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1. Introduction

Influence of reduced dimensionality on superconductivity /SC/ remains one of the central
topics in condensed matter physics. With the advent of high temperature /HTC/ super-
conductivity /SC/, which exhibit layered structure this problem become even more important.
Unfortunately, till now main theoretical effort has been focused on search for mechanism
responsible for the pair formation in the HTC SC systems. Many elaborate models of
reasonable accuracy present finite domains of validity and often remain out of scope of the
experimentalists and none of them explains satisfactorily all aspects of this phenomenon.
Thus, despite an enormous theoretical effort over the years and quite a variety of treatments a
complete theory of HTC SC still does not exist. Possibly there is coexistence of a few pairing
mechanisms. This suggests that the theoretical description of the HTC systems should focus
on more general properties rather than on microscopical mechanisms responsible for the
pairing. Nevertheless, accumulated experimental data provide support for a widespread
conjecture that superconductivity in general is a Bose-Einstein condensation of the charged
Cooper pairs observed also in conventional superconductors [1]. In the following we will
present an auxilairy approach, which bases on the dynamical properties of the electron/hole
gas with no specific assumptions concerning the pairing. We don’t intend to limit our
consideration to the HTC materials. Our aim is to reevaluate our understanding of how
geometry affects pair condensation in any laminar superconductors including thin films and
SC superlattices fabricated of different materials.

Characteristic feature of the layered SC is that the electron gas responsible for the pair
formation , due to the boundary conditions at interfaces or surfaces shows both anisotropy of
mobility and anisotropy of concentration. Its is evident that quasi-2D mobility of the charge
carriers is essential in formation of SC state. However, approximation of the Fermi gas in a
quantum well (i.e. in a layered system) by a purely 2D or 3D system is seldom a reasonable
choice. The purpose of the present paper is to formulate a simplified model of the Bose
condensation in the intermediate region, when the dynamical dimensionality of the mobile
charge carriers interpolates between 2D and 3D cases. In our approach we will treat the
dimension of electron gas system as a continuous parameter. So let us before recall the
concept of fractional dimensionality in the solid state physics.

2. Fractional spectral dimension

The concept "dimension of the system" may have several meanings. It may describe the
number of coordinates to be dealt with e.g. in a problem of several quasi-particles. It can mean
the dimension of the position (euclidean) space embedding the particles. In this work we shall
be interested in another definition of dimensionality, which is related to the motion of quasi-
particles within a solid (dynamical space, spectral dimensionality). Within  quantum
formalism the states of mobile quasi-particles within a finite solid (i.e. with periodic boundary
conditions) are labeled by the k-wave-vectors, which form the reciprocal lattice. There is a
widespread conjecture that dimensions of the position space (lattice) and of dynamical space
(reciprocal lattice) should be both equal and integer. However, there is experimental evidence
that in many laminar systems at least one of the abovementioned relations does not hold. In



many low-dimensional systems like e.g. superlattices or overlayers, the vibrational as well the
electron density of states, extracted from the experimental data correlates with those predicted
for the systems of fractional dimension /FD/ [2], [3]. Laminar systems like Ag/Cu(001)
overlayer or GaAs/Al,Ga;As quantum wells and superlattices as the layer thickness de-
creases [3] and references therein), show continuous dimensional crossover from 3D to almost
2D behaviour [3]. Generally, the dimension of these systems changes with the monolayer
coverage, wire thickness or temperature. In the case of rough interfaces, a non-integer
dimension of the stratified system can be interpreted in terms of fractal geometry (Haussdorff
dimension) , but fractional dimensionality has been observed in a systems not having fractal
structure. In principle, FD originates from restrained motion of mobile particles or quasi-
particles in the stratified media. As it has been shown in [4], the observed FD of a given
physical system is based on physical strength rather than on the geometrical effects. This can
be easily understood, numerous physical problems involve basic objects, which are usually
described by shrinking or stretching the shape of some characteristic functions. This fact
modifies the energy spectrum of the mobile quasi-particles, which in turn determines the
spectral dimension [3]. Invoking a FD space in description of such a systems offers a
convenient alternative to computational techniques [5]. In this case single parameter - the
spectral dimensionality- contains all of the information about the perturbation. We adopt the
approach by He [3], who has shown that the anisotropic interactions in 3D space become
isotropic ones in lower FD space, where the dimension is the Hausdorff dimension and is
determined by the degree of anisotropy. Evidently, when the potential which causes the in-
plane confinement is infinite, the system is purely 2D. However, in the case of finite quantum-
wells the envelope functions of free electrons (holes) spread into the barrier region and
partially restore the 3D character of the motion. Consequently, the system exhibits behavior,
which is somewhere in between 2D and 3D.

The method by He [3] postulates that the electron quantum states are homogenously
distributed in the aD k-space and a surface of constant energy is an aD spherical shell.
Suppose further that the energy dispersion is parabolic (E-E,) ~ k* we obtain the expression
for the density of states in aD k-space as [3]

n(E)dE ~ (E — Ey)*'* ' dE (1)

where E, is the band-gap. This means although the ionic (mass) distribution position space of
dimensionality B shows no peculiarities, the density of free particle eigenstates shows
(sometimes fractional) power law scaling (with effective spectral dimension a # ) [3]. The
effective spectral dimensionality of laminar system can be easily determined provided that
energy spectrum of mobile particles within the layer is known. In principle it is enough if the
density of states fulfills relation (1) in a small energy window close to the Fermi energy.
Extensive analytical discussion of how the effective spectral dimensionality is associated
with the number of the free electron modes can be found in [6].

3. Superconductivity

As we have shown above the dynamical states of mobile charge carriers in some laminar
systems can be described properly with help of a k-space having fractional dimension. This
concern also the YbaCuO compounds for which the FD (e.g. aD =2,03 [7]) has been
postulated . Most of the theoretical approaches to the superconductivity rely of the k-space
pairing, thus it is reasonable to consider the problem of SC in a system of (spectral) FD. For
the use of further considerations it is not necessary to specify any peculiar mechanism of
pairing. Experiments confirm that spectral FD case arise in various laminar systems involving
polarons [8] (and thus bipolaronic SC , excitons [5], phonons [8], or magnons [9]. This variety



of quasi-particles and interactions covers almost all mechanisms postulated for description of
HTC SC (provided that real space pairing theories are excluded). Concluding we assume that
the Hamiltonian that responsible for the Cooper pair formation is given by
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where c,; the fermion creation operator labeled by k and spin s. The only difference when
compared to conventional approaches is that the k-states fill the space of non-integral
dimensionality. As we have mentioned above, we assume the SC transition as the Bose-
Einstein condensation of preexisting boson pairs. It is well known fact that Bose-Einstein
condensation produces a non-zero absolute temperature T., below which a macroscopic
condensation emerges, only if D >2. The conventional theory of boson condensation derived
for systems of integral dimensionality [10] can be easily extended onto systems, which exhibit
fractional spectral dimension a. The total number of bosons Ng(T) in the system consists of
the N o(T) ones that occupy the ground state &, (¢p =0 in the thermodynamic limit), while the
others are distributed over higher energy levels. In view of this we have:
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where B =1/kgT and pg < 0 is the chemical potential. Similarly as in Eq. (3) we assume that
summation goes over the k -states filling the fractional aD space. The sum over k in (3) can
be converted to an integral over positive k , where k fills the aD space with use of special
formula of integration over aD space (with 2 < o <3) [6]. Applying it to Eq. (3) we obtain
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where we have accounted for the fact that at T=0 all boson pairs form the condensate i.e.
Npo(T=0)=Npo(0)=Ng, {—isthe Riemann Zeta { function . In the calculations the parabolic
energy spectrum of the quasi-particles is assumed. In conventional theories the ratio V,/Np is
treated as the inverse boson pair concentration ng”'. Such interpretation is justified provided
that spectral dimension a and dimension of real space [ (position space) are equal. However,
in systems of FD such interpretation is not valid. Suppose, that in the system under
consideration we have some characteristic length L, then the volume V, ~ L* ~ (kp)® .
Simultaneously the volume of the system, i.e. volume filled with quasi-particles (boson pairs)
can be expressed as Vp ~ L". In view of this, concentration ng being the real space quantity
reads as ng =Np/Vp. Distinction between this different notions of dimensionality is often
missed, but as it will be shown below crucial in proper description of dimensional effects in
SC. The condensate fraction falls off when the temperature is increased and eventually at T,
the condensate vanishes i.e. Np o(T)/Ng(0)=0. From this condition we can derive the formula
for the critical temperature T, as a function of the effective spectral dimension a. Inserting
relation V,~ L% into Eq. (4) we have [11]:
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Let us consider a FD system in two states, which exhibit FD o and o' respectively. Moreover
let us assume that number of preexisting boson pairs is constant during this dimensional



crossover. In view of Eq. (5) the hypothetical critical temperatures in both states fulfill the
relation [11]
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Let us study the variation of the critical temperature T, associated with the continuous
dimensional crossover. We assume that in (6) a = 3 i.e. take the 3D case as the reference
system, First of all let us note that ratio m’,/ m’, and {(a’/2)/ {(a/2) are factors of order of
unity. The factor that shows strongest influence on the ratio (6) of critical temperatures in
different states of the system under consideration (i.e. in states which exhibit different values
of effective spectral dimension) is the last term namely’. (N5)*“?*). In the case o= 3, a’= 2,8
and N = 10% this factor can be estimated as (Ng)¥“**) =107, while for a =3, a’=2,5 it
takes value (N)#**¥*) =107, This means that when the effective dimension is decreased the
critical temperature decreases in a very rapid manner. Contrary to the previous remark if a. = 3
and o’ > 3 one would expect an elevated critical temperature. This point is important per se
independently of quantitative predictions since it allows us to draw general conclusions
concerning the role of dimension in formation of SC phase. In connection with previous
remarks there arises a question why the copper oxides, which are commonly believed to be
quasi 2D superconductors with parabolic dispersion, exhibit so high critical temperatures?.
The possible explanation is that the effective spectral dimension of the copper oxide system is
higher than three. At first sight conclusion that the dimension of k-space for the boson gas
confined within layers can be higher than three appears to be counter-intuitive. However, it
has been proven that quasicrystals [12] and mobile quasiparticles within quantum wells [13],
[14] exhibit spectral dimension o > 3.
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