A consistent mean-field solution of the t-J model

Jakub Jędrak¹, Józef Spałek^{1, 2}

¹ Jagiellonian University, Reymonta 4, 30-059 Kraków ² AGH University of Science and Technology, ul. Reymonta 19, 30-059 Kraków

Recently, N. Fukushima (cf. Phys. Rev. B 78 (2008)) proposed a systematic grandcanonical (GC) extended Gutzwiller approximation for the t-J model. In the present paper we construct for this approach an effective single-particle Hamiltonian, which leads to a renormalized mean-field theory (RMFT). By doing this, we use the method proposed by us recently and based on the maximum entropy principle, which in turn yields a consistent statistical description of the problem. We examine in detail [1] the cases of d-wave resonating valence bond (dSC) and staggered-flux (SF) solutions and compare various selections of the Gutzwiller renormalization schemes, i.e. the one proposed by Fukushima with that proposed by Sigrist et al. (cf. Phys. Rev. B 49, 12 058 (1994)). We also confront the results coming from out variational solution with the self-consistency conditions build in with those based on the Bogolyubov-de Gennes self-consistent (non-variational) results. It turns out that combination of the present variational approach with the renormalization factors taken from Fukushima work provides for the first time an upper critical doping $x_c \approx 0.27$ for the disappearance of the d-wave superconductivity, in accordance with experimental results for high-T_c superconducting cuprates. We also interpret the results in qualitative terms.

[1] J. Jędrak and J. Spałek, arXiv: 0908.4411 [cond-mat.str-el]