Field-Induced Magnetic Order in Spin Liquid Phase of TbBaCo₄ O₇ single crystals

Bludov A.N.¹, Gnatchenko S.L¹, Szymczak R.², Szymczak H², Jezierski A.³ and Barilo S.N.⁴

¹ B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov, Ukraine

²Institute of Physics, Polish Academy of Sciences, Warsaw, Poland ³Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland

⁴Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, Minsk, Belarus

The recently discovered family of compounds RBaCo₄O₇ (R-rare earth or Y) realizes a new class of two-dimensional geometrically frustrated magnets. Magnetic properties of these compounds are determined by their unique structure , which consists of 1:1 ordered stacking of triangular and kagome layers of CoO₄ tetrahedra. In this paper we present results of dc magnetic susceptibility measurements in TbBaCo₄ O₇ single crystals performed at tempe ratures in the range 2–300 K and in magnetic fields up to 55 kOe. The results obtained strongly suggest that the ground state of TbBaCo₄ O₇ is a spin liquid phase which is transformed into a weak ferromagnetic phase by application high magnetic field along *c* axis. We discuss various mechanism responsible for the lack of ordering of TbBaCo₄ O₇

This paper was partially supported by the Ministry of Science and Higher Education Poland through Grant No. N202 125135 and by Ukrainian-Russian Grant N 8-2009