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ABSTRACT: Two basic formulations of the constant temperature molecular dynamics method are
presented and some generalizations are discussed. A new extension of the Nosé scheme, a multi-s-va-
riable or the Nosé chain method, is proposed.

1. INTRODUCTION

The method of molecular dynamics (MD) is a powerful tool for studying classical
many-body systems and has been widely applied in condensed matter physics, material
science, and fluid dynamics [1, 2] since it was introduced and set up more then thirty
years ago [3-5].

In its traditional formulation MD performs the numerical solution of Newton’s
equations of motion for a system of particles contained in a fixed cell which is subject
to periodic boundary conditions. The total energy of the system is conserved through-
out the simulation and time averages represent fairly closely microcanonical ensemble
averages. The conditions of constant energy, constant volume and constant number of
particles (E, V, N) conditions are, however, not encountered normally in experiments
and they are, in fact, very inconvenient for theoretical analysis. Furthermore, in the
area of nonequilibrium computer simulations the constant energy (E, V, N) MD ap-
proach is unable to create homogeneous steady states [6].

The problem of controlling the temperature instead of the total energy in MD
simulations was a real challenge for many years. The earliest method for constant tem-
perature MD is an ad-hoc momentum scaling procedure, in which the velocities of the
particles are scaled at each time step to maintain the total kinetic energy at a constant
value [7]. This approach generates discontinuities in the phase space trajectory and has
‘been used without demonstrated justification. Thus, the ability to perform thermostat-
ted MD simulations in a statistical mechanically rigorous sense remained unsolved for
almost 30 years. A significant breakthrough was made in 1980s when several methods
for constant temperature MD were proposed. Significant contributions came from pa-
pers by Andersen (1980) [8], Hoover et al. (1983) [9] and Evans (1983) [10], Nosé
(1984) [11], and Hoover (1985) [12].



8 A. C. Brarka

Andersen was the first to show that ensembles other than constant energy could
be realized in MD. He introduced the constant pressure MD method in which the volu-
me becomes a variable and is allowed to fluctuate in accordance with a fixed pressure.
Andersen proposed also a method for constant temperature MD. The method does in-
deed generate canonical ensemble averages but is based on the stochastic change of the
velocities of the particles — effectively is a hybrid of the MD and Monte Carlo methods
— and as such limits its usefulness when realistic dynamical trajectories are required.

Hoover et al. and Evans proposed the first deterministic method for thermostat-
ting in molecular dynamics simulations. In this method an additional term proportional
to the momentum of the particle, — ap, is added to the forces in the equations of
motion. The value of the multiplier, o, changes with time in such a way that the kine-
tic energy remains constant during the course of simulation [6]. Such modifications
or constrained equations of motion generate canonical distribution for the confi guratio-
nal degrees of freedom.

Isothermal, continuous, reversible dynamics capable of mimicking a canonical
ensemble in both momentum and position space was proposed by Nosé. In Nosé’s for-
mulation the usual 6N-dimensional phase space (x, p) of the real system is extended
by one extra variable and its conjugate momentum. The specific Nosé Hamiltonian
guarantees that the equations of motion of the extended system generate averages that
are equivalent to canonical averages.

Hoover reformulated and simplified the extended system method. He demonstra-
ted that the (6N + 2) — dimensional phase space of the extended system can be projec-
ted on (6N + 1) dimensional phase space and the resulting equations of motion, the
Nosé-Hoover equations, generate the canonical distribution.

The papers by Nosé and Hoover established a basic methodology for perfonning
MD at constant temperature. Both approaches has been intensively tested, analyzed
and generalized and are of continuing interest because of their supporting role in per-
forming non-equilibrium MD [13, 6].

In this paper some basic generalizations of the original Nosé and Hoover formu-
lations are presented and a new multivariable generalization of the Nos¢ Hamiltonian
is proposed.

2. THE NOSE SCHEME

In the Nosé approach [11, 14] a physical system of N particles with coordinates
q =(q'p Qs 'n) and momentum p’ = (p’y, p'y..... P’ in a fixed volume V, and
potential energy U(q") is considered. An additional degree of freedom s is introduced
and two phase spaces or systems are defined: the extended virtual system (unprimed
variables), I'=(q, p, s, &), and the extended physical system (primed variables),
=(q, p/, 5, ¥',), where 7 is the conjugate momentum of s. The physical system
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(q’, p) is a subsystem of the extended physical system. The relation between both
phase spaces are defined as

q'=q,p'=p/s,s' =5, n,=nys, dt’ = ais, €y
and the following Hamiltonian is postulated for the extended virtual system

N
H=Y p3/2ms?+ U(q) + 5%/20 + gkTlns. @

i=1
The parameter g is essentially equal to the number of degrees of freedom of the physi-
cal system, @ is a parameter which acts as a “mass” for the motion of s, k is the

Boltzmann’s constant and T is the set temperature. The Hamiltonian equations of
motion are :

aq; oH
ar 5.=Pi/”“2’ )
dp._ oH U @
A
d. oH
T e ®)
dng  oH
T w (E pi/ms? - ng]/s- ©

In the extended virtual system the total energy is conserved and we have a similar si-
tuation to the traditional (E, V, N) microcanonical MD, i.e., assuming the quasiergodic
hypothesis, the time averages along the trajectory determined by Eqgs. (3-6) are exactly
those in the microcanonical ensemble with the partition function

Zp=fd1tsfdsfdpqu8(H—E). )

The essence of the Nosé approach is a simple relation between the microcanonical par-

tition function of the extended virtual system and the canonical partition function of
the physical system, ‘

z,=C [dp' [dq'expl-Ho(p' a)/kT], ®

were Hy = pX p’2 ;/2m + U(q) and C is a constant factor. This relation ensures that the

averages of any quantity expressed as function of p;/s, q; along the trajectory deter-
mined by Egs. (3-6) are exactly those in the canonical ensemble:

1—3oo

¢
lim%!A(p/s,q)p =(Ap’ . ),. ®

<..>, and <...>; denote the microcanonical ensemble average in the extended virtual
system and the canonical ensemble in the physical system, respectively. The Hamilto-
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nian dynamics in the extended virtual space (Egs. 3-6) generates fluctuations of the
kinetic and potential energy in the physical system in accordance with the canonical
distribution of (p’, q") at the fixed temperature T.

3. THE HOOVER SCHEME

The equations of motion in the extended virtual space can be formally transfor-
med, by the relations (1), into the equations of motion in the extended physical space

dg;
- 10
aT T oo
dp; U
— = -— - s'm, 910, . (an
di aq‘.
/
4 'm0, 12)
dr! :
an; 12, 12 I lal? 13)
— = 2 p’ “fms' - ng][s -5 nJ/Q.
A conserved quantity of this system is
H' = E p’f/Zm + s’zn/§/2Q +gkTlns’ | 14
]

which is not a hamiltonian and Egs. (10-13) are no longer canonical equations of
motion. Hoover pointed out that, for the thermostatting mechanism, only the product
of s’ and 7', is significant. Defining { = s'n’ /Q he transformed Egs. (10-13) into a clo-
sed set of equations in (p’, g, §) space

dq;
o, s
dp oU
L, a9
t( o 3
d?
7| St o a7
1]
with the subsidiary equation for s’ ,
s s, (18)

di!
which is not needed to compute the trajectories of the N interacting particles. The set
of dynamic equations Egs. (15-17) defines the so called Nosé-Hoover dynamics. It
generates the canonical distribution of the physical phase space variables [12].
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The Nosé and Hoover schemes have essentially solved the problem of performing
equilibrium MD at constant temperature and both approaches have become standard
tools in MD simulation.

The time scaling necessary in the Nosé scheme makes the calculations more cum-
bersome comparing to the Hoover scheme. The Nosé scheme is, however, the Hamil-
tonian based approach what can have some advantages from a theoretical point of
view [15].

There is no simple and obvious meaning for the extended variables s and { which
provide a coupling to the thermal bath. Formally, s can be considered to be a time or
particle mass scaling parameter. Because of apparent similarities between the Nosé-
Hoover and the constrained dynamics, { is treated as a friction-like variable (which
can be positive as well as negative). There are some indications that the extended
variables can be related to the thermodynamic functions {16, 17].

The value of the parameter () does influence the dynamics in the both schemes. The
parameter Q controls the speed of the response of the thermostat (determine the rateof
fluctuations for the kinetic energy, see e.g., Eq. 17). It can be related to a characteristic
time of the system (typically the average time between atomic collision) and its value,
compared to this characteristic time, should be neither too big nor too small [18].

4. THE GENERALIZATIONS OF THE ISOTHERMAL DYNAMICS

Equilibrium correlation functions computed by Nosé-Hoover and Newtonian dy-
namics are equivalent in the thermodynamic limit {19] but, in general, calculations of
dynamic properties generally show some differences. Furthermore, for small or stiff
systems the isothermal dynamics is often not ergodic and the correct distributions are
not generated. These problems have led to various generalizations of the Nosé and
Hoover schemes,

In 1988 Jellinek and Berry [20] demonstrated that Nosé dynamics Egs. (3-6) is
not unique. In fact, there exist many inequivalent dynamics which generate the same
static canonical ensemble averages. Those different dynamics are defined by the gene-
ralized Nosé hamiltonian,

H=Y pl/2mh}(s) + UF(6)Q) + 521260 + KTv(s) , (19)

where h(s), f(s), u(s),land v(s) are real nonvanishing differentiable functions of s. For
h(s) = s, (5) = 1, u(s) = 1, v(s) = gins the original Nos¢ hamiltonian is recovered. The
generalized Hamiltonian opens the possibility of searching for a dynamics which is
able to mimic adequately not only the equilibrium but also the time dependent proper-
ties of a particular physical system.

To our knowledge this new possibility has been not been exploited yet. We are
aware of only a few applications of the generalized isothermal dynamics [21, 22].
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Recently, Winkler argue that the case i(s) = $2, f(s) = 1, u(s) = 1, v(s) = gins, gives a
better mixing of phase space trajectories in a system with a small number of degrees
of freedom. The reason for a small number of applications of the generalized isother-
mal dynamics probably is its complexity and the fact that, in practice, the generalized
hamiltonian is not so general as is suggested by its definition. First of all, the scaling
of the position coordinates is purely formal as, in fact, the only possible choice is
f(s) = constant [23]. The choice for v(s) is limited and strongly related to the form of
the function h(s). Also the u(s)-scaling of x; has probably only a minor effect on the
main features of the dynamics. Thus, we consider that the essential extension of the
original Nosé scheme is the replacement of the variable s by its functions afs).

The first generalization of the Hoover scheme was due to Nosé himself [24]. His
main idea was to perform a separate temperature control for different degrees of
freedom, e.g., different for translation and molecular rotation. The separate temperature
control can be advantageous in carrying out calculations on a system that has more
than one typical time scale. In such systems, the use of many temperature control
variables, Qj, may provide a more quick global equilibration. The proposed generalized
equations (see Egs. 15-17) are, -

dg;
=7 " wm. o
o 3
B2y
¢ 3
dt; '

The constants g; and Qj have similar meaning as above.

Hoover [25] suggested that the canonical ensemble can be mimicked by a specific
set of non-Hamiltonian dynamics in which the thermostatting force, {p, can be genera-
lized to a combination of different friction coefficients and powers of particle
momentum, 2, {,p".

A different dynamics, the Nosé-Hoover chain method, has been proposed by Mar-
tyna and Klein [26]. They also introduced a set of different friction coefficients, but
in this case the aim was to provide a thermostatting mechanism also for the extended
variable, {. The Nosé-Hoover chain method is defined by the following equations of
motion,

da; 3)
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PURATRUES j5i+1/Qj 41 '
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v Cp-1/Qy -1~ KT). @

It was argued [26, 27] that the above set of equations is able to give a more correct
(canonical) distribution for small or stiff cases.
The fourth generalization of the Hoover scheme is due to Bulgac and Kusnezov

[28]. They proposed a very general set of equations in which the thermostatting force
is added to both equations for momentum and position.

/
q; 3H y
it SLGLICCY 28)
/
dp; oH Py
e RUICHCRS 9)
i
& _H o G
R .- [U— (30)
dt’ apf ! api
& OH e it il
T T Ei TR TT7 (3D
at’  aq) 3

where F, G, h;, h, are arbitrary functions and the equations can be extended to an
arbitrary number of the friction-like variables. Most of generalizations of the Hoover
scheme can be derived from the above equations [26].

The above four generalizations of the Hoover scheme are not derived from a ha-
miltonian. The proof, that the equations (in each case) give the canonical distribution
is based on the conservation of the probability distribution function. Thus, the proof
is necessary but not sufficient for a general system. It is valid only for ergodic systems
and does not guarantee that the correct limiting distribution will be generated [15].

5. THE NOSE CHAIN METHOD

The generalizations of the Hoover scheme are mainly based on introducing addi-
tional extended variables (friction-like variables). We propose a similar extension for
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the Nosé scheme by introducing the following multi-s-variable Hamiltonian,
N M
2 2 2 2
H= 3 (bif2ms; + V@) ,E; (212052 | + g ATins)) + .
i= -

+n§l+l/2QM+l +gM+1kTmsM+1'

The Hamiltonian is defined in the 6N +2(M + 1) dimensional phase space and for

M = 0 reduces to the original Nosé hamiltonian (2). Qj and g ; are constants. Following
Nosé’s arguments [11, 14}, one can readily show that the microcanonical partition
function of the extended virtual system defined by the hamiltonian (32) is proportional
to the canonical partition function of the physical system. Consequently, the average
of some static quantity which is an arbitrary function of p/s; and q in the extended
virtual system is exactly the same as in the canonical ensemble. The equations of
" motion in the multi-s-variable formulation are

dp; 9H  oU ; (34)
dr O, oq;
f;—tl-'—“ -—ggl-= ?p?/mslz-glkT /51 (36)
j’%{= "%%=("?—1/Q1—1S12"gj"T)/sj- 9
dsgt+1=3n8’f+1=nM+l/QM+l’ (39)
dﬁ]:t” = -Fsiix - (TC}O(,/QMsf“l -8+ 1 kT Syv1- 40)

The above set of equations strongly resembles the Nosé-Hoover chain method and we
call it the Nosé chain method. Obviously, it can be further generalized along the line
proposed by Jellinek and Berry, e.g., the set of s-variables, {sj}, can be replaced by
the set of their functions, {hj(sj)}.

6. CONCLUSIONS

In this work we have discussed some recently proposed constant temperature
molecular dynamics methods. It has been pointed out that the main progress in this
field is based on various generalizations of the original Nosé and Hoover schemes.
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Also the Nos¢ chain method, based on the Nosé scheme has been proposed. The
method, as for the Nosé-Hoover chain method, is expected to help establish ergodic
conditions. Thus, the chain dynamics should be quite useful for cases where the other
approaches fail, e.g., for small or stiff systems. Computationally the method is relati-
vely inexpensive as the extra s-variables form only a single one dimensional chain,
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