Ferromagnetism, superconductivity and temperature-pressure phase

diagram of Y₉Co₇

Tomasz Klimczuk^{1,2,3,*}, Vladimir Sidorov², T. M. McQueen³, F. Ronning³, D. Safarik³, J.D. Thompson³, R.J. Cava²

 ¹Faculty of Applied Physics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk, Poland,
²Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA,
³Department of Chemistry, Princeton University, Princeton NJ 08544, USA.

We will discuss the crystal structures and physical properties of Y_9Co_7 and the related compound Y_8Co_5 . In both materials, the crystallographic units consist of trigonal prisms formed by yttrium atoms centered around a cobalt atom. However, superconductivity and ferromagnetism occur only in Y_9Co_7 .

Magnetic susceptibility measurements (Arrot's method) on Y_9Co_7 give a Curie temperature $T_{Curie} = 4.25K$ and specific heat measurement provide evidence for bulk superconductivity with $T_{SC} = 2.6K$ and $\Delta C/T_{SC}\gamma \sim 0.9$. The very large residual resistance ratio (RRR=30) confirm the excellent quality of the samples.

We have also extended the temperature-pressure phase diagram of Y_9Co_7 to higher pressure than previously reported. Our new data suggest that applying a sufficiently high pressure (greater than about 3 GPa) completely suppresses ferromagnetism and enhances superconductivity.

* - present address: European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, Karlsruhe, D-76125 Germany