Anisotropy of Li, Al, and C substituted MgB₂ single crystals studied by thermopower

K. Oganisian¹, K. Rogacki¹, C. Sulkowski¹, N. D. Zhigadlo², S. Katrych², and J. Karpinski²

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland ²Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland

In this work we examine the temperature dependence of the in-plane (S_{ab}) and out-of-plane (S_c) thermopower of MgB₂ single crystals doped with holes and electrons by the partial substitution of Li, Al, and C. The thermopower anisotropy has been defined as $\gamma_S = |S_{ab}-S_c|/|S_c|$, where in the denominator is a lower value of $|S_x|$. For unsubstituted crystals, $S_{ab} = 12 \,\mu\text{V/K}$, $S_c = 3 \,\mu\text{V/K}$ and thus $\gamma_S = 3$ have been determined at room temperature. Substitution of Li for Mg, which dopes MgB₂ with holes, results in a moderate decrease of both S_{ab} and S_c without any influence on γ_S . Substitution of Al for Mg, which dopes MgB₂ with electrons and lowers both the π -band and the σ -band energy gaps, decreases S_{ab} and S_c with a larger rate $\Delta S/\%$ Al than $\Delta S/\%$ Li, however γ_S remains also unchanged, even for heavier doped crystals (16% of Al, $T_c = 28$ K). Substitution of C for B, which dopes MgB₂ with electrons and lowers mostly the σ -band energy gap, decreases both S_{ab} and S_c much more effectively and in addition reduces substantially γ_S . At room temperature the thermopower lowers to $S_{ab} = -1 \,\mu\text{V/K}$ and $S_c = -3 \,\mu\text{V/K}$, for a crystal with 10% of C ($T_c = 29$ K), what results in $\gamma_S = 2$. The relatively large reduction of the thermopower anisotropy for the C-substituted MgB₂ suggests that all electronic-structure-related anisotropies may also reduce and this consequence seems to be important for applications.