Bismuth valences in a Tl_{0.7}Bi_{0.3}Sr_{1.6}Ba_{0.4}CaCu₂O_v superconductor from

X-ray photoemission spectroscopy

R. Zalecki¹, W. Woch¹, M. Kowalik^{1,2}, A. Kołodziejczyk¹

¹ Department of Solid State Physics, AGH University of Science and Technology, 30-059 Cracow, Poland ² Department of Physics, Rzeszów University of Technology, 35-959 Rzeszów, Poland

The X-ray electron photoemission spectra of a $Tl_{0.7}Bi_{0.3}Sr_{1.6}Ba_{0.4}CaCu_2O_y$ superconductor with Al K_a and Mg K_a radiations at room temperature were measured. The ratio of trivalent Bi³⁺ to pentavalent Bi⁵⁺ bismuth ions was calculated from the quantitative analysis of the spin-orbit split spectrum of the Bi 4*f* photoelectrons. We found out that the spin-orbit split spectrum of the Bi 4*f* electrons was enough intensive and resolved for the analysis. The 4*f* Bi spectrum was compared to the same spectra of Bi-2223 superconductor and to the $Tl_{0.6}Pb_{0.4}Sr_{1.6}Ba_{0.4}Ca_2Cu_3O_y$ superconductor without bismuth [1]. In Bi2223 only one type of Bi⁺³ ions is present. The 4*f* Bi spectrum in the $Tl_{0.7}Bi_{0.3}Sr_{1.6}Ba_{0.4}CaCu_2O_y$ superconductor consists two contributions due to the different valences. We have decomposed the spectrum by the XPS Peak program version 4.1 [2] to get the ratio of Bi³⁺ to Bi⁵⁺. The component from Bi⁵⁺ lines is in higher binding energy than from Bi³⁺ (see the figure below).

The conclusion is that Bi is present in trivalent and in pentavalent form. The ratio of Bi^{3+} to Bi^{5+} was determined as the ratio of the respective peak areas of the fitted spectrum and is equal to 1.87 ± 0.02 .

References:

[1] R.Zalecki, A.Kołodziejczyk, W.Koenig, G.Gritzner, Acta Phys. Polon., A 98 (2000) 513

[2] R.W.M. Kwok, Department of Chemistry, The Chinese University of Hong Kong.