The Mössbauer study of magnetic permeability enhancement effect in the $Fe_{86-x}Nb_xB_{14}$ (x=5, 6) amorphous alloys J.E. Frackowiak¹, G. Haneczok¹, A.Chrobak², P.Kwapuliński¹, and J.Rasek¹ It is well known that soft magnetic properties (initial magnetic permeability, coercive field) of amorphous alloys based on iron can be significantly improve by applying a suitable thermal annealing at temperatures close to the crystallization temperature. The magnetic permeability enhancement effect is usually explained by formation of a nanocrystalline phase i.e. by formation of nanograins of αFe and/or $\alpha Fe(Si)$ embedded in amorphous matrix [1-6]. Especially interesting is an enhancement magnetic properties effect without forming a nanostructure because it makes possible to obtain very a good soft magnetic material essentially free of embrittlement - a typical disadvantage of nanostructured materials. The aim of the presentation is to study the mechanism of the soft magnetic properties enhancement effect for two amorphous alloys of nanoperm family - namely $Fe_{81}Nb_5B_{14}$ and $Fe_{80}Nb_6B_{14}$ [7]. As-quenched ribbons were annealed for one hour in temperature range T_a from 300 to 900 K, and for annealed samples the following measurements were carried out at room temperature: Fig.1 shows initial magnetic permeability μ determined at room temperature plotted versus 1-h annealing temperature T_a . In both cases $\mu(T_a)$ passes by a distinct maximum situated at the so-called 1-h optimization annealing temperature T_{op} . Fig. 1. Initial magnetic permeability determined at room temperature for samples annealed for 1- h at temperatures $T_{\rm a}$ From Fig.1 it can be recognized that $T_{\rm op}$ =680 K and 700 K for the Fe₈₁Nb₅B₁₄, and Fe₈₀Nb₆B₁₄ alloys, respectively. In samples annealed at temperature $T_{\rm op}$ coercive field has a minimum value (about 2 A/m) and thermal/time instabilities (typical for amorphous state) monitored by magnetic after-effect $\Delta\mu/\mu$, practically disappeared. The observed dependences are characteristic features of the crystallization already occurred. Similar results were obtained for the second examined alloy. ¹Institute of Materials Science, Silesian University, 40-007 Katowice, 12 Bankowa, Poland ²Institute of Physics, Silesian University, 40-007 Katowice, 4 Uniwersytecka, Poland Fig. 2. Magnetization in saturation determined at room temperature for samples preliminary annealed for 1-h at temperatures T_a . T_a [K] Fig. 3. The mean hyperfine magnetic field determined at room temperature for samples preliminary annealed for 1-h at temperatures T_a . Figure 2 presents the magnetization in saturation M_S determined at room temperature for samples after 1-h annealing at temperatures T_a plotted versus T_a . Two characteristic features are important i.e. a deep in M_S observed in the range $600 < T_a < 700$ K and a strong increase for $T_a > 750$ K. While the increase in magnetization is due to nanocrystallization, the significant decrease in M_S occurs in amorphous phase and precedes the enhancement permeability effect. The Mössbauer spectra determined for preliminary annealed samples were numerically analyzed by means of hyperfine field distribution method [8]. In order to take into account the observed asymmetry of lines, a linear relation between isomer shift (IS) and hyperfine magnetic field B_{hf} was assumed in fitting procedure. The mean value of field $<B_{hf}(T_a)>$ determined from hyperfine magnetic field distribution $P(B_{hf})$ for the Fe₈₁Nb₅B₁₄ alloy is shown in Fig. 3. Fig.4 presents a plot $<B_{hf}>$ versus the average magnetic moment of iron atoms $<\mu>$ calculated from the data presented in Fig. 3. As it should be expected a good linear correlation $<B_{hf}>$ vs. $<\mu>$ is obtained. The slope of the straight line from Fig. 4. is $d<B_{hf}>/d<\mu>=(11.3\pm0.7)$ T/ μ _B. This value is very close to the values reported in [9] for amorphous iron $(d<B_{hf}>/d<\mu>=10$ T/ μ _B). Fig. 4. The mean hyperfine magnetic field *versus* average iron magnetic moment calculated for the data from Fig. 2 Figure 5 present Mössbauer spectra obtained for samples annealed at temperatures closed to $T_{\rm op}$ for the Fe₈₁Nb₅B₁₄ alloys. In the inset the velocity range appropriate to the detection of the outer absorption line for α -Fe Mössbauer spectrum is shown. From this figure it can be recognized that optimization annealing (at $T_{\rm op}$) essentially does not lead to formation of any α Fe nanocrystallites. The first traces of nanocrystallites are detected after annealing at $T_{\rm a}$ =720 K for the Fe₈₁Nb₅B₁₄ alloy ($T_{\rm op}$ =680 K) and at 760 K for the Fe₈₀Nb₆B₁₄ alloy ($T_{\rm op}$ =700 K). Fig. 5. Mössbauer spectra determined for samples annealed at temperatures closed to the temperature of 1-h optimization annealing (T_{op} =680 K) for the Fe₈₁Nb₅B₁₄ alloy; in the inset the velocity range appropriate to the detection of the outer absorption line for αFe Mössbauer spectrum Experimental results show that the observed magnetic permeability enhancement effect (or magnetic properties optimization effect) in both examined alloys takes place in amorphous phase. In any way we conclude that for annealing temperatures $T_{\rm a}$ just preceding the optimization annealing temperature $T_{\rm op}$ a characteristic atomic rearrangement occurs which leads to a decrease of the average magnetic moment of iron atoms. As a hypothesis we propose a formation of small iron clusters consisting of more or less ten - fifteen Fe atoms. It results from an estimation of the Mössbauer spectroscopy sensitivity to detect the already formed iron clusters in amorphous phase. The magnetic permeability enhancement effect is due to diffusion of free volume (coagulation and annealing out) leading to a formation of small iron clusters. Name of the presenting author: Janusz Frąckowiak e-mail address: jfrack@us.edu.pl url's: http://us.edu.pl ^[1] M. E. McHenry, M. A. Willard, D. E. Laughlin, Prog. in Mat. Sci. 44 (1999) 291. ^[2] G. Herzer, L.L. Varga, J. Magn. Magn. Mater. 215-216 (2000) 506. ^[3] G.Herzer, J. Magn. Magn. Mater., 157-158 (1996) 133. ^[4] G. Herzer, IEEE Trans. Magn. 26 (1990) 1397. ^[5] G.Herzer, Scr. Metall. Mater. 33 (1995) 1741. ^[6] P.Kwapuliński, J.Rasek, Z.Stokłosa, G.Haneczok, J. Magn. Magn. Mater. 234 (2001) 218. ^[7] G. Haneczok, J.E. Frackowiak, A. Chrobak, P. Kwapulinski, J. Rasek, J. Mag. Mag. Mat., to be published. ^[8] J. Hesse and A. Rübartsch, J. Phys. E 7 (1974) 526. ^[9] R. Lorenz, J. Hafner, J. Mag. Mag. Mat. 139, 209 (1965).