Molecular Dissociation at the Fe₃O₄(001) surface

D. Goc-Jagło, N.-T.H. Kim-Ngan, G. Jagło, D. Sitko, W. Soszka Institute of Physics, Pedagogical University, 30-084 Kraków, Poland E-mail : <u>tarnawsk@up.krakow.pl</u>

The molecular dissociation at the single-crystalline Fe₃O₄(001) surface has been investigated using molecular H₂, D₂ and N₂ beams in the energy range of 3,5 - 8 keV and in the temperature range of 90K - 300K. Only a very broad peak was observed in the spectra of positive-charged scattered ions in the case of H⁺ and D⁺ ions, while that of the N⁺ ions revealed a large asymmetric Fe-peak and a small O-peak. In the energy spectra of negativecharged ions under N₂ molecule bombardment, one broad peak was observed assigned to the O⁻¹ – recoil. In all cases, the peak intensity and peak width increases with increasing primary energy. A visible change in the molecular dissociation yields at the Verwey phase transition temperature of magnetite (~120 K) was observed indicating a strong correlation between molecule dissociation and the electronic state of the magnetite surface.