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The transport of polarized electrons through n-dimensional systems (n=1, 2, 3) is one of 
the most important problems in modern electronics (spintronics), where spin of conduction 
electrons plays crucial role [1]. Particularly important interaction for spintronics is  the spin-
orbit (SO) interaction which causes the rotation of electron spin and gives rise to the spin 
relaxation phenomena, which are very  important for industrial applications. The spin-orbit 
interaction results from the coupling of electron spin with the static electric field. If a charged 
impurity is the source of such electric field then the SO interaction is called the Elliott-Yafet 
spin scattering mechanism [2]. This type of SO scattering plays a significant role in coherent 
transport in disordered systems where it can dramatically change the properties of the system 
in the case of weak localization [3]. The transport of unpolarized electrons in 3D disordered 
metallic systems was treated in our previous paper [4]. Grimaldi [5] calculated the transport 
properties of 2D electron gas polarized in-plane by a magnetic field. The purpose of this paper 
is to consider polarized electrons in 3D disordered system, which interact with rarely 
distributed metal impurities or other artificial structures. We assume that polarized electrons 
are injected into the metallic system or heavily doped semiconductor. We neglect the 
interaction of electrons with positively charged matrix which is equivalent to the jellium 
model. Our description involves the spin-orbit interaction as an additional scattering 
mechanism. We first give the theoretical background of presented model and point out its 
limitations. Next we calculate the transport relaxation time and finally we discuss numerical 
results.  

We consider the spin dependent scattering of the conduction electrons from the impurity 
described by the spherically symmetric atomic potential ( )rua . The degree of disorder is low 
and the Ioffe-Regel criterion [6] is assumed to be valid. It means that electrons can be treated 
as free particles propagating as plane waves between collisions [6, 7]. The nonmagnetic 
impurity introduced into the system produces the perturbation of conduction electrons in the 
form:  

( ) ( ) ( )[ ]p̂ˆ ×∇⋅+= ruarurU aSOa σ ,    (1) 

where p̂  is the momentum operator, σ̂ denotes the Pauli spin matrices, ( )22mcaSO h= , h  
and c  have their usual meaning. The first term in Eq. (1) represents the ordinary scattering 
and it does not affect the spin variable, and the second one represents the spin-orbit scattering. 
The problem of the electron scattering by the potential can be described by the Lippman-
Schwinger (LS) equation [8]. Finding the exact solution of the LS equation is impossible in 
general, however we solved it using the Born approximation. Using this method we can find 
the scattering amplitude ( )θF̂  which is directly related to the differential cross-section by the 
formula  
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where ( )θF̂  is a 22×  matrix in spin  space, and the indices ↓=↑′ ,, ss  (referred to z –
components of  the electron spin).  The standard interpretation of the elements of this matrix 
can be based on the well known literature [9] . Its diagonal elements represent the scattering 
without spin-flip, and the off-diagonal ones describe the spin-flip processes during the 
scattering. The scattering amplitude can be decomposed into three parts: two diagonal ones 
and one off-diagonal as follows:  
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where ( )θ0F̂  is normal scattering amplitude, ( )θnsfF̂  is non-spin-flip one, and ( )θsfF̂  is spin-
flip one. We calculate the scattering amplitude using the lowest Born approximation. The use 
of this approximation means that the scattering amplitude is proportional to the matrix element 
of the perturbation potential  ( )rU  taken between the plane waves representing the conduction 
electron before and after the scattering. We assume a current of totally polarized electrons. 
The total differential cross-section for 'up'-polarized electrons in the first Born approximation 
now has the form  
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To calculate the transport relaxation time we assume the Coulomb screened potential in (1) as 
a realistic approximation for the scattering impurities in the form 
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where 0u  is a strength of the potential, and λ  is the inverse of screening length of the bare 
Coulomb potential. If the concentration of the impurities is low, then they can be considered 
as independent and we can reckon the scattering rate for a single impurity. The more realistic 
model of disorder should include some correlations between impurities. One of the simple 
realizations of this task is introducing of the structure factor [10] to the scattering rate as it was 
presented in Ref. [4] . In the considered case, we assume the delta-like structure factor and 
therefore the impurities are treated as independent ones.  

It is not difficult to calculate the matrix element in (2) for the Coulomb screened potential 
and the adequate differential cross section has the form 
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Calculation of the matrix elements for the spin-orbit part gives rise to more complicated 
integrals. Assume the current of electrons polarized along the z  axis and denote the angle 
between this axis and vector kk ′×  normal to the scattering plane, by ξ . Then the differential 
cross-sections for these two kinds of scattering are 
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and  
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where SOSO ab h= . The transport relaxation time is given by the well-known formula  
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where Fv  is the Fermi velocity, V  is the volume of the system, and θ  is the scattering angle.  
It is interesting to consider two special cases. If the axis of quantization is chosen parallel 

to k  and the incident electrons are fully polarized then 2πξ =  and all spins are reversed due 
to scattering. This result is identical with the one presented in Grimaldi work [5] but he 
considered 2D problem and we solved 3D one here. For other orientations of the z -axis we 
can observe both reversed and non-reversed spins. If the z -axis is perpendicular to k  the 
angle ξ  can take any value and we have to average both cross sections over the whole range, 
i.e. π2 . It results in equal probability for both spin-flip and non-spin-flip scattering. This is 
the main result of our work. 

We also obtained some numerical results which will be published in a full paper.  
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