Susceptibility of (Tl_{1.85}Re_{0.15})Ba₂Ca₂Cu₃O_{10.3} thin film on sapphire substrate with CeO₂ buffer layer

W.M. Woch¹, A. Dujavová², R. Zalecki¹, A. Kołodziejczyk¹, M. Sojková², Š. Chromik²

¹ Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059, Kraków, Poland, ² Institute of Electrical Engineering, SAS, 841 01 Bratislava, Slovak Republic.

The $(Tl_{1.85}Re_{0.15})Ba_2Ca_2Cu_3O_{10.3}$ thin film on sapphire substrate with CeO₂ buffer layer was prepared using the RF magnetron sputtering and an *ex situ* thallination in a one zone configuration. Sing the rhenium of the superconducting sample consists very small grains with average size about $0.5 \,\mu\text{m}$. The thickness of the film is 300 nm.

In this paper we measured the real as well as imaginary part of a.c susceptibility as a function of temperature for several values of a.c applied magnetic field. From these measurements we obtained both the inter and intra-granular critical temperatures. Using the Bean critical state model we have calculated the critical currents as a function of temperature.