

magnetoopór warstw wielokrotnych typu [NiFe/Au/Co/Au]_N

2010.03.30

Właściwości magnetyczne i magnetoopór warstw wielokrotnych typu [NiFe/Au/Co/Au]_N

Wprowadzenie

Struktura i własności magnetyczne Gigantyczny magnetoopór Korelacja namagnesowanie-opór Sprzężenie magnetostatyczne

Podsumowanie

Spis prac stanowiących rozprawę habilitacyjną

[U.1] M. Urbaniak, H. Brückl, F. Stobiecki, T. Luciński and G. Reiss, Néel's Magnetostatic Coupling in Sputtered Cu/Py/V/Py/MnIr/Cu Multilayers, Acta Phys. Polon. A 105, 307 (2004) [U.2] M. Urbaniak, F. Stobiecki, T. Luciński, B. Szymański, Magnetization and magnetoresistance correlation in NiFe/Au/Co/Au multilayers, Molecular Physics Reports 40, 176 (2004) [U.3] M. Urbaniak, F. Stobiecki, B. Szymański, Interlayer coupling induced by domain structure in NiFe/Au/Co/Au multilayers, phys. stat. sol. (a) 202, 2013 (2005) [U.4] M. Urbaniak, F. Stobiecki, D. Engel, B. Szymański, A. Ehresmann, and J. Kim, Domain structure and magnetoresistance of NiFe/Au/Co/Au multilayers with perpendicular anisotropy, phys. stat. sol. (c) 3, 57 (2006) [U.5] M. Urbaniak, F. Stobiecki, B. Szymański, A. Ehresmann, A. Maziewski, M. Tekielak, Magnetic and magnetoresistive properties of NiFe/Au/Co/Au multilayers with perpendicular anisotropy of Co layers, J. Appl. Phys. 101, 013905 (2007) [U.6] M. Urbaniak, F. Stobiecki, B. Szymański, Stability of perpendicular anisotropy in NiFe/Au/Co/Au multilayers, J. Alloys Compd. 454, 57 (2008) [U.7] F. Stobiecki, M. Urbaniak, B. Szymański, J. Dubowik, P. Kuświk, M. Schmidt, T. Weis, D. Engel, D. Lengemann, A. Ehresmann, I. Sveklo, A. Maziewski, Magnetic field induced transition from weak to strong ferromagnetic coupling in NiFe/Au/Co/Au multilayers, Appl. Phys. Lett. 92, 012511 (2008) [U.8] M. Urbaniak, F. Stobiecki, B. Szymański, M. Kopcewicz, Mössbauer and giant magnetoresistance effect study of magnetic structure in NiFe/Au/Co/Au multilayers with perpendicular anisotropy of the Co layers, J. Phys.: Condens. Matter 20, 085208 (2008) [U.9] M. Urbaniak, NiFe/Au/Co/Au layered films - magnetic properties and possible applications, Materials Science-Poland 26, 831 (2009)

[U.10] M. Urbaniak, Giant magnetoresistance as a probe of magnetostatic coupling in NiFe/Au/Co/Au multilayers, J. Appl. Phys. 104, 094909 (2008)

Właściwości magnetyczne i magnetoopór warstw wielokrotnych typu [NiFe/Au/Co/Au]_N

Wprowadzenie

Struktura i własności magnetyczne

Gigantyczny magnetoopór

Korelacja namagnesowanie-opór

Sprzężenie magnetostatyczne

Podsumowanie

Podłoże: naturalnie utleniony Si(100), szkło, taśma klejąca

t_{NiFe}=0.5-4 nm

t_{Au}=1.5-3 nm

Rozpylanie katodowe

stabilny proces osadzania

 $[Ni_{80}Fe_{20}(2 \text{ nm})/Au(1.9 \text{ nm})/Co(t_{Co})/Au(1.9 \text{ nm})]_{N}$

Cu Kα

 Środkowy obszar pętli w polu prostopadłym jest charakterystyczny dla układów z pasiastą strukturą domenową

 Dla obu konfiguracji pola warstwy Co i NiFe przemagnesowują się quasi niezależnie

687: [Ni₈₀Fe₂₀(2 nm)/Au(1.9 nm)/Co(0.8 nm)/Au(1.9 nm)]₁₀

$$K_u = \frac{1}{2} \mu_0 (M_S^{NiFe})^2$$

Anizotropia kształtu:

$$\cos(\varphi) = \frac{H}{M_s}$$

Oś łatwa subwarstw Co jest prostopadła do powierzchni warstwy wielokrotnej

subwarstwy Co: prostopadła efektywna anizotropia magnetyczna dla t_{co}=0.5÷1.2nm

$$K_{eff} = \frac{2K_{1s}}{t_{Co}} + K_{1v} - \frac{1}{2}\mu_0 (M_S^{Co})^2$$

Struktura i własności magnetyczne

domeny pasiaste

 $K_{1s} = 4.3 \pm 0.4 \ 10^{-4} Jm^{-2}$ $[K_{eff}$ -0.5 $\mu_0 (M_{go})^2] t_{Go} [10^{-3} Jm^{-2}]$ 2.0 $K_{1y} = 450 \pm 50 \ 10^{3} \text{Jm}^{-3}$ 1.5 W makroskopowym monokrysztale hcp Co: 1.0 $K_{1v} = 430 \ 10^{3} \text{Jm}^{-3}$ 0.5 2.5 3.0 1.0 1.5 2.0 t_{co}[nm]

$$K_{eff} = \frac{2K_{1s}}{t_{Co}} + K_{1v} - \frac{1}{2}\mu_0 (M_S^{Co})^2$$

domeny pasiaste

Mikroskopia sił magnetycznych (MFM) potwierdza obecność **pasiastej struktury domenowej** charakterystycznej dla układów z anizotropią prostopadłą.

W pierwszym przybliżeniu warstwy Co i NiFe można traktować jako niesprzężone

Zależność *M*(*H*) struktury NiFe/Au/Co jest wtedy arytmetyczną sumą zależności *M*(*H*) warstw Co i NiFe. Właściwości magnetyczne i magnetoopór warstw wielokrotnych typu [NiFe/Au/Co/Au]_N

Wprowadzenie

Struktura i własności magnetyczne

Gigantyczny magnetoopór

Korelacja namagnesowanie-opór

Sprzężenie magnetostatyczne

Podsumowanie

Gigantyczny magnetoopór

Nobel 2007 (Fert, Grünberg)

FIG. 2. Relative change in resistance vs the cosine of the relative angle between the magnetizations of the two NiFe layers of Si/(60-Å NiFe)/(26-Å Cu)/(30-Å NiFe)/(60-Å FeMn)/ (20-Å Ag). Inset shows the orientation of the current J, exchange field H_{ex} , applied field H, and magnetizations M_1 and M_2 .

$\Delta R \propto \cos(\varphi)$

B. Dieny et al., Phys. Rev. B, 43 (1991) 1297

Gigantyczny magnetoopór warstw [NiFe/Au/Co/Au]

Szeroki zakres liniowy w zależności *R*(*H*):

-subwarstwy magnetyczne przemagnesowane w kierunku trudnym

-brak histerezy w zakresie liniowym

[Ni₈₀Fe₂₀(2 nm)/Au(1.9 nm)/Co(1 nm)/Au(1.9 nm)]₁₀

Właściwości magnetyczne i magnetoopór warstw wielokrotnych typu [NiFe/Au/Co/Au]_N

Wprowadzenie

Struktura i własności magnetyczne Gigantyczny magnetoopór Korelacja namagnesowanie-opór Sprzężenie magnetostatyczne

Podsumowanie

Gigantyczny magnetoopór warstw [NiFe/Au/Co/Au]_N

W zależności *R*(*H*) występuje lokalne minimum oporu.

Pola nukleacji (tworzenie struktury domenowej) i anihilacji (nasycenie warstw Co) są widoczne zarówno w zależnościach *R*(*H*) jak i *M*(*H*).

Korelacja namagnesowanie-opór

Gigantyczny magnetoopór warstw [NiFe/Au/Co/Au]_N

Wyjaśnienie zależności *R*(*H*)

Gigantyczny magnetoopór warstw [NiFe/Au/Co/Au], - model

Gigantyczny magnetoopór warstw [NiFe/Au/Co/Au]_N - model

Sprzężenia międzywarstwowe w układach wielowarstwowych

 sprzężenie poprzez mostki ferromagnetyczne

 sprzężenie magnetostatyczne

 sprzężenie typu Ruderman– Kittel–Kasuya–Yosida

X

×

F1

[Ni₈₀Fe₂₀(2 nm)/Au(*t*_{Au})/Co(0.6 nm)/Au(*t*_{Au})]₁₅

Dla małych wartości t_{Au} mostki ferromagnetyczne (pinholes) prowadzą do bezpośredniego sprzężenia subwarstw Co i NiFe.

F. Stobiecki et al., JMMM, 282 (2004) 34

Sprzężenie RKKY w układach wielowarstwowych [NiFe/Au/Co/Au]

Si(100)/[NiFe(2nm)/Au(3nm)]₁₀/ NiFe(2nm)/Au(0-3nm)/Co(0-2nm)/Au(3nm) Sprzężenie RKKY w układach wielowarstwowych [NiFe/Au/Co/Au],

Sprzężenie RKKY w układach wielowarstwowych [NiFe/Au/Co/Au],

W próbkach klinowych *NiFe/klin Au/Co* występują oscylacje krytycznej grubości Co wskazujące na możliwość występowania sprzężenia RKKY. W drugim maksimum RKKY oscylacje te są zwykle niewidoczne.

Właściwości magnetyczne i magnetoopór warstw wielokrotnych typu [NiFe/Au/Co/Au]_N

Wprowadzenie

Struktura i własności magnetyczne

Gigantyczny magnetoopór

Korelacja namagnesowanie-opór

Sprzężenie magnetostatyczne

Podsumowanie

Oddziaływania dipolowe w warstwach wielokrotnych

mikroskopia fotoelektronów (PEEM) + dichroism magnetyczny promieni X (XMCD)

-Cu(001)/Ni/Cu/Co -Cu – klin (ok. 1ML/10m) -odparowanie wiązką elektronów -Ni - anizotropia prostopadła -pole DW Ni w Co: 250Oe

W. Kuch, L. I. Chelaru, K. Fukumoko, F. Porrati, F. Offi, M. Kotsugi, J. Kirchner, Phys. Rev. B 67, 214403 (2003)

Struktura domenowa warstw [NiFe/Au/Co/Au]_N- symulacje

$$r = [(x_{n} - x_{q})^{2} + (z_{n} - z_{q})^{2} + (z_{n} - z_{q})^{2}]^{1/2}$$

$$\phi_{m}^{(i)} = \frac{1}{4\pi} \frac{(\vec{\mu} \, \vec{r})}{r^{3}}$$

$$\vec{H} = -\vec{\nabla} \phi$$

$$\phi_{m} = \frac{1}{4\pi} \int d\tau (\vec{M} \, \nabla_{q} r^{-1})$$

$$(\vec{M} \, \nabla_{q} r^{-1}) = \nabla_{q} (r^{-1} \vec{M}) - \frac{1}{r} \nabla_{q} \vec{M}$$

$$1 = c = \nabla_{q} \vec{M} - c = \vec{n} \vec{M}$$

С. В. Вонсовский, МАГНЕТИЗМ «Наука», 1971

 $\phi_m = \frac{1}{4\pi} \left(-\int d\tau \frac{\nabla_q M}{r} + \oint dS \frac{\vec{n}M}{r} \right)$

Źródłem wewnętrznego pola magnetycznego są ładunki magnetyczne w objętości układu lub na jego powierzchniach ograniczających.

Struktura domenowa warstw [NiFe/Au/Co/Au]_N- symulacje

 H_{eff} = ,,energia wymiany"+,,energia anizotropii" +,,pole zewnętrzne"+,,pole własne"

Oddziaływanie magnetostatyczne między komórkami ma charakter globalny.

J. E. Milat, M. J. Donahue

Handbook of Magnetism and Advanced Magnetic Materials, John Wiley & Sons 2007

[Co(1nm)/przekładka(1nm)/NiFe(1nm)/przekładka(1nm)]₄/Co(1nm)

*Simulacja bezpłatnym pakietem oommf z NIST; (1×1 μm²)×55nm; szerokość domen Co 200 nm; α=0.5; sieć regularna z komórką (5×**20000**×2nm³); stała wymiany: Co: 30e-12 J/m, NiFe: 13e-12 J/m

[Co(1nm)/przekładka(1nm)/NiFe(1nm)/przekładka(1nm)]₄/Co(1nm)

Pola kreacji i anihilacji pasiastej struktury domenowej w symulacji i pomiarze są różne ze względu na różną liczbę subwarstw Co.

Struktura domenowa warstw [NiFe/Au/Co/Au]_N- symulacje

Struktura domenowa warstw [NiFe/Au/Co/Au]_N- symulacje

Domeny pasiaste subwarstw Co są zreplikowane w prostopadłej składowej namagnesowania subwarstw NiFe.

- zakłada się, że zmienna część oporu elektrycznego warstwy NiFe/Au/Co/Au jest proporcjonalna do średniego kosinusa kątów między momentami magnetycznymi sąsiednich subwarstw magnetycznych
- w poniższych obliczeniach nie uwzględnia się innych rodzajów magnetooporu (OMR, AMR)

$$\Delta R_{GMR} = \frac{1}{n} \sum_{n} \cos(\phi_{NiFe-Co})$$

Spektroskopia Mössbauera warstw [NiFe/Au/Co/Au]

Względna intensywność linii 2 i 3 zmienia się z kątem φ między padającym promieniowaniem γ i momentem magnetycznym.

Pola magnetostatyczne pochodzące od subwarstw Co powodują wychylenie momentów magnetycznych subwarstw NiFe. Wychylenie jest tym silniejsze in słabsza jest wypadkowa anizotropia typu łatwa płaszczyzna subwarstw NiFe (lub warstw hybrydowych).

 $[X/Au(2.4 nm)/Co(0.8 nm)/Au(2.4 nm)]_{10}$ $[Ni_{80}Fe_{20}(2 nm)/Au(2.4 nm)/Co/Au(2.4 nm)]_{10}$

Rezonansowe magnetyczne rozpraszanie promieni X (SXRMS)

 $[Ni_{80}Fe_{20}(2 \text{ nm})/Au(2.4 \text{ nm})/Co(0.4 \text{ nm})/Au(2.4 \text{ nm})]_{10}$ $[Ni_{80}Fe_{20}(2 \text{ nm})/Au(2.4 \text{ nm})/Co(1.1 \text{ nm})/Au(2.4 \text{ nm})]_{10}$

Rezonansowe magnetyczne rozpraszanie promieni X (SXRMS)

Sygnał SXRMS pochodzący od subwarstw **NiFe** pokazuje pola charakterystyczne dla przemagnesowania subwarstw Co: -tworzenia pasiastej struktury domenowej (H_c) -anihilacji struktury domenowej (H_a)

[Ni₈₀Fe₂₀(2 nm)/Au(2 nm)/Co(1.1 nm)/Au(2 nm)]₁₀

XMCD-PEEM

Sincrotrone Trieste **ELETTRA** S.C.p.A. di interesse nazionale

*graphics from: ssrl.slac.stanford.edu/stohr/xmcd.htm

 σ^{R}

Sincrotrone Trieste **ELETTRA** S.C.p.A. di interesse nazionale

Eksperymentalne potwierdzenie replikacji domen Co w prostopadłej składowej namagnesowanie subwarstw NiFe. [Ni₈₀Fe₂₀(2 nm)/Au(2 nm)/**Co(0.8** nm)/Au(2 nm)]₁₀/Ni₈₀Fe₂₀(2 nm)

Wnioski

 Pomiary własności magnetycznych i transportu elektrycznego dowodzą istnienia magnetostatycznego sprzężenia między subwarstwami Co i NiFe w warstwach wielokrotnych typu NiFe/Au/ Co/Au.

 Źródłem oddziaływania magnetostatycznego jest obecność pasiastej struktury domenowej w subwarstwach Co.

•Selektywne ze względu na pierwiastki chemiczne metody pomiarów własności magnetycznych dowodzą wpływ pasiastej struktury domenowej subwarstw Co na przemagnesowanie subwarstw NiFe.

•Symulacje mikromagnetyczne potwiedzają, że obserwowane zależności *R(H)*, z lokalnym minimum oporu w zakresie odpowiadającym histerezie subwarstw Co, związane są z obecnością domen pasiastych.

Dziękuję

za

uwagę

Otrzymywanie

Właściwości warstw nanoszonych na **podłoża elastyczne** są zbliżone do właściwości warstw nanoszonych na Si(100).

Rozpylanie katodowe

 $[Ni_{80}Fe_{20}(2 \text{ nm})/Au(3 \text{ nm})/Co(0.8)/Au(3 \text{ nm})]_{N}$ Cu K α 0.154nm

B. Szymański et al., Acta. Phys. Polon. **113**, 205 (2008)

Gigantyczny magnetoopór

 $2\Delta R/(R_0 - \Delta R) = 1 \div 100 \%$

Co/Au, NiFe/Au, NiFe/Cu, Fe/Au,.....

 $R = R_0 - \Delta R \cos(\varphi)$

Sprzężenie RKKY w układach wielowarstwowych [NiFe/Au/Co/Au]_N?

FIG. 5. Dependence of the exchange coupling J between Co layers versus the thickness t_{Au} of the Au(111) interlayer. J was determined in the trilayer schematized in Fig. 3: (square) from field shift in the minor hysteresis loops [cf. Fig. 4(b)], and (triangle) from the field H_2 in the full hysteresis loops [cf. Fig. 4(a)]. The arrow for t_{Au} =4.36 AL means that, due to imperfect separation between magnetization reversals in the two layers, the value reported here must be considered as a lower estimate. Continuous line: theoretical fit of experimental data to Eq. (3) (RKKY model), with I_0 =33.8 ergs cm⁻², Λ =4.5 AL, ψ =0.11 rad, t_c =5 AL, and m^*/m =0.16.

V. Grolier et al., Phys.Rev.Lett.71, 3023 (1993)

-odparowanie wiązką elektronową lub z łódki
-interfejsy płaskie na poziomie monowarstw (terasy o szerokości 30nm)

S. Hond et al., J. Appl. Phys. **80**, 5175 (1996) odparowanie wiązką elektronową

"This [niskokątowa dyfrakcja] implies that the layer **structure becomes slightly obscure** or the continuity of Co layer is broken at local points, although the periodic structure is held for the Co layer of 1 or 2 monolayers."

Pola magnetostatyczne w warstwach [NiFe/Au/Co/Au]

Model:

szerokość domen: 174 nm

*t*_{Co}=0.6 nm **10 warstw Co**

Pola magnetyczne pochodzące od pasiastej struktury domenowej są w badanych warstwach [NiFe/Au/Co/Au]_N rzędu 0.1 T.

Spektroskopia Mössbauera warstw [NiFe/Au/Co/Au]_N

 $\frac{\left[N_{80}^{2}F_{20}(3.2 \text{ nm})/Au(2.4 \text{ nm})/Co(0.8 \text{ nm})/Au(2.4 \text{ nm})\right]_{10}}{\left[N_{80}^{2}F_{20}(2.6 \text{ nm})/Co(0.6 \text{ nm})/Au(2.4 \text{ nm})/Co(0.8 \text{ nm})/Au(2.4 \text{ nm})\right]_{10}}{\left[Co(0.6 \text{ nm})/N_{80}^{2}F_{20}(2.6 \text{ nm})/Au(2.4 \text{ nm})/Co(0.8 \text{ nm})/Au(2.4 \text{ nm})\right]_{10}}$

Rezonansowe magnetyczne rozpraszanie promieni X (SXRMS)

*

SXRMS at BESSY – measurement of the intensity of a reflected X-ray versus the external magnetic field (θ -2 θ geometry).

głębokość próbkowania ~ 10 nm

Światło kołowo spolaryzowane

λ≈1.4 nm

Oddziaływanie z elektronami rdzenia

Energia fotonów dopasowana do progu absorpcji

czułość ze względu na pierwiastek

Dyfraktometr ALICE na linii UE56/2-PGM2 w BESSY II (Berlin)

*grafika z:ssrl.slac.stanford.edu/stohr/xmcd.htm see ssrl.slac.stanford.edu/stohr/X-Rays_and_Magnetism.ppt