Neutron diffraction, magnetic and transport studies of NdNi₄Al compound T. Toliński¹, A. Kowalczyk¹, W. Schäfer², W. Kockelmann³, and A. Hoser⁴ ¹Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland ⁴Institut für Kristallographie, RWTH-Aachen, Germany The RNi₄Al compounds crystallize in the hexagonal CaCu₅-type structure. R occupies the 1a site and Ni(1) the 2c site, whereas Ni(2) and Al are statistically distributed on the 3g position. Diffraction patterns have been collected on the neutron powder diffractometer SV7-a at the FRJ-2 reactor in the Forschungszentrum Jülich, Germany. The neutron wavelength was 1.0957 Å and temperature was varied between 4.2 K and RT. The experiment was performed with external magnetic fields up to 5T perpendicular to the horizontal diffraction plane. Additionally, in time-of-flight technology was employed between 1.8 and 10 K using the diffractometer ROTAX at the spallation source ISIS in Chilton, U.K. Fig. 1. The real, χ ', and the imaginary, χ '', part of the a.c. susceptibility for NdNi₄Al. Inset: Temperature dependence of the (101) reflection measured by ROTAX. The ferromagnetic ordering temperature T_C and magnetic moment at H=6 T for NdNi₄Al are 6 K and 1.52 μ_B/f .u., respectively [1]. Fig. 1 shows the real, χ' , and the imaginary, χ'' , part of the a.c. susceptibility for NdNi₄Al compound and, as an inset, the temperature dependence of the (101) reflection measured by ROTAX (after the subtraction of the nuclear contribution obtained at RT). Both methods provide the evidence of the paraferromagnetic phase transition at this same temperature of 6 K. The neutron diffraction experiments on NdNi₄Al, using the diffractometer SV7-a, have been also carried out in external magnetic fields. Fig. 2 presents the neutron diffraction patterns at 4.2 K for *H* in the range from zero to 5 T. Increase of some peaks being the effect of magnetic contributions to the intensities is well visible. ²Mineralogisches Institut, Univ. Bonn, in Forschungszentrum Jülich, 52425 Jülich, Germany ³Mineralogisches Institut, Univ. of Bonn, at ISIS Facility, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K. Fig. 2. Low angle part of the neutron diffraction patterns collected at various external magnetic fields indicating the appearance of a long-range ferromagnetic order Fig. 3. The field dependence of the (001) and (100) reflection intensities Fig. 4. Electrical resistivity of the NdNi₄Al compound. The $\rho(T)$ dependence of the non-magnetic isostructural YNi₄Al compound is also shown (bottom curve) together with a fit to formula (1). Inset shows the magnetic part $(\rho_m + \rho_0)$ of the NdNi₄Al resistivity in the vicinity of the phase transition. From the appearance of the (001) and the disappearance of the (100) peak it is evident that the ferromagnetic alignment is perpendicular to the hexagonal axis, i.e., the moments are ordered in the hexagonal basis plane (Fig. 3). The field dependence of the (001) reflection intensities resembles a typical magnetization curve. The $\rho(T)$ dependence of NdNi₄Al illustrated in Fig. 4 consists both of the magnetic and phonon contributions. To display only the magnetic contribution within the transition area the phonon part of the isostructural nonmagnetic YNi₄Al compound was subtracted, i.e., $\rho_{\rm m}({\rm NdNi_4Al}) + \rho_0 = \rho({\rm NdNi_4Al}) - \rho_{\rm ph}({\rm YNi_4Al})$, where $\rho(T)$ of YNi₄Al was fitted with the modified Bloch-Grüneisen relation for metal-like compounds: $$\rho(T) = \rho_0(\text{NdNi}_4\text{Al}) + \rho_{ph} - kT^3$$ (1) with $$\rho_{ph} = 4R\Theta_D \left(\frac{T}{\Theta_D}\right)^5 \int_0^{\theta_D/T} \frac{x^5 dx}{(e^x - 1)(1 - e^{-x})}.$$ (2) From the fit (solid line for YNi₄Al in Fig. 4) the residual resistivity is $\rho_0 = 263 \,\mu\Omega$ cm, the constant $R = 0.165 \,\mu\Omega$ cm/K, the Debye temperature $\Theta_D = 204 \,\mathrm{K}$ and the parameter describing the scattering of the conduction electrons into a narrow d band near the Fermi level $K = 2.25 \times 10^{-7} \,\mu\Omega$ cm/K³. The inset of Fig. 4 enables the estimation of the spin-disorder resistivity as $\rho_{\rm spd} = 1.14 \,\mu\Omega$ cm. Below $T_{\rm C}$ a quadratic dependence of resistivity on temperature is usually observed related to the magnon excitations, which may be modified by a presence of an energy gap. It stem from the inset of Fig. 4 that below $T_{\rm C}$ the resistivity $\rho_{\rm m}$ is nearly independent on temperature, which implies a very large energy gap for magnons excitations in the studied NdNi₄Al compound. Hence, only high energy magnons may appear leading to the destruction of the long-range ferromagnetic order in zero or small magnetic fields. Moreover, a large value of the residual resistivity ($\sim 500~\mu\Omega$ cm) is visible. We have observed it also for other RNi₄Al compounds, while in the case of RNi₄B [2,3] this value was usually below 50 $\mu\Omega$ cm. The explanation may be based on the difference in crystallographic structures. In the case of RNi₄B the B atoms occupy the well-defined (2d) sites of the CeCo₄B structure, whereas the Al atoms in RNi₄Al are statistically distributed on the (3g) sites of the CaCu₅ type structure. Therefore, the lattice disorder in the case of NdNi₄Al may be responsible for the increased residual resistivity. The present magnetic and neutron diffraction studies reveal that: - 1) The ferromagnetic ordering temperature T_C and magnetic moment at H = 6 T for NdNi₄Al compound are 6 K and 1.52 μ_B/f .u., respectively. - 2) In the ferromagnetic phase the magnetic moments are ordered in hexagonal basis plane. - 3) The neutron diffraction experiments support the assumption from earlier studies that the Ni atoms do not provide a ferromagnetic contribution. Name of the corresponding author: Andrzej Kowalczyk e-mail address: ankow@ifmpan.poznan.pl url's: http://www.ifmpan.poznan.pl ^[1] T. Toliński, W. Schäfer, W. Kockelmann, A. Kowalczyk, A. Hoser, Phys. Rev. B 68 (2003) 144403. ^[2] T. Toliński, A. Kowalczyk, M. Pugaczowa-Michalska and G. Chełkowska, J. Phys.: Condens Matter 15 (2003) 1397. ^[3] T. Toliński, A. Kowalczyk, V. Ivanov, phys. status sol. (b) 240 (2003) 153.