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Pauli principle – fermions, bosons

In a system composed of indistinguishable particles the exchange of the particles does not 
change the wave function and related observables (e.g. energy) 

The transposition operator T12 exchanges two particles:

T 12ψ(r1, r2)=ψ(r 2 , r1)

*at least some authors [104] doubt the applicability of indistinguishability in proving that wave functions must be symmetric or 
antisymmetric

But exchanging the particles twice brings us back to the initial state, so:

It follows T12=±1

● T12=1 – symmetric wave functions – bosons (spin 1,2,3,….)

● T12=-1 – antisymmetric wave functions – fermions (electrons, protons, neutrons)

H ψ(r1 , r 2)=E ψ(r1 , r 2) H ψ(r 2 , r1)=E ψ(r2 , r1)
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ψ(x)=√
2
a

sin (n
π
a

x ) , n=±1,±2,. . .

x

a

n=2

n=1

Depending on whether the particles are distinguishable 
(classical case) or not and on whether they are bosons or 
fermions the wave function of two non-interacting particles 
can be written in one of three ways*:

● distinguishable particles

● bosons (symmetric wave function)

● fermions (antisymmetric function)

*see the video lectures 7.1-7.5 of Ron Reifenberger () [26]

ψ(r1 , r 2)=ψn1(r1) ψn2(r2)
which means that particle no.1 is in 
state n1 at position r1 and particle 
no.2 is in state n2 at position r2

ψ(r1 , r 2)=
1

√2
[ψn1(r1)ψn2(r 2)+ψn1(r2)ψn2 (r1) ]

ψ(r1 , r 2)=
1

√2
[ψn1(r1)ψn2(r 2)−ψn1(r 2)ψn 2(r1)]

Assume that two identical particles are confined to a potential well of the infinite depth and 
width a. The normalized 1-D solutions to Schrödinger equation are of the form [9]:

Pauli principle – fermions, bosonsIntroduction



  

*see the video lectures 7.1-7.5 of Ron Reifenberger () [26]

ψ(r1 , r 2)=
1

√2
[ψn1(r1)ψn2(r 2)+ψn1(r2)ψn2 (r1) ]

Symmetric wave function [105]:

Pauli principle – fermions, bosonsIntroduction

is not changed when we exchange positions of two particles r1↔r2 :

ψ(r2 , r1)=
1

√2
[ψn1(r 2)ψn 2(r1)+ψn1(r1)ψn 2(r2) ]=ψ(r1 , r 2)

ψ(r1 , r 2)=
1

√2
[ψn1(r1)ψn2(r 2)−ψn1(r 2)ψn 2(r1)]

The sign of antisymmetric wave function:

is changed when we exchange positions of two particles r1↔r2 :

ψ(r2 , r1)=
1

√2
[ψn1(r 2)ψn 2(r1)−ψn1(r1) ψn2(r2)]=−ψ(r1 , r 2)



  

Assume that two identical particles are confined to a potential well of the infinite depth and 
width a. The normalized 1-D solutions to Schrödinger equation are of the form [9]:

ψ(x)=√
2
a

sin (n
π
a

x ) , n=±1,±2,. . .

Depending on whether the particles are distinguishable 
(classical case) or not and on whether they are bosons or 
fermions the wave function of two non-interacting particles 
can be written in one of three ways*:

● distinguishable particles

● bosons (symmetric wave function)

ψ(r1 , r 2)=
1

√2
[ψn1(r1)ψn2(r 2)+ψn1(r2)ψn2 (r1) ]

Both particles in the same quantum state [26]
probability density

P(r1 , r 2)=(
1

√2
[2ψn(r1)ψn(r 2)])(

1

√2
[2ψn(r1)ψn (r 2) ])

*

= 2ψn(r1)ψn(r 2)ψn(r1)
*
ψn (r 2)

*

Bosons have enhanced probability of being in the same quantum state

ψ(r1 , r 2)=ψn1(r1) ψn2(r2) P(r1 , r 2)=ψn(r1)ψn(r 2)ψn(r1)
*
ψn(r 2)

*

Pauli principle – fermions, bosonsIntroduction



  

We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Distinguishable particles – classical description

x1

x2

x1 and x2 denote the positions of particles along x-axis 

x1

a

n=2
n=1

w
e
ll

x2

x1
P( x1 , x2)=[√

2
a

sin (1
π
a

x1)√
2
a

sin (2
π
a

x 2)]
2

Pauli principle – fermions, bosonsIntroduction

x2



  

P( x1 , x2)=[√2
a

sin (1
π
a

x1)√2
a

sin (2
π
a

x 2) + √2
a

sin (1
π
a

x2)√2
a

sin (2
π
a

x1)]
2

We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Indistinguishable boson particles

Pauli principle – fermions, bosonsIntroduction

Probability maxima correspond to 
both particles being at the same 
location
x2=x1

x1

x2 Bosons, due to the symmetry of the 
wave function alone, have a tendency 
to lump [106,p. 57].



  

P( x1 , x2)=[√2
a

sin (1
π
a

x1)√2
a

sin (2
π
a

x 2) - √2
a

sin (1
π
a

x2)√2
a

sin (2
π
a

x1)]
2

We consider first two levels in a well: one particle in state with n=1 and the other with n=2 
Indistinguishable fermions (with the same spin- see next slides)

Introduction

x1

x2

Probability of finding both particles in 
the same location is zero

P( x1 , x2=x1)=0

“Non interacting” Fermions with the 
same spin, due to the symmetry of 
the wave function alone, have a 
tendency to avoid each other* [106,p. 36].

*in case of electrons the Coulomb repulsion amplifies this tendency [106]



  

Exchange coupling 

Consider a system composed of two particles with spin ½. For one spin we have a set of 
matrices 

S x=
1
2
ℏ (0 1

1 0) S y=
1
2
ℏ(0−ii 0) S z=

1
2
ℏ(1 0

0−1)
Pauli matrices

σ1 , σ2 , σ 3

with eigenvalues           and corresponding eigenvectors             and              for

With 2 spins we should work in 4-dimensional representation. Each spin has two 
eigenvectors so there are 4 possibilities:

±
1
2
ℏ α=(10) β=(01)

spin1/spin2 ↑↑ ↑↓ ↓↑ ↓↓

α(1)α(2) α(1)β(2) β(1)α(2) β(1)α(2)

meaning first spin down,
second spin up

α and β traditionally mean 
up and down, respectively

tr
ad

iti
on

al
 n

ot
at

io
n

S z=
1
2
ℏ(1 0

0 −1)

z-component of spin



  

From single spin vectors we can construct symmetric and antisymmetric functions (with 
respect to spin exchange) [B. Średniawa, 39 p..233]:

α(1)α(2) , β(1)β(2) ,
1

√2
[α(1)β(2)+β(1)α(2) ] ,

1

√2
[α(1)β(2)−β(1)α(2)] =−[ 1

√2
[α(2)β(1)−β(2)α(1)]]

2→1

1→2

antisymmetric combination

note the minus sign

Combining Pauli matrices into vector we get:

σ⃗= x̂ σ x+ ŷσ y+ ẑσ z= x̂ (0 1
1 0)+ ŷ (

0−i
i 0)+ ẑ (

1 0
0−1)=(

ẑ x̂−i ŷ
x̂+i ŷ − ẑ )

and for a resultant spin momentum of two spins

J⃗=
ℏ

2
( σ⃗ (1)+σ⃗ (2)) each operator acts on its “own “ spin

For a square of the momentum we have

J 2
=
ℏ

2

4 [ (σ x (1)+σ x (2))
2
+(σ y(1)+σ y (2))

2
+(σ z(1)+σ z(2))

2 ]=
ℏ

2

2
[3+σ⃗(1)⋅σ⃗(2)]

We act now with the operator                  on constructed spin functions (using explicit forms 
of Pauli matrices):

[σ⃗ (1)⋅σ⃗(2)]α(1)α(2)=[σ x (1)σ x (2)+σ y (1)σ y (2)+σ z(1)σz (2)]α(1)α(2)
=β(1)β(2)+ iβ(1) iβ(2)+α(1)α(2)=1⋅α(1)α(2)

σ⃗ (1)⋅σ⃗ (2)

Exchange coupling 



  

[σ⃗ (1)⋅σ⃗(2)]α(1)α(2)=1⋅α(1)α(2)

Which means that eigenvalue of                  for                  function is 1:σ⃗ (1)⋅σ⃗ (2) α(1)α(2)

Inserting this “1” into the expression for the square of the momentum yields:

J 2
=
ℏ

2

2
[3+σ⃗ (1)⋅σ⃗ (2)]=

ℏ
2

2
4 → J=ℏ √2

From the expression of the momentum corresponding to a spin (                         ) we see 
that:
● this value of momentum (        ) corresponds to resultant spin 1

● and consequently the function                corresponds to spin 1

LS=√S (S+1)ℏ

ℏ √2

α(1)α(2)

α (1)α(2) ,
1

√2
[α(1)β(2)+β(1)α(2) ] , β(1)β(2)

1

√2
[α(1)β(2)−β(1)α(2) ]

Analogous calculations show that all three symmetric two spin functions correspond to 
spin 1 (each of them corresponds to different component of momentum along z-axis)

resultant spin S=1                                   triplet resultant spin S=0                  singlet

S z : +ℏ 0 −ℏ

S=1:
LS=√1(1+1)ℏ=ℏ √2

Exchange coupling Introduction



  

When we are dealing with fermions the total wave function must be asymmetric.
If Hamiltonian has no terms dependent on spin we can write the total wave function as a 
product of spatial and spin wave functions. We can have thus two cases [105]:

● spatial function is asymmetric, spin function is symmetric (triplet)

 

● spatial function is symmetric, spin function is asymmetric (singlet)

1

√2
[ψn1(r1)ψn 2(r2)−ψn1(r2)ψn2 (r1) ] × α(1)α(2)

1

√2
[ψn1(r1)ψn2(r 2)−ψn1(r2) ψn2(r1)] ×

1

√2
[α(1)β(2)+β(1)α(2) ]

1

√2
[ψn1(r1) ψn2(r2)−ψn1(r 2)ψn 2(r1)] × β(1)β(2)

1

√2
[ψn1(r1)ψn2(r 2)−ψn1(r2) ψn2(r1)] ×

1

√2
[α(1)β(2)−β(1)α(2)]

spin functions

Exchange coupling 



  

Assume now that the two particles (electrons with a spin) interact via Coulomb electrostatic 
interactions.
If the interaction is weak we can us a non-degenerate perturbation method for which we 
have

Em
(1)
=V mm=∫ψm

(0)* V̂ ψm
(0)dV

The correction to the eigenvalues in the first order approximation is the equal to the 
average energy of the perturbation in the unperturbed state

Depending on the spin state (triplet, singlet) the spatial wave function is either symmetric 
or antisymmetric, and because the spin function is not acted upon by a the perturbation we 
get [39]

Em=Em
(0)
+λV mm Em=E0+<0 m| H (1) |0 m>

V̂=
1

4πε0

e2

r1,2

E(1)=∫
1

√2
[ψn1(r1)ψn 2(r2)±ψn1(r2)ψn2 (r1) ]

* e2

r1,2

1

√2
[ψn1(r1) ψn 2(r2)±ψn1(r 2)ψn 2(r1)]dV

which yields [39]

E (1)= ∫ |ψn1(r1) |
2 e2

r1,2

|ψn2(r2) |
2 dV ± ∫ψn1(r1)

*
ψn2 (r 2)

* e2

r1,2

ψn1(r 2)ψn 2(r1)dV

Coulomb integral exchange integral

Exchange coupling 



  

E (1)= ∫ |ψn1(r1) |
2 e2

r1,2

|ψn2(r2) |
2 dV ± ∫ψn1(r1)

*
ψn2 (r 2)

* e2

r1,2

ψn1(r 2)ψn 2(r1)dV

Coulomb integral exchange integral

For the description of the image see 6 slides back

If spatial function is symmetric the particles tend 
to be closer to each other than in a classical case 
(due to statistical forces*) and the electrostatic 
interactions increase energy of the system

If spatial function is antisymmetric (triplet) the 
particles are repelled by statistical forces and the 
electrostatic interaction energy is lower than in 
the classical case [39, p. 301]

The exchange interactions favor parallel  
orientations of spins

Two particles in an infinite potential well – 
symmetric function

*see the lecture of prof. T. Dietl: Physics of Exchange Interactions in Solids, Osaka/Japan, 2010.05.30 (youtube)

Exchange coupling 



  

Spin coupling

The magnetic interactions between magnetic ions in a solid depend on numerous factors 
(neighboring ions, temperature, external fields etc.)
In some case to describe the system one uses Hamiltonian involving simultaneous 
interaction between several spins [35,36]: 

E4 s=−∑
ijkl

K ijkl [( S⃗i⋅S⃗ j)( S⃗k⋅S⃗l)+( S⃗i⋅S⃗l)( S⃗ j⋅S⃗ k)−( S⃗i⋅S⃗k )( S⃗ j⋅S⃗l)]
the energy term involves orientations of 
all four spin

In some other cases it is not enough to use bilinear forms* and biquadratic forms are 
introduced in addition

E=−∑
ij

K ij( S⃗i⋅S⃗ j)
2

θ

S1 S2
r12

*"Form refers to a polynomial function in several variables where each term in the polynomial has the same degree. 
The degree of the term is the sum of the exponents." - K.C Border [37]

In most relevant cases however it is enough to use only two spin 
terms that are bilinear [38]

Ebilinear=−∑
ij

K ij S1
i S2

j
=K xx S1

x S2
x
+K xy S1

x S2
y
+ .. .

Kij is a coupling 3×3 matrix, and in matrix notation we have

Ebilinear= S⃗1[K ] S⃗2

Ebilinear=−∑
ij

K ij S1
i S2

j
=−∑

ij

K ij(r⃗12)S1
i S2

j

Note the r-dependence:



  

Spin coupling

The interaction matrix, like any 3×3 matrix [38], may be decomposed into a multiple of the 
identity matrix, an antisymmetric part (three different coefficients), and traceless* symmetric 
part:

*trace of a matrix – a sum of diagonal elements   
     

K ij=[
K11 K12 K13

K21 K22 K23

K31 K32 K33
]=J [

1 0 0
0 1 0
0 0 1 ]+[

0 D1 D2

−D1 0 D3

−D2 −D3 0 ]+[
A1 A4 A5

A 4 A 2 A 6

A5 A6 A3
]

J S⃗1[
1 0 0
0 1 0
0 0 1] S⃗2=S1

x S2
x
+S1

y S2
y
+S1

zS2
z
=J S⃗1⋅S⃗2 Ebilinear= S⃗1[K ] S⃗2exchange coupling

S⃗1[
0 D1 D2

−D1 0 D3

−D2 −D3 0 ] S⃗2=−D1 S1
y S2

x
−D2 S1

z S2
x
+D1 S1

x S2
y
−D3 S1

zS2
y
+D2 S1

x S2
z
+D3 S1

y S2
z

= D1(S1
x S2

y
−S1

y S2
x
)−D2(S1

z S2
x
−S1

x S2
z
)+D3(S1

y S2
z
−S1

zS2
y
)

= ( î D3,− ĵ D2, k̂ D1)⋅S⃗1× S⃗2=D⃗⋅( S⃗1×S⃗2)
Dzyaloshinskii-Moriya 
interaction**

**note that you can encounter other spellings too: “Dzialoshinsky”, 
“Dzialoshinskii” ("oficial" russian transcription [Sov. Phys. JETP 5, 1259 (1957)])



  

Spin coupling

The interaction matrix, like any 3×3 matrix [38], may be decomposed into a multiple of the 
identity matrix, an antisymmetric part (three different coefficients), and traceless* symmetric 
part:

*trace of a matrix – a sum of diagonal elements

The matrix of the dipole-dipole interaction

Edipole−dipole=
−μ0

4 π | r |3
[3( ^r12⋅S⃗1)( ^r12⋅S⃗2)− S⃗1⋅S⃗2 ] , ^r12 - unit vector along the vector connecting two spins

reads

M dipole−dipole=
−μ0

4 π | r |3 [
3 r̂x

2
−1 3 r̂ x r̂ y 3 r̂ x r̂z

3 r̂ x r̂ y 3 r̂ y
2
−1 3 r̂ y r̂ z

3 r̂ x r̂ z 3 r̂ y r̂ z 3 r̂ z
2
−1] , r̂x

2
+ r̂ y

2
+ r̂ z

2
=1

K ij=[
K11 K12 K13

K21 K22 K23

K31 K32 K33
]=J [

1 0 0
0 1 0
0 0 1 ]+[

0 D1 D2

−D1 0 D3

−D2 −D3 0 ]+[
A1 A4 A5

A 4 A 2 A 6

A5 A6 A3
]

Mathematica 9.0.1.0 code to get dipole-dipole matrix:
n =3;
wer={"x","y","z"};
r =Table[ ToExpression [StringJoin ["r",wer[[ i]]]],{i,1,n}];
S1 =Table[ ToExpression [StringJoin ["S1",wer[[ i]]]],{i,1,n}];
S2 =Table[ ToExpression [StringJoin ["S2",wer[[ i]]]],{i,1,n}];
macierz=Table[ToExpression[StringJoin["S1", wer[[i]],"*S2",wer[[j]]]],
{i,1,n},{j,1,n}];
m= Expand[ 3( r.S1)( r.S2)-S1.S2];(*write in here the spin hamiltonian (two 
spin interaction), example dipole-dipole:
m= Expand[ 3( r.S1)( r.S2)-S1.S2];
*)
macierz2 =Table [Coefficient [m,macierz[[ i,j]]],{i,1,n},{j,1,n}] ;(*macierz2 is 
the interaction matrix*)
TraditionalForm[macierz2]

symmetric, traceless



  

Spin coupling

Anisotropic spin-spin interactions – those terms of the spin Hamiltonian that are not 
invariant under rotation in spin space (unaccompanied by rotation in real space) [38]

Compare two states:
● one spin points in +z direction and the other one in -z direction; both spins are on y-axis:

● as above but both spins are rotated by 90 Deg about x-axis

S1
x
=0, S1

y
=0, S1

z
=1; S2

x
=0, S2

y
=0, S2

z
=−1 ; r̂ x=0, r̂ y=1, r̂ z=0

S1
x
=0, S1

y
=1, S1

z
=0 ; S2

x
=0, S2

y
=−1, S2

z
=0 ; r̂ x=0, r̂ y=1, r̂ z=0

The energies obtained in both cases are different although the spins are antiparallel – 
dipole-dipole interaction is anisotropic

Edipole−dipole=
−μ0

4 π |r |3
Edipole−dipole=

μ0

2π | r |3

before rotation after rotation



  

Magnetoststic couplings

● Magnetic couplings that are used in the industry for contact-less transmitting the torque 
in applications requiring strict separation of processed liquids and gases from the outer 
environment operate on the principle analogous to the one responsible for the 
magnetostatic interaction in thin magnetic films – interaction between magnets 

all images in this slide taken from: https://www.ktr.com/fileadmin/ktr/media/Tools_Downloads/kataloge/DriveTechnology.pdf, p. 224
*dst-magnetic-couplings.com/en/magnetic-couplings.html

internal and external rotors are both 
equipped with permanent magnets

shroud

● achievable coupling torques in the 
range of 0.1 – 11,000 Nm*

● “If the maximum coupling torque and 
the maximum torsion angle are 
exceeded, the power transmission is 
interrupted” (KTR)

https://www.ktr.com/fileadmin/ktr/media/Tools_Downloads/kataloge/DriveTechnology.pdf


  

Magnetoststic coupling – orange peel coupling

● Orange peel (OP) coupling (Néel coupling) is due to the roughness of interfaces in thin 
 magnetic films.

● The roughness results in the appearance of surface magnetic charges.
● The OP coupling leads to the relative shift of hysterese of neighboring ferromagnetic 

layers:

H⃗=−∇ ϕm

ϕm( r⃗ )=∮
S

M⃗⋅d⃗s
|⃗r|

−∫
V

∇⋅M⃗
|r⃗|

d3 r '

Si(100)/100nm thermally oxidated Si/Cu(20nm)/
Ni80Fe20(10nm)/V(2.1nm)/Ni80Fe20(4nm)/Mn83Ir17(10nm)/Cu(3nm)

exchange coupling

magnetically soft layer

-150 -100 -50 0 50

-0,4

-0,2

0,0

0,2

0,4

-1,5 -1,0 -0,5 0,0

0,0

0,3

 

 

M
[a

.u
.]  M

[a
.u

.]

 H[kA/m]

HN

 H[kA/m]



  

Magnetoststic coupling – orange peel coupling

● Orange peel (OP) coupling is due to the roughnes of interfaces in thin magnetic films.
● The roughness results in the appearance of surface magnetic charges.
● The OP coupling leads to the relative shift of hystereses of neighboring ferromagnetic 

layers.
● If roughness profile on all interfaces is equal the shift field HN can be shown to be given 

by (assuming that the hard layer is thick enough so that the influence of its second 
surface can be neglected):

H N=
π

2

√ 2 (
h2

λ t f )M pe
−2π √ 2 t s /λ

 λ -wavelength of roughness modulation, tf - thickness 
of ,,free”   ferromagnetic layer, h-roughness amplitude, MP -
saturation  magnetization of hard (or pinned) magnetic layer 

● The coupling may be ferromagnetic or antiferromagnetic depending on a phase 
difference  between roughnesses of neighboring interfaces (with the same direction of 
magnetization in neighboring layers): 

AF coupling F coupling



  

Magnetoststic coupling – orange peel coupling

● Orange peel (OP) coupling is due to the roughnes of interfaces in thin magnetic films.
● The roughness results in the appearance of surface magnetic charges.
● The OP coupling leads to the relative shift of hystereses of neighboring ferromagnetic 

layers.

● Not that in extended films the influence of the magnetic fields emanating from the edges 
is negligible.

● If the film is structured, using for example electron lithography or deposition through a 
shadow mask, the edge “magnetic charges” may play a significant role in the reversal 
being the source of an additional coupling

structuring the area of the sides of the 
thin film stack becomes 
comparable with the are of 
the interface between the 
neighboring magnetic layers



  

Magnetoststic coupling – orange peel coupling

● Orange peel coupling can be comparable in strength with RKKY oscillatory coupling

Py(2.5 nm)Co(2.5 nm)/CuAgAu(2,4 nm)/
Co(2.5 nm)

T. Luciński, A. Hütten, H. Brückl, T. Hempel, S. Heitmann, and G. Reiss
phys. stat. sol. (a) 196, No. 1, 97–100 (2003)



  

Magnetoststic coupling – orange peel coupling

● In his original paper Néel derived the coupling formula for the interaction between two 
 semi-infinite magnetic layers

●● The above description can be extended to 
 the case of interacting thin films [16]:

 

- in the case shown here there are four 
  interactions to take into account
 

● The interaction between the bottom surface 
 of Py1 layer and top surface of Py2 layer 
 leads, for example, to the following 
 contribution to shift field:

H S=
π

2

√ 2 (
h1h2

λ t Py1 )M p e
−2π √ 2(t Py1+ tV+ t Py2)/ λ

Figure 5: Cross-sectional view of a 
multilayer of composition 
(Pt 1.8/Co 0.5)

4
/Pt 1.8 obtained by 

transmission electron microscopy. 
The waviness determined from the 
observation is 6 nm for the 
wavelength and 1.2 nm for the 
peak-to-peak amplitude.

image from: Europhys. Lett. 65, 123 (2004), J. Moritz - F. Garcia - J. C. Toussaint - B. Dieny - J. P. Nozières



  

Magnetoststic coupling – domain wall coupling

● Magnetic fields emanating from domain walls can influence magnetization reversal in 
 neighboring layers

W.S. Lew et al., Phys. Rev. Lett. 90, 217201 (2003)

resistance decrease to absolute minimum-
moments in neighboring layers parallel

● GaAs(100)/Co(1.8nm)/Cu(6nm)/
    Ni80Fe20(6nm)
 

● D→E: only part of Co layer reverses
● F→G: coupling 

-0,5 0,0 0,5

1

2

O
p

ór

H

Schematic of R(H) dependence without 
the coupling:

re
si

st
a

n
ce



  

● two Fe layers separated by a Cr wedge-shaped spacer; scanning electron microscopy with 
polarization analysis (SEMPA)

● measurement on a single specimen!
● up to six oscillations in coupling were
   observed

image from J. Unguris, R. J. Celotta, and D. T. Pierce Phys. Rev. Lett. 67, 140 (1991)

Obtaining wedge-shaped films:

movable shutter

film

RKKY-like interlayer coupling



  

● two Fe layers separated by a Cr wedge-shaped spacer; scanning electron microscopy with 
polarization analysis (SEMPA)

● measurement on a single specimen!
● up to six oscillations in coupling were 
   observed

image from J. Unguris, R. J. Celotta, and D. T. Pierce Phys. Rev. Lett. 67, 140 (1991)

● different periods of coupling depending 
on temperature of the substrate during 
 the film growth: samples grown at 
elevated temperature are of better quality 
and the magnetization of the upper Fe 
layer changes with each atomic-layer 
change in Cr thickness

● “lower quality” samples display only 
RKKY-like coupling

grown at elevated temperatures (200-300oC)

RKKY-like interlayer coupling



  

Magnetic impurity in a 
conducting medium 
induces spatial 
fluctuations of spin 
polarization of s-
electrons about the 
impurity [9]
● the oscillatory term 

of wave number 2 k
F
 

falls off like r-3 at 
large distances 

electrons

impurity

downup

RKKY-like interlayer coupling



  

Magnetic impurity in a 
conducting medium 
induces spatial 
fluctuations of spin 
polarization of s-
electrons about the 
impurity [9]
● the oscillatory term 

of wave number 2 
k

F
* falls off like r-3 at 

large distances
● the second impurity 

placed in the vicinity 
experiences 
interaction with the 
first impurity

● depending on the  
distance between 
impurities the 
interactions may be 
ferromagnetic or 
antiferromagnetic

*Fermi wave vector
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r⃗
JRKKY ∝

1

r 3 cos(2 k F r)
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A plane composed of 
exchange coupled 
impurities creates 
spatial oscillations of 
spin polarization in the 
direction perpendicular 
to its surface
● if the moments are 

strongly coupled 
ferromagnetically 
they form a 
ferromagnetic layer

● a similar, parallel, 
layer or multilayer 
placed a certain 
distance away 
experiences 
ferromagnetic or 
antiferromagnetic 
coupling depending 
on a distance from 
the first layer

schematic drawing of a RKKY spin polarization due 
to single atom thick (11´11atoms) layer of 
impurities*

*the drawing shows the sign of the coupling (black and gray correspond to positive and negative spin polarization)

Mathematica 4 code to obtain the RKKY-sketch shown above:
(*first three values - observation point, next 3 - position of impurity*)
RKKY[x_, y_, z_, ax_, ay_, az_] := 
    Cos[1*((x - ax)^2 + (y - ay)^2 + (z - az)^2)^(0.5)]*((x - ax)^2 + (y - 
                  ay)^2 + (z - az)^2)^(-3/2);
(*yline - line of impurities with y starting from 0 *)
yline[xp_, yp_, zp_, pz_] := 
    Sum[RKKY[xp, yp, zp, 0, i*5, pz], {i, 0, 10, 1}];
(*DensityPlot[UnitStep[yline[x, y, 0, 0]], {x, 0, 20}, {y, -10, 60}, 
    PlotPoints -> {60, 60}]*)
(*sheet - set of ylines, with z starting from 0 *)
sheet[xq_, yq_, zq_]  = Sum [ yline[xq, yq, zq, i*5], {i, 0, 10, 1}];
DensityPlot[UnitStep[sheet[x, y, 25]], {x, 0, 40}, {y, -20, 70}, 
  PlotPoints -> {200, 200*   9/4  }, AspectRatio -> 9/4, Mesh -> False, 
  ImageSize -> 600]

in case of quasi-infinite/real ferromagnetic layer the 
lines delimiting areas of opposite spin polarization 
would not be curved except at the ends

RKKY-like interlayer coupling



  

*the drawing shows the sign of the coupling (black and gray correspond to positive and negative spin polarization)

A

B

the coupling along AB line

Theoretical considerations show that the 
coupling between two ferromagnetic layers 
is inversely proportional to the square of the 
spacer thickness [30]

JRKKY ∝
1

r 2

typically (with noble metal 
spacers) and transition metals 

ferromagnetic layers the 
coupling is of the order of 

1´10-6 Jm-2 in the first 
antiferromagnetic maximum

RKKY-like interlayer coupling



  

● Si(100)/Cu(20nm)[Ni83Fe17(2nm)/Cu(tCu)]100
● GMR reflects the oscillatory character of the RKKY-like coupling between permalloy layers
● in MLs with identical magnetic layers (the same switching fields) GMR can be observed 

only for spacer thicknesses corresponding to antiferromagnetic coupling; otherwise the 
magnetic field does not change relative orientation of magnetic moments of neighboring 
layers

image from: F. Stobiecki, T. Luciński, R. Gontarz, M. Urbaniak, Materials Science Forum 287, 513 (1998)

RKKY-like coupling and giant magnetoresistance



  

image from: F. Stobiecki, T. Luciński, R. Gontarz, M. Urbaniak, Materials Science Forum 287, 513 (1998)

AF-coupling

F
-c

ou
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in
g

schematic 
hysteresis loop for 
AF-coupled layers 

for the case of 
exchange energy 
much exceeding 

magnetic 
anisotropy

RKKY-like coupling and giant magnetoresistance



  

Dzyaloshinskii-Moriya interaction (DMI) – antisymmetric exchange

● The bilinear terms of the coupling: 

J S⃗1[
1 0 0
0 1 0
0 0 1 ] S⃗2= J S⃗1⋅S⃗2 exchange coupling

S⃗1[
0 D1 D2

−D1 0 D3

−D2 −D3 0 ] S⃗2= D⃗⋅( S⃗1× S⃗2) Dzyaloshinskii-Moriya interaction

Ebilinear=−∑
ij

K ij S1
i S2

j
=K xx S1

xS2
x
+K xy S1

x S2
y
+ .. .

S⃗1[− μ0

4 π |r |3 [
3 r̂x

2
−1 3 r̂x r̂ y 3 r̂ x r̂z

3 r̂ x r̂ y 3 r̂ y
2
−1 3 r̂ y r̂ z

3 r̂ x r̂z 3 r̂ y r̂ z 3 r̂ z
2
−1] ] S⃗2 dipole-dipole interaction



  

Dzyaloshinskii-Moriya interaction

image from V. E. Dmitrienko et al., Nature Physics 10, 202 (2014)

E=D⃗⋅( S⃗1×S⃗2) Dzyaloshinskii-Moriya interaction

● FeBO
3

● the interaction between Fe 
atoms/ spins is mediated by 
oxygen atoms

● when “the symmetry allows 
coincidence of magnetic and 
resonant forbidden 
scattering” “ the sign of the 
Dzyaloshinskii–Moriya vector 
could be measured with 
resonant X-ray diffraction by 
observing interference
between the resonant  and 
magnetic scattering 
amplitudes.”

● this type of coupling was 
introduced when 
investigating “weak 
ferromagnets” (example α-
Fe

2
O

3
) by I. E. 

Dzyaloshinskii [Sov. Phys. 
JETP 5, 1259(1957)] 

The calculated Dzyaloshinskii–Moriya vector linking iron atoms 0 and 1 (Fig. 1), for 
example, is D

01
 = (−0.25, 0,−0.24) meV. [V.E. Dmitrienko, et al.]

Weak ferromagnetism:
● the magnetization of a sample is by a factor 10-2 to 10-5 

lower than the magnetization of constituent magnetic 
lattices

M=0 M≈0

canting of magnetic 
moments in sublattices of 
an antiferromagnet creates 
a tiny resultant magnetic 
moment in each cell



  

Dzyaloshinskii-Moriya interaction

image from V. E. Dmitrienko et al., Nature Physics 10, 202 (2014)
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Dzyaloshinskii-Moriya interaction

E=D⃗⋅( S⃗1×S⃗2)

Then the direction of the DM-vector an be determined according to the following rules* [102 
and references therein]:

Consider two spins located at R
1
 and R

2
 . The middle is labeled as R̃ = (R

1
+R

2
)/2.

• If a center of inversion is located at R̃: D = 0.

• If a mirror plane perpendicular to R1−R2 includes R̃ then D (R⊥(R
1
 − R

2
).

• If a mirror plane includes R
1
 and R

2
 then D  mirror plane.⊥(R

• If a two-fold rotation axis perpendicular to R
1
−R

2
 includes R̃ then D rotation axis.⊥(R

• If a n-fold rotation axis (n ≥ 2) includes R
1
 and R

2
 then D║(R

1
 − R

2
 ).

[102]: B. Zimmermann, dissertaton 2010, Institut für Festkörperforschung (IFF) Forschungszentrum Jülich



  

Dzyaloshinskii-Moriya interaction

E1=D⃗⋅( S⃗1×S⃗2) not equal D⃗⋅( S⃗1×(−S⃗2))=E2

● Note that Dzyaloshinskii-Moriya interaction is “chiral” in that sense that it favors one 
chirality of spin pair in favor of the other:

 

i.e. the two configurations with equal angle between the interacting spins have different 
energies (this is due to the configuration of the surrounding atoms)

Dzyaloshinskii-Moriya 
vector

S⃗1×S⃗2
S⃗2

S⃗1



  

Dzyaloshinskii-Moriya interaction

● Note that Dzyaloshinskii-Moriya interaction is “chiral” in that sense that it favors one 
chirality of spin pair in favor of the other:

 

i.e. the two configurations with equal angle between the interacting spins have different 
energies (this is due to the configuration of the surrounding atoms)

Dzyaloshinskii-Moriya 
vector

S⃗1×S⃗2
S⃗2

S⃗1

E1=D⃗⋅( S⃗1×S⃗2) not equal D⃗⋅( S⃗1×(−S⃗2))=E2

● Different sign of a dot product of DM vector with a cross product of interacting spins – 
depending on the direction of DM vector the clockwise or counterclockwise orientation is 
favored; this is not the case for anisotropic exchange interaction



  

Dzyaloshinskii-Moriya interaction

DMI alone favors perpendicular orientation of 
interacting magnetic moments

DMI coupled with exchange coupling and periodicity of the lattice can lead to a spiral 
states with various chirality* [101] 

DMI coupled with exchange coupling favors 
canting of spins

*S. Blügel, P. Grünberg,"Complex Magnetism" in Lecture Notes of the 45 th IFF Spring School, Forschungszentrum Jülich, 2014



  

Chirality

“A right-handed helix is one that turns clockwise as you move along the length of the helix” 
* [103]

[103]: J. P. Riehl, Mirror-Image Asymmetry: An Introduction to the Origin and Consequences of Chirality, John Wiley & Sons, Inc. 2010

Right-handed helix, P or Δ

Left-handed helix, M or Λ 



  

Chiral magnetic structure – an 
example

● Ba
3
NbFe

3
Si

2
O

14
● this magnetic structure is 

characterized by two kinds 
of magnetic chiralities:

- triangular chirality

- helical chirality

im
ag

e
 s

ou
rc

e:
 V

. S
im

on
et

, M
. L

o
ire

, a
nd

 R
. B

a
llo

u,
 E

u
r. 

P
h

ys
. 

J.
 S

pe
ci

al
 T

op
ic

s 
2

13
, 

5–
36

 (
20

12
)



  

References
1. wikipedia.org
2. I.A.Campbell, A.Fert, in “Ferromagnetic Materials” 1982
3. E. Y. Tsymbal, D. G. Pettifor, Perspectives of Giant Magnetoresistance, published in Solid State Physics, ed. by H. Ehrenreich and F. 

Spaepen, Vol. 56 (Academic Press, 2001) pp.113-237
4. R. Wawryk, J. Rafalowicz, Cz. Marucha, K. Balcerek, International Journal of Thermophysics 15, 379 (1994)
5. R.A. Matula, J.Phys.Chem.Ref.Data 8, 1147 (1979)
6. J. Rudny, chapter 3 in Cienkie warstwy metaliczne edited by  W. Romanowski, PWN, Warszawa 1974
7. H.-D. Liu, Y.-P. Zhao, G. Ramanath, S.P. Murarka, G.-C. Wang, Thin Solid Films 384, 151 (2001)
8. B. Raquet, M. Viret, E. Sondergard, O. Cespedes, R. Mamy, Phys. Rev. B 66, 024433 (2002)
9. J.M. Ziman, Principles of the Theory of Solids, Cambridge University Press 1972
10.A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968)
11.J. Sólyom, Fundamentals of the Physics of Solids, vol.I, Springer-Verlag Berlin Heidelberg 2007
12.B.Dieny, Models in spintronics, 2009 European School on Magnetism, Timisoara
13.A.N. Gerritsen, Metallic Conductivity in Encyclopedia of Physics, vol.XIX, Electrical Conductivity I, Springer 1956
14.Th.G.S.M. Rijks, R. Coehoorn, M.J.M. De Jonge, Phys. Rev. B 51, 283 (1995)
15.A.C. Smith, J.F. Janak, R.B. Adler, Electronic Conduction in Soilds, McGraw-Hill, 1967
16.Ch. Kittel, Introduction to Solid State physics, John Wiley & Sons, 2005
17.S.M Thompson, J. Phys. D: Appl. Phys. 41, 093001 (2008)
18.K. Esfarjani, Semiclassical Transport, lecture notes, 2010
19.G.D. Mahn, Many-Particle Physics, Plenum Press, 1990
20.J.Barnaś, A. Fuss, R.E. Camley, P. Grunberg, W. Zinn, Phys. Rev. B 42, 8110 (1990)
21.A. Fert, P. Bruno, Interlayer Exchange Coupling and Magnetoresistance in Multilayers in Ultarthin Magnetic Structures II, ed. by B. 

Heinrich, J.A.C. Bland, Springer 1994
22.B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Phys. Rev. B 43, 1297 (1991)
23.J. Barnaś, O. Baksalary, A. Fert, Phys. Rev. B 56, 6079 (1997)
24.R. Sbiaa, S.Y.H. Lu, R. Law, H. Meng, R. Lye, H.K. Tan, J. Appl. Phys. 109, 07C707 (2011)
25.S. Kanai, M. Yamanouchi, S. Ikeda, Y. Nakatani, F. Matsukura, H. Ohno, Appl. Phys. Lett. 101, 122403 (2012)
26.S. Kanai, Y. Nakatani, M. Yamanouchi, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 103, 072408 (2013)
27.J. Unguris, R. J. Celotta, and D. T. Pierce Phys. Rev. Lett. 67, 140 (1991)
28.M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 

61, 2472 (1988)
29.G. Binasch, P. Grünberg, F. Saurenbach,  W. Zinn, Phys. Rev. B 39, 4828 (1989)
30.M. Getzlaff, Fundamentals of Magnetism, Springer 2008
31.S.Y. Hsu, A. Barthélémy, P. Holody, R. Loloee, P. A. Schroeder, A. Fert, Phys. Rev. Lett. 78, 2652 (1997)
32.E. Vélu, C. Dupas, D. Renard, J.P. Renard, J. Seiden, Phys. Rev. B 37, 668 (1988)
33.F. Stobiecki, T. Luciński, R. Gontarz, M. Urbaniak, Materials Science Forum 287, 513 (1998)
34.G. Ibach, Physics of Surfaces and Interfaces, Springer 2006

P1/2



  

References
35 K. Pasrij, S. Kumar, Phys. Rev. B, 88 144418 (2013)
36 K. Bergmann, A. Kubetzka, O. Pietzsch, R. Wiesendanger, J. Phys.:Condens. Matter 26 394002 (2014)
37 K.C.  Border, More than you wanted to know about quadratic forms, v. 2016.10.20::14.05
38 Ch. L. Henley, Spin Hamiltonians and Exchange interactions, 2007 (http://www.lassp.cornell.edu/clh/p654/MM-Lec0.pdf)
39 B. Średniawa, Mechanika kwantowa, PWN Warszawa 1988

101. S. Blügel P. Grünberg,"Complex Magnetism" Lecture Notes of the 45 th IFF Spring School “Computing Solids - Models, ab initio 
methods and supercomputing” (Forschungszentrum Jülich, 2014)
102. B. Zimmermann, Calculation of the Dzyaloshinskii-Moriya Interaction in ultrathin magnetic Films: Cr/W(110) ,dissertaton 2010, 
Institut für Festkörperforschung (IFF) Forschungszentrum Jülich
103. J. P. Riehl, Mirror-Image Asymmetry: An Introduction to the Origin and Consequences of Chirality, John Wiley & Sons, Inc. 2010
104. M. Towler, "Exchange, antisymmetry and Pauli repulsion", TCM Group, Cavendish Laboratory, University of Cambridge, ESDG,       
        2010.01.13
105. H.A. Enge, M.R. Wehr, J.A. Richards, Wstępd do fizyki atomowej, PWN, Warszawa 1983
106. F. Schwabl Quantenmechanik für Fortgeschrittene (QM II), Springer 2008
107. V. Simonet, M. Loire, and R. Ballou, Eur. Phys. J. Special Topics 213, 5–36 (2012)

P2/2

http://www.lassp.cornell.edu/clh/p654/MM-Lec0.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

