\frac{2}{a}} \sin \left(n \frac{\pi}{a} x\right), \quad n= \pm 1, \pm 2, \ldots
$$

Depending on whether the particles are distinguishable (classical case) or not and on whether they are bosons or fermions the wave function of two non-interacting particles can be written in one of three ways*:

- distinguishable particles

$$
\begin{array}{l|l}
\psi\left(r_{1}, r_{2}\right)=\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right) \quad P\left(r_{1}, r_{2}\right)=\psi_{n}\left(r_{1}\right) \psi_{n}\left(r_{2}\right) \psi_{n}\left(r_{1}\right)^{*} \psi_{n}\left(r_{2}\right)^{*}
\end{array}
$$

Both particles in the same quantum state [26] probability density

- bosons (symmetric wave function)

$$
\psi\left(r_{1}, r_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)+\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right] \quad \begin{aligned}
P\left(r_{1}, r_{2}\right) & =\left(\frac{1}{\sqrt{2}}\left[2 \psi_{n}\left(r_{1}\right) \psi_{n}\left(r_{2}\right)\right]\right)\left(\frac{1}{\sqrt{2}}\left[2 \psi_{n}\left(r_{1}\right) \psi_{n}\left(r_{2}\right)\right]\right)^{*} \\
& =2 \psi_{n}\left(r_{1}\right) \psi_{n}\left(r_{2}\right) \psi_{n}\left(r_{1}\right)^{*} \psi_{n}\left(r_{2}\right)^{*}
\end{aligned}
$$

Bosons have enhanced probability of being in the same quantum state

Introduction Pauli principle - fermions, bosons
We consider first two levels in a well: one particle in state with $\mathrm{n}=1$ and the other with $\mathrm{n}=2$

Introduction Pauli principle - fermions, bosons
We consider first two levels in a well: one particle in state with $n=1$ and the other with $n=2$ Indistinguishable boson particles

Probability maxima correspond to both particles being at the same location
$x_{2}=x_{1}$

Bosons, due to the symmetry of the wave function alone, have a tendency to lump [106].

$$
P\left(x_{1}, x_{2}\right)=\left[\sqrt{\frac{2}{a}} \sin \left(1 \frac{\pi}{a} x_{1}\right) \sqrt{\frac{2}{a}} \sin \left(2 \frac{\pi}{a} x_{2}\right)+\sqrt{\frac{2}{a}} \sin \left(1 \frac{\pi}{a} x_{2}\right) \sqrt{\frac{2}{a}} \sin \left(2 \frac{\pi}{a} x_{1}\right)\right]^{2}
$$

Introduction

We consider first two levels in a well: one particle in state with $n=1$ and the other with $n=2$ Indistinguishable fermions (with the same spin- see next slides)

Probability of finding both particles in the same location is zero
$P\left(x_{1}, x_{2}=x_{1}\right)=0$
"Non interacting" Fermions with the same spin, due to the symmetry of the wave function alone, have a tendency to avoid each other* [106]

$$
P\left(x_{1}, x_{2}\right)=\left[\sqrt{\frac{2}{a}} \sin \left(1 \frac{\pi}{a} x_{1}\right) \sqrt{\frac{2}{a}} \sin \left(2 \frac{\pi}{a} x_{2}\right)-\sqrt{\frac{2}{a}} \sin \left(1 \frac{\pi}{a} x_{2}\right) \sqrt{\frac{2}{a}} \sin \left(2 \frac{\pi}{a} x_{1}\right)\right]^{2}
$$

Exchange coupling

Consider a system composed of two particles with spin $1 / 2$. For one spin we have a set of matrices
$S_{x}=\frac{1}{2} \hbar\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad S_{y}=\frac{1}{2} \hbar\left(\begin{array}{c}0 \\ 0 \\ i\end{array} \quad 0.0\right) \quad S_{z}=\frac{1}{2} \hbar\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right) \quad \begin{array}{r}\text { Pauli matrices } \\ \sigma_{1}, \sigma_{2}, \sigma_{3}\end{array}$
with eigenvalues $\pm \frac{1}{2} \hbar$ and corresponding eigenvectors $\alpha=\binom{1}{0}$ and $\beta=\binom{0}{1}$ for $S_{z}=\frac{1}{2} \hbar\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
With 2 spins we should work in 4-dimensional representation. Each spin has two eigenvectors so there are 4 possibilities:

meaning first spin down, second spin up
α and β traditionally mean up and down, respectively

Exchange coupling

From single spin vectors we can construct symmetric and antisymmetric functions (with respect to spin exchange) [B. Średniawa, $39^{\mathrm{p} 223}$]:

$$
\alpha(1) \alpha(2), \quad \beta(1) \beta(2), \quad \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)],
$$

Combining Pauli matrices into vector we get:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]=-\left[\frac{1}{\sqrt{2}}[\alpha(2) \beta(1)-\beta(2) \alpha(1)]\right] \\
& \text { antisymmetric combination }
\end{aligned}
$$

$\vec{\sigma}=\hat{x} \sigma_{x}+\hat{y} \sigma_{y}+\hat{z} \sigma_{z}=\hat{x}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)+\hat{y}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)+\hat{z}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{ll}\hat{z} & \hat{x}-i \hat{y} \\ \hat{x}+i \hat{y} & -\hat{z}\end{array}\right)$
and for a resultant spin momentum of two spins
$\vec{J}=\frac{\hbar}{2}(\vec{\sigma}(1)+\vec{\sigma}(2))$
each operator acts on its "own " spin
For a square of the momentum we have
$J^{2}=\frac{\hbar^{2}}{4}\left[\left(\sigma_{x}(1)+\sigma_{x}(2)\right)^{2}+\left(\sigma_{y}(1)+\sigma_{y}(2)\right)^{2}+\left(\sigma_{z}(1)+\sigma_{z}(2)\right)^{2}\right]=\frac{\hbar^{2}}{2}[3+\vec{\sigma}(1) \cdot \vec{\sigma}(2)]$
We act now with the operator $\vec{\sigma}(1) \cdot \vec{\sigma}(2)$ on constructed spin functions (using explicit forms Mu of Pauli matrices):

$$
\begin{aligned}
& {[\vec{\sigma}(1) \cdot \vec{\sigma}(2)] \alpha(1) \alpha(2)=\left[\sigma_{x}(1) \sigma_{x}(2)+\sigma_{y}(1) \sigma_{y}(2)+\sigma_{z}(1) \sigma_{z}(2)\right] \alpha(1) \alpha(2)} \\
& =\beta(1) \beta(2)+i \beta(1) i \beta(2)+\alpha(1) \alpha(2)=1 \cdot \alpha(1) \alpha(2)
\end{aligned}
$$

Introduction Exchange coupling

Which means that eigenvalue of $\vec{\sigma}(1) \cdot \vec{\sigma}(2)$ for $\alpha(1) \alpha(2)$ function is $\mathbf{1}$:
$[\vec{\sigma}(1) \cdot \vec{\sigma}(2)] \alpha(1) \alpha(2)=1 \cdot \alpha(1) \alpha(2)$
Inserting this "1" into the expression for the square of the momentum yields:
$J^{2}=\frac{\hbar^{2}}{2}[3+\vec{\sigma}(1) \cdot \vec{\sigma}(2)]=\frac{\hbar^{2}}{2} 4 \rightarrow J=\hbar \sqrt{2}$
From the expression of the momentum corresponding to a spin ($L_{S}=\sqrt{S(S+1)} \hbar$) we see that:

- this value of momentum $(\hbar \sqrt{2})$ corresponds to resultant spin $1 \longleftrightarrow \longrightarrow=1$:
- and consequently the function $\alpha(1) \alpha(2)$ corresponds to spin 1

Analogous calculations show that all three symmetric two spin functions correspond to spin 1 (each of them corresponds to different component of momentum along z-axis)

$$
\begin{array}{lcc}
\alpha(1) \alpha(2), & \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)], & \beta(1) \beta(2) \\
S_{z}:+\hbar & 0 & -\hbar
\end{array}
$$

$$
\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
$$

resultant spin $\mathrm{S}=0$

Exchange coupling

When we are dealing with fermions the total wave function must be asymmetric. If Hamiltonian has no terms dependent on spin we can write the total wave function as a product of spatial and spin wave functions. We can have thus two cases [105]:

- spatial function is asymmetric, spin function is symmetric (triplet)

$$
\begin{gathered}
\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)-\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right] \times \alpha(1) \alpha(2) \\
\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)-\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right] \times \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)] \\
\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)-\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right] \times \beta(1) \beta(2)
\end{gathered}
$$

spin functions

- spatial function is symmetric, spin function is asymmetric (singlet)

$$
\frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right)-\psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right] \times \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
$$

Exchange coupling

Assume now that the two particles (electrons with a spin) interact via Coulomb electrostatic interactions.
If the interaction is weak we can us a non-degenerate perturbation method for which we have

$$
E_{m}^{(1)}=V_{m m}=\int \psi_{m}^{(0)^{*}} \hat{V} \psi_{m}^{(0)} d V \quad E_{m}=E_{m}^{(0)}+\lambda V_{m m} \quad E_{m}=E_{0}+<0 \mathrm{~m}\left|H^{(1)}\right| 0 \mathrm{~m}>
$$

The correction to the eigenvalues in the first order approximation is the equal to the average energy of the perturbation in the unperturbed state

Depending on the spin state (triplet, singlet) the spatial wave function is either symmetric or antisymmetric, and because the spin function is not acted upon by a the perturbation we get [39]
$E^{(1)}=\int \frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right) \pm \psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right]^{*} \frac{e^{2}}{r_{1,2}} \frac{1}{\sqrt{2}}\left[\psi_{n 1}\left(r_{1}\right) \psi_{n 2}\left(r_{2}\right) \pm \psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right)\right] d V$
which yields [39]

$$
\underset{\substack{\mathbf{M} \\
\mathbf{U} \\
\mathbf{R} \\
\mathbf{B} \\
\mathbf{A} \\
\mathbf{N} \\
\mathbf{N}}}{\substack{\mathbf{A}}} E^{(1)}=\begin{gathered}
\left.\left.\int \psi_{n 1}\left(r_{1}\right)\right|^{2} \frac{e^{2}}{r_{1,2}}\left|\psi_{n 2}\left(r_{2}\right)\right|^{2} d V\right)^{*} \psi_{n 2}\left(r_{2}\right)^{*} \frac{e^{2}}{r_{1,2}} \psi_{n 1}\left(r_{2}\right) \psi_{n 2}\left(r_{1}\right) d V \\
\text { Coulomb integral } \\
\text { exchange integral }
\end{gathered}
$$

Exchange coupling

Coulomb integral
exchange integral

Two particles in an infinite potential well symmetric function

If spatial function is symmetric the particles tend to be closer to each other than in a classical case (due to statistical forces*) and the electrostatic interactions increase energy of the system

If spatial function is antisymmetric (triplet) the particles are repelled by statistical forces and the electrostatic interaction energy is lower than in the classical case [39, p. 301]

The exchange interactions favor parallel orientations of spins

For the description of the image see 6 slides back

Spin coupling

The magnetic interactions between magnetic ions in a solid depend on numerous factors (neighboring ions, temperature, external fields etc.)
In some case to describe the system one uses Hamiltonian involving simultaneous interaction between several spins [35,36]:
$E_{4 \mathrm{~s}}=-\sum K_{i j k l}\left[\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)\left(\vec{S}_{k} \cdot \vec{S}_{l}\right)+\left(\vec{S}_{i} \cdot \vec{S}_{l}\right)\left(\vec{S}_{j} \cdot \vec{S}_{k}\right)-\left(\vec{S}_{i} \cdot \vec{S}_{k}\right)\left(\vec{S}_{j} \cdot \vec{S}_{l}\right)\right] \quad$ the energy term involves orientations of
In some other cases it is not enough to use bilinear forms* and biquadratic forms are introduced in addition
$E=-\sum_{i j} K_{i j}\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}$
In most relevant cases however it is enough to use only two spin terms that are bilinear [38]
$E_{\text {bilinear }}=-\sum_{i j} K_{i j} S_{1}^{i} S_{2}^{j}=K_{x x} S_{1}^{x} S_{2}^{x}+K_{x y} S_{1}^{x} S_{2}^{y}+\ldots$
K_{ij} is a coupling 3×3 matrix, and in matrix notation we have

$$
E_{\text {bilinear }}=\vec{S}_{1}[K] \vec{S}_{2}
$$

Note the r-dependence:
$E_{b i l i n e a r}=-\sum_{i j} K_{i j} S_{1}^{i} S_{2}^{j}=-\sum_{i j} K_{i j}\left(\overrightarrow{r_{12}}\right) S_{1}^{i} S_{2}^{j}$

Spin coupling

The interaction matrix, like any 3×3 matrix [38], may be decomposed into a multiple of the identity matrix, an antisymmetric part (three different coefficients), and traceless* symmetric part:
$K_{i j}=\left[\begin{array}{lll}K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33}\end{array}\right]=J\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+\left[\begin{array}{ccc}0 & D_{1} & D_{2} \\ -D_{1} & 0 & D_{3} \\ -D_{2} & -D_{3} & 0\end{array}\right]+\left[\begin{array}{lll}A_{1} & A_{4} & A_{5} \\ A_{4} & A_{2} & A_{6} \\ A_{5} & A_{6} & A_{3}\end{array}\right]$
$J \vec{S}_{1}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \vec{S}_{2}=S_{1}^{x} S_{2}^{x}+S_{1}^{y} S_{2}^{y}+S_{1}^{z} S_{2}^{z}=J \vec{S}_{1} \cdot \vec{S}_{2} \quad$ exchange coupling $E_{\text {bilinear }}=\vec{S}_{1}[K] \vec{S}_{2}$

$$
\begin{aligned}
& \vec{S}_{1}\left[\begin{array}{lll}
0 & D_{1} & D_{2} \\
-D_{1} & 0 & D_{3} \\
-D_{2} & -D_{3} & 0
\end{array}\right] \vec{S}_{2}=-D_{1} S_{1}^{y} S_{2}^{x}-D_{2} S_{1}^{z} S_{2}^{x}+D_{1} S_{1}^{x} S_{2}^{y}-D_{3} S_{1}^{z} S_{2}^{y}+D_{2} S_{1}^{x} S_{2}^{z}+D_{3} S_{1}^{y} S_{2}^{z} \\
&= D_{1}\left(S_{1}^{x} S_{2}^{y}-S_{1}^{y} S_{2}^{x}\right)-D_{2}\left(S_{1}^{z} S_{2}^{x}-S_{1}^{x} S_{2}^{z}\right)+D_{3}\left(S_{1}^{y} S_{2}^{z}-S_{1}^{z} S_{2}^{y}\right) \\
&=\left(\hat{i} D_{3,}-\hat{j} D_{2}, \hat{k} D_{1}\right) \cdot \vec{S}_{1} \times \vec{S}_{2}=\vec{D} \cdot\left(\vec{S}_{1} \times \vec{S}_{2}\right) \quad \begin{array}{l}
\text { Dzyaloshinskii-Moriya } \\
\text { interaction** }
\end{array}
\end{aligned}
$$

Spin coupling

The interaction matrix, like any 3×3 matrix [38], may be decomposed into a multiple of the identity matrix, an antisymmetric part (three different coefficients), and traceless* symmetric part:
$K_{i j}=\left[\begin{array}{lll}K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33}\end{array}\right]=J\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+\left[\begin{array}{ccc}0 & D_{1} & D_{2} \\ -D_{1} & 0 & D_{3} \\ -D_{2} & -D_{3} & 0\end{array}\right]+\left[\begin{array}{lll}A_{1} & A_{4} & A_{5} \\ A_{4} & A_{2} & A_{6} \\ A_{5} & A_{6} & A_{3}\end{array}\right]$
The matrix of the dipole-dipole interaction
$E_{\text {dipole-dipole }}=\frac{-\mu_{0}}{4 \pi|r|^{3}}\left[3\left(\hat{r_{12}} \cdot \vec{S}_{1}\right)\left(\hat{r_{12}} \cdot \vec{S}_{2}\right)-\vec{S}_{1} \cdot \vec{S}_{2}\right], \quad \hat{r_{12}}$ - unit vector along the vector connecting two spins reads $\begin{aligned} & \text { reads } \\ & \text { dipole-dipole }\end{aligned}=\frac{-\mu_{0}}{4 \pi|r|^{3}}\left[\begin{array}{ccc}3 \hat{r}_{x}^{2}-1 & 3 \hat{r_{x}} \hat{r}_{y} & 3 \hat{r}_{x} \hat{r}_{z} \\ 3 \hat{r_{x}} \hat{r}_{y} & 3 \hat{r}_{y}^{2}-1 & 3 \hat{r_{y}} \hat{r}_{z} \\ 3 \hat{r_{x}} \hat{r_{z}} & 3 \hat{r_{y}} \hat{r}_{z} & 3{\hat{r_{z}}}^{2}-1\end{array}\right], \quad{\hat{r_{x}}}^{2}+{\hat{r_{y}}}^{2}+\hat{r}_{z}^{2}=1$ symmetric, traceless

Mathematica 9.0.1.0 code to get dipole-dipole matrix:

\qquad

Spin coupling

Anisotropic spin-spin interactions - those terms of the spin Hamiltonian that are not invariant under rotation in spin space (unaccompanied by rotation in real space) [38]

Compare two states:

- one spin points in $+z$ direction and the other one in $-z$ direction; both spins are on y-axis:
$S_{1}^{x}=0, S_{1}^{y}=0, S_{1}^{z}=1 ; \quad S_{2}^{x}=0, \quad S_{2}^{y}=0, S_{2}^{z}=-1 ; \quad \hat{r_{x}}=0, \hat{r_{y}}=1, \hat{r_{z}}=0$
- as above but both spins are rotated by 90 Deg about x-axis
$S_{1}^{x}=0, S_{1}^{y}=1, S_{1}^{z}=0 ; \quad S_{2}^{x}=0, S_{2}^{y}=-1, S_{2}^{z}=0 ; \quad \hat{r_{x}}=0, \hat{r}_{y}=1, \hat{r_{z}}=0$

$$
E_{\text {dipole-dipole }}=\frac{\mu_{0}}{2 \pi|r|^{3}}
$$

The energies obtained in both cases are different although the spins are antiparallel -dipole-dipole interaction is anisotropic

Magnetoststic couplings

- Magnetic couplings that are used in the industry for contact-less transmitting the torque in applications requiring strict separation of processed liquids and gases from the outer environment operate on the principle analogous to the one responsible for the magnetostatic interaction in thin magnetic films - interaction between magnets

- achievable coupling torques in the range of $0.1-11,000 \mathrm{Nm}$ *
- "If the maximum coupling torque and the maximum torsion angle are exceeded, the power transmission is interrupted" (KTR)

Magnetoststic coupling - orange peel coupling

- Orange peel (OP) coupling (Néel coupling) is due to the roughness of interfaces in thin magnetic films.
- The roughness results in the appearance of surface magnetic charges.
- The OP coupling leads to the relative shift of hysterese of neighboring ferromagnetic layers:

[^0]$$
\phi_{m}(\vec{r})=\oint_{S} \frac{\vec{M} \cdot \vec{M} s}{} \frac{\vec{H}=-\nabla \phi_{m}}{|\vec{r}|}-\int_{V} \frac{\nabla \cdot \vec{M}}{|\vec{r}|} d^{3} r^{\prime},
$$

- Orange peel (OP) coupling is due to the roughnes of interfaces in thin magnetic films.
- The roughness results in the appearance of surface magnetic charges.
- The OP coupling leads to the relative shift of hystereses of neighboring ferromagnetic layers.
- If roughness profile on all interfaces is equal the shift field H_{N} can be shown to be given by (assuming that the hard layer is thick enough so that the influence of its second surface can be neglected):

$$
H_{N}=\frac{\pi^{2}}{\sqrt{2}}\left(\frac{h^{2}}{\lambda t_{f}}\right) M_{p} e^{-2 \pi \sqrt{2} t_{s} / \lambda}
$$

λ-wavelength of roughness modulation, t_{f} - thickness of ,,free" ferromagnetic layer, h-roughness amplitude, M_{P} saturation magnetization of hard (or pinned) magnetic layer

- The coupling may be ferromagnetic or antiferromagnetic depending on a phase difference between roughnesses of neighboring interfaces (with the same direction of magnetization in neighboring layers):

AF coupling

F coupling

- Orange peel (OP) coupling is due to the roughnes of interfaces in thin magnetic films.
- The roughness results in the appearance of surface magnetic charges.
- The OP coupling leads to the relative shift of hystereses of neighboring ferromagnetic layers.
- Not that in extended films the influence of the magnetic fields emanating from the edges is negligible.
- If the film is structured, using for example electron lithography or deposition through a shadow mask, the edge "magnetic charges" may play a significant role in the reversal being the source of an additional coupling

- the area of the sides of the thin film stack becomes comparable with the are of the interface between the neighboring magnetic layers

Magnetoststic coupling - orange peel coupling

- Orange peel coupling can be comparable in strength with RKKY oscillatory coupling

$\mathrm{Py}(2.5 \mathrm{~nm}) \mathrm{Co}(2.5 \mathrm{~nm}) / \mathrm{CuAgAu}(2,4 \mathrm{~nm}) /$
$\mathrm{Co}(2.5 \mathrm{~nm})$
T. Luciński, A. Hütten, H. Brückl, T. Hempel, S. Heitmann, and G. Reiss phys. stat. sol. (a) 196, No. 1, 97-100 (2003)
- In his original paper Néel derived the coupling formula for the interaction between two semi-infinite magnetic layers
- The above description can be extended to the case of interacting thin films [16]:
- in the case shown here there are four interactions to take into account
- The interaction between the bottom surface of Py1 layer and top surface of Py2 layer leads, for example, to the following contribution to shift field:

$$
H_{S}=\frac{\pi^{2}}{\sqrt{2}}\left(\frac{h_{1} h_{2}}{\lambda t_{P y l}}\right) M_{p} e^{-2 \pi \sqrt{2}\left(t_{p y y}+t_{\nu}+t_{p y 2}\right) / \lambda}
$$

MnIr

Figure 5: Cross-sectional view of a multilayer of composition (Pt 1.8/Co 0.5)//Pt 1.8 obtained by transmission electron microscopy. The waviness determined from the observation is 6 nm for the wavelength and 1.2 nm for the peak-to-peak amplitude.

[^1]
Magnetoststic coupling - domain wall coupling

- Magnetic fields emanating from domain walls can influence magnetization reversal in neighboring layers

resistance decrease to absolute minimummoments in neighboring layers parallel
- $\operatorname{GaAs}(100) / \mathrm{Co}(1.8 \mathrm{~nm}) / \mathrm{Cu}(6 \mathrm{~nm}) /$ $\mathrm{Ni}_{80} \mathrm{Fe}_{20}(6 \mathrm{~nm})$
- D \rightarrow E: only part of Co layer reverses
- $\mathrm{F} \rightarrow \mathrm{G}$: coupling

Schematic of $R(H)$ dependence without the coupling:

RKKY-like interlayer coupling

- two Fe layers separated by a Cr wedge-shaped spacer; scanning electron microscopy with polarization analysis (SEMPA)
- measurement on a single specimen!
- up to six oscillations in coupling were observed

FIG. 1. A schematic exploded view of the sample structure showing the $\mathrm{Fe}(100)$ single-crystal whisker substrate, the evaporated Cr wedge, and the Fe overlayer. The arrows in the Fe show the direction of the magnetization in each domain. The z scale is expanded approximately 5000 times; the actual wedge angle is of order $10^{-3} \mathrm{deg}$.

Obtaining wedge-shaped films:

- two Fe layers separated by a Cr wedge-shaped spacer; scanning electron microscopy with polarization analysis (SEMPA)
- measurement on a single specimen!
- up to six oscillations in coupling were observed
- different periods of coupling depending on temperature of the substrate during the film growth: samples grown at elevated temperature are of better quality and the magnetization of the upper Fe layer changes with each atomic-layer change in Cr thickness
- "Iower quality" samples display only RKKY-like coupling
grown at elevated temperatures $\left(200-300^{\circ} \mathrm{C}\right)$

[^2]Magnetic impurity in a conducting medium induces spatial fluctuations of spin polarization of selectrons about the impurity [9]

- the oscillatory term of wave number $2 k_{F}$ falls off like r^{-3} at large distances

Magnetic impurity in a conducting medium induces spatial fluctuations of spin polarization of selectrons about the impurity [9]

- the oscillatory term of wave number 2 k_{F}^{*} falls off like r^{-3} at large distances
- the second impurity placed in the vicinity experiences interaction with the first impurity
- depending on the distance between impurities the interactions may be ferromagnetic or antiferromagnetic

RKKY-like interlayer coupling

Magnetic impurity in a conducting medium induces spatial fluctuations of spin polarization of selectrons about the impurity [9]

- the oscillatory term of wave number $2 k_{F}$ falls off like r^{-3} at large distances
- the second impurity placed in the vicinity experiences interaction with the first impurity
- depending on the distance between impurities the interactions may be ferromagnetic or antiferromagnetic

RKKY-like interlayer coupling

schematic drawing of a RKKY spin polarization due to single atom thick (11×11 atoms) layer of

A plane composed of exchange coupled impurities creates spatial oscillations of spin polarization in the direction perpendicular to its surface

- if the moments are strongly coupled ferromagnetically they form a ferromagnetic layer
- a similar, parallel, layer or multilayer placed a certain distance away experiences ferromagnetic or antiferromagnetic coupling depending on a distance from the first layer
in case of quasi-infinite/real ferromagnetic layer the impurities*

would not be curved except at the ends
*the drawing shows the sign of the coupling (black and gray correspond to positive and negative spin polarization)

RKKY-like interlayer coupling

coupling between two ferromagnetic layers is inversely proportional to the square of the spacer thickness [30]

$$
J_{R K K Y} \propto \frac{1}{r^{2}}
$$

Fit with $P 1^{*} \cos \left(P 2^{*} x-P 3\right)^{*} * x^{\wedge}(-2$
Chi^2/DoF $\begin{aligned} & =5.3578 \mathrm{E}-6\end{aligned}$

the coupling along $A B$ line
typically (with noble metal spacers) and transition metals
ferromagnetic layers the coupling is of the order of
$1 \times 10^{-6} \mathrm{Jm}^{-2}$ in the first antiferromagnetic maximum

RKKY-like coupling and giant magnetoresistance

Fig. 1. GMR as a function of the Cu sublayer thickness for the as deposited and annealed samples.

- $\mathrm{Si}(100) / \mathrm{Cu}(20 \mathrm{~nm})\left[\mathrm{Ni}_{83} \mathrm{Fe}_{17}(2 \mathrm{~nm}) / \mathrm{Cu}\left(\mathrm{t}_{\mathrm{cu}}\right)\right]_{100}$
- GMR reflects the oscillatory character of the RKKY-like coupling between permalloy layers
- in MLs with identical magnetic layers (the same switching fields) GMR can be observed only for spacer thicknesses corresponding to antiferromagnetic coupling; otherwise the magnetic field does not change relative orientation of magnetic moments of neighboring layers

RKKY-like coupling and giant magnetoresistance

$$
\begin{aligned}
& \text { AF-coupling } \\
& \text { M/M, } \\
& \text { hysteresis loop for } \\
& \text { AF-coupled layers } \\
& \text { for the case of } \\
& \text { exchange energy } \\
& \text { much exceeding } \\
& \text { magnetic } \\
& \text { anisotropy }
\end{aligned}
$$

Dzyaloshinskii-Moriya interaction (DMI) - antisymmetric exchange

- The bilinear terms of the coupling: $E_{b i l i n e a r}=-\sum_{i j} K_{i j} S_{1}^{i} S_{2}^{j}=K_{x x} S_{1}^{x} S_{2}^{x}+K_{x y} S_{1}^{x} S_{2}^{y}+\ldots$ $J \vec{S}_{1}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \vec{S}_{2}=J \vec{S}_{1} \cdot \vec{S}_{2} \quad$ exchange coupling
$\vec{S}_{1}\left[\begin{array}{lll}0 & D_{1} & D_{2} \\ -D_{1} & 0 & D_{3} \\ -D_{2} & -D_{3} & 0\end{array}\right] \vec{S}_{2}=\vec{D} \cdot\left(\vec{S}_{1} \times \vec{S}_{2}\right) \quad$ Dzyaloshinskii-Moriya interaction
$\vec{S}_{1}\left[-\frac{\mu_{0}}{4 \pi|r|^{3}}\left[\begin{array}{ccc}3 \hat{r}_{x}^{2}-1 & 3 \hat{r}_{x} \hat{r}_{y} & 3 \hat{r_{x}} \hat{r}_{z} \\ 3 \hat{r}_{x} \hat{r}_{y} & 3 \hat{r}_{y}^{2}-1 & 3 \hat{r}_{y} \hat{r}_{z} \\ 3 \hat{r}_{x} \hat{r}_{z} & 3 \hat{r_{y}} \hat{r}_{z} & 3 \hat{r}_{z}^{2}-1\end{array}\right]\right] \vec{S}_{2}$ dipole-dipole interaction

Dzyaloshinskii－Moriya interaction

Weak ferromagnetism：
－the magnetization of a sample is by a factor 10^{-2} to 10^{-5} lower than the magnetization of constituent magnetic lattices
 moments in sublattices of an antiferromagnet creates a tiny resultant magnetic moment in each cell

$\mathrm{M}=0$

2019

the interaction between Fe atoms／spins is mediated by oxygen atoms
when＂the symmetry allows coincidence of magnetic and
resonant forbidden
scattering＂＂the sign of the
Dzyaloshinskii－Moriya vector
could be measured with
resonant X－ray diffraction by
observing interference
between the resonant and
magnetic scattering
amplitudes．
this type of coupling was introduced when
investigating＂weak
ferromagnets＂（example α－ $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ）by I．E．
Dzyaloshinskii［Sov．Phys．
JETP 5，1259（1957）］
d 1 （Fig．1），for

Dzyaloshinskii-Moriya interaction

$$
E=\vec{D} \cdot\left(\vec{S}_{1} \times \vec{S}_{2}\right)
$$

Dzyaloshinskii-Moriya interaction

NATURE PHYSICS dol: 10.0038/NPHYs2859

LETTERS
a

Figure 1 | Atomic and magnetic order in FeBO_{3}. a, A magnetic (hexagonal) unit cell, showing oxygen atoms (red), boron atoms (black), and two
symmetry-related magnetic iron sublattices (blue and grey) with moments tilted between the two. \mathbf{b}, The local environment of one of the grey (A-site) Fe atoms, showing neighbouring B-site Fe atoms (blue). The upper and lower oxygen triangles are coloured green and red, and boron atoms are removed for clarity. c, The same structure viewed from the top, highlighting the twisted superexchange paths from the A -site Fe atom to the upper Fe layer (dark blue) and the lower layer (pale blue) via the oxygen triangles.
image from V. E. Dmitrienko et al., Nature Physics 10, 202 (2014)
(2014)

- FeBO_{3}
- the interaction between Fe atoms/ spins is mediated by oxygen atoms
- when "the symmetry allows coincidence of magnetic and resonant forbidden scattering" " the sign of the Dzyaloshinskii-Moriya vector could be measured with resonant X -ray diffraction by observing interference between the resonant and magnetic scattering amplitudes."
- this type of coupling was introduced when investigating "weak ferromagnets" (example α $\mathrm{Fe}_{2} \mathrm{O}_{3}$) by I. E.
Dzyaloshinskii [Sov. Phys. JETP 5, 1259(1957)]

The calculated Dzyaloshinskii-Moriya vector linking iron atoms 0 and 1 (Fig. 1), for example, is $\mathrm{D}_{01}=(-0.25,0,-0.24) \mathrm{meV}$. [V.E. Dmitrienko, et al.]

Dzyaloshinskii-Moriya interaction

$$
E=\vec{D} \cdot\left(\vec{S}_{1} \times \vec{S}_{2}\right)
$$

Then the direction of the DM-vector an be determined according to the following rules* [102 and references therein]:

Consider two spins located at R_{1} and R_{2}. The middle is labeled as $\tilde{R}=\left(R_{1}+R_{2}\right) / 2$.

- If a center of inversion is located at $\tilde{R}: D=0$.
- If a mirror plane perpendicular to $R 1-R 2$ includes \tilde{R} then $D \perp\left(R_{1}-R_{2}\right)$.
- If a mirror plane includes R_{1} and R_{2} then $\mathrm{D} \perp$ mirror plane.
- If a two-fold rotation axis perpendicular to $R_{1}-R_{2}$ includes \tilde{R} then $D \perp$ rotation axis.
- If a n-fold rotation axis $(n \geq 2)$ includes R_{1} and R_{2} then $D \|\left(R_{1}-R_{2}\right)$.

Dzyaloshinskii-Moriya interaction

- Note that Dzyaloshinskii-Moriya interaction is "chiral" in that sense that it favors one chirality of spin pair in favor of the other:
$E_{1}=\vec{D} \cdot\left(\vec{S}_{1} \times \vec{S}_{2}\right)$ not equal $\vec{D} \cdot\left(\vec{S}_{1} \times\left(-\vec{S}_{2}\right)\right)=E_{2}$
i.e. the two configurations with equal angle between the interacting spins have different energies (this is due to the configuration of the surrounding atoms)

Dzyaloshinskii-Moriya interaction

- Note that Dzyaloshinskii-Moriya interaction is "chiral" in that sense that it favors one chirality of spin pair in favor of the other:

$$
E_{1}=\vec{D} \cdot\left(\vec{S}_{1} \times \vec{S}_{2}\right) \text { not equal } \vec{D} \cdot\left(\vec{S}_{1} \times\left(-\vec{S}_{2}\right)\right)=E_{2}
$$

i.e. the two configurations with equal angle between the interacting spins have different energies (this is due to the configuration of the surrounding atoms)

- Different sign of a dot product of DM vector with a cross product of interacting spins depending on the direction of DM vector the clockwise or counterclockwise orientation is favored; this is not the case for anisotropic exchange interaction

Dzyaloshinskii-Moriya interaction

DMI alone favors perpendicular orientation of interacting magnetic moments

DMI coupled with exchange coupling favors canting of spins

DMI coupled with exchange coupling and periodicity of the lattice can lead to a spiral states with various chirality* [101]

*S. Blügel, P. Grünberg,"Complex Magnetism" in Lecture Notes of the 45 th IFF Spring School, Forschungszentrum Jülich, 2014

Chirality

"A right-handed helix is one that turns clockwise as you move along the length of the helix" * [103]

Chiral magnetic structure - an example

- $\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$
- this magnetic structure is characterized by two kinds of magnetic chiralities:

- triangular chirality

- helical chirality

Fig. 6. Top: magnetic structure of $\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$ with different colors for the three Bravais lattices. Below: representation of the magnetic structures associated with the 4 possible chiral ground states (helical chirality $= \pm 1$, triangular chirality $= \pm 1$). The light colored moments lie in one layer and the darker colored ones in the next layer along the \mathbf{c} axis, a black curved arrow defines the helical chirality. The red arrowed circle materializes the triangular chirality. The structural chirality is related to the strongest diagonal exchange between the two layers, which is shown as a purple/orange dashed arrow path for negative/positive structural chirality.
\mathbf{M}

References

1. wikipedia.org
2. I.A.Campbell, A.Fert, in "Ferromagnetic Materials" 1982
3. E. Y. Tsymbal, D. G. Pettifor, Perspectives of Giant Magnetoresistance, published in Solid State Physics, ed. by H. Ehrenreich and F. Spaepen, Vol. 56 (Academic Press, 2001) pp.113-237
4. R. Wawryk, J. Rafalowicz, Cz. Marucha, K. Balcerek, International Journal of Thermophysics 15, 379 (1994)
5. R.A. Matula, J.Phys.Chem.Ref.Data 8, 1147 (1979)
6. J. Rudny, chapter 3 in Cienkie warstwy metaliczne edited by W. Romanowski, PWN, Warszawa 1974
7. H.-D. Liu, Y.-P. Zhao, G. Ramanath, S.P. Murarka, G.-C. Wang, Thin Solid Films 384, 151 (2001)
8. B. Raquet, M. Viret, E. Sondergard, O. Cespedes, R. Mamy, Phys. Rev. B 66, 024433 (2002)
9. J.M. Ziman, Principles of the Theory of Solids, Cambridge University Press 1972
10.A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968)
11.J. Sólyom, Fundamentals of the Physics of Solids, vol.I, Springer-Verlag Berlin Heidelberg 2007
12.B.Dieny, Models in spintronics, 2009 European School on Magnetism, Timisoara
13.A.N. Gerritsen, Metallic Conductivity in Encyclopedia of Physics, vol.XIX, Electrical Conductivity I, Springer 1956
14.Th.G.S.M. Rijks, R. Coehoorn, M.J.M. De Jonge, Phys. Rev. B 51, 283 (1995)
15.A.C. Smith, J.F. Janak, R.B. Adler, Electronic Conduction in Soilds, McGraw-Hill, 1967
10. Ch. Kittel, Introduction to Solid State physics, John Wiley \& Sons, 2005
17.S.M Thompson, J. Phys. D: Appl. Phys. 41, 093001 (2008)
18.K. Esfarjani, Semiclassical Transport, lecture notes, 2010
19.G.D. Mahn, Many-Particle Physics, Plenum Press, 1990
20.J.Barnaś, A. Fuss, R.E. Camley, P. Grunberg, W. Zinn, Phys. Rev. B 42, 8110 (1990)
21.A. Fert, P. Bruno, Interlayer Exchange Coupling and Magnetoresistance in Multilayers in Ultarthin Magnetic Structures II, ed. by B. Heinrich, J.A.C. Bland, Springer 1994
22.B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Phys. Rev. B 43, 1297 (1991)
23.J. Barnaś, O. Baksalary, A. Fert, Phys. Rev. B 56, 6079 (1997)
24.R. Sbiaa, S.Y.H. Lu, R. Law, H. Meng, R. Lye, H.K. Tan, J. Appl. Phys. 109, 07C707 (2011)
25.S. Kanai, M. Yamanouchi, S. Ikeda, Y. Nakatani, F. Matsukura, H. Ohno, Appl. Phys. Lett. 101, 122403 (2012)
26.S. Kanai, Y. Nakatani, M. Yamanouchi, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 103, 072408 (2013)
27.J. Unguris, R. J. Celotta, and D. T. Pierce Phys. Rev. Lett. 67, 140 (1991)
28.M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)
29.G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)
30.M. Getzlaff, Fundamentals of Magnetism, Springer 2008
31.S.Y. Hsu, A. Barthélémy, P. Holody, R. Loloee, P. A. Schroeder, A. Fert, Phys. Rev. Lett. 78, 2652 (1997)
32.E. Vélu, C. Dupas, D. Renard, J.P. Renard, J. Seiden, Phys. Rev. B 37, 668 (1988)
33.F. Stobiecki, T. Luciński, R. Gontarz, M. Urbaniak, Materials Science Forum 287, 513 (1998)
34.G. Ibach, Physics of Surfaces and Interfaces, Springer 2006

References

35 K. Pasrij, S. Kumar, Phys. Rev. B, 88144418 (2013)
36 K. Bergmann, A. Kubetzka, O. Pietzsch, R. Wiesendanger, J. Phys.: Condens. Matter 26394002 (2014)
37 K.C. Border, More than you wanted to know about quadratic forms, v. 2016.10.20::14.05
38 Ch. L. Henley, Spin Hamiltonians and Exchange interactions, 2007 (http://www.lassp.cornell.edu/clh/p654/MM-Lec0.pdf)
39 B. Średniawa, Mechanika kwantowa, PWN Warszawa 1988
101. S. Blügel P. Grünberg,"Complex Magnetism" Lecture Notes of the 45 th IFF Spring School "Computing Solids - Models, ab initio methods and supercomputing" (Forschungszentrum Jülich, 2014)
102. B. Zimmermann, Calculation of the Dzyaloshinskii-Moriya Interaction in ultrathin magnetic Films: Cr/W(110) ,dissertaton 2010,

Institut für Festkörperforschung (IFF) Forschungszentrum Jülich
103. J. P. Riehl, Mirror-Image Asymmetry: An Introduction to the Origin and Consequences of Chirality, John Wiley \& Sons, Inc. 2010
104. M. Towler, "Exchange, antisymmetry and Pauli repulsion", TCM Group, Cavendish Laboratory, University of Cambridge, ESDG, 2010.01.13
105. H.A. Enge, M.R. Wehr, J.A. Richards, Wstępd do fizyki atomowej, PWN, Warszawa 1983
106. F. Schwabl Quantenmechanik für Fortgeschrittene (QM II), Springer 2008
107. V. Simonet, M. Loire, and R. Ballou, Eur. Phys. J. Special Topics 213, 5-36 (2012)

[^0]: $\mathrm{Si}(100) / 100 \mathrm{~nm}$ thermally oxidated $\mathrm{Si} / \mathrm{Cu}(20 \mathrm{~nm}) /$
 $\mathrm{Ni}_{80} \mathrm{Fe}_{20}(10 \mathrm{~nm}) / \mathrm{V}(2.1 \mathrm{~nm}) / \mathrm{Ni}_{80} \mathrm{Fe}_{20}(4 \mathrm{~nm}) / \mathrm{Mn}_{83} / \mathrm{r}_{17}(10 \mathrm{~nm}) / \mathrm{Cu}(3 \mathrm{~nm})$
 magnetically soft layer

[^1]: image from: Europhys. Lett. 65, 123 (2004), J. Moritz - F. Garcia - J. C. Toussaint - B. Dieny - J. P. Nozières

[^2]: image from J. Unguris, R. J. Celotta, and D. T. Pierce Phys. Rev. Lett. 67, 140 (1991)

