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ABSTRACT: We have formulated a new computational method for the prediction of the sponta-
neous polarization density P in ferroelectric liquid crystals (FLCs) from atomistic models of molecu-
lar structure. Our theoretical model combines the zig-zag model of smectic C ordering {7] with the
modular mean-field theory formalism of Photinos et al. {10}, and makes use of specially designed
hybrid Monte Carlo methods for evaluating statistical averages. We examine a number of test cases,
and demonstrate that this model yields reliable semi-quantitative predictions of P. Our results provi-
de strong support for the Boulder model [6] for P. Moreover, our approach enables detailed studies
of the molecular origins of P, and should prove to be a useful tool for the design of new FLC
materials. :

I. INTRODUCTION

Liquid crystalline materials are of interest both as unique phases of matter and
as components of electro-optic devices. Despite increased activity in the field, and a
market for liquid crystal devices approaching $ 5 billions/year, the design of new li-
quid crystal materials remains as much an art as a science, proceeding by trial and
error aided by a plethora of poorly understood empirical rules.

The potential for computer simulation and theory to illuminate this situation is
great. Despite their complexity, liquid crystal molecules (typical examples of which
are shown in Figﬁre 3) are small by macromoiecuiar standards, and the difficuliies in-
herent in the modelling of such systems are correspondingly reduced. Nevertheless,
significant challenges remain, owing to the complexity of liquid crystal structure and
interactions, the high degree of cooperativity present in the more ordered liquid crystal
phases, and the broad range of timescales that characterize the microscopic dynamics
in these materials. Although systematic theoretical studies have been carried out for
simple model systems such as hard spherocylinders and soft ellipsoids (see, for exam-
ple, [1]), only a limited number of studies of realistic liquid crystal models have been
attempted [2].
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The intrinsic difficulty of computing liquid crystal properties from first principles
depends strongly on the particular property being considered. Most challenging, per-
haps, is the calculation of the phase diagram. To date, no convincing calculation of
the phase behavior of an atomistic model liquid crystal has been reported. The scale
of some problems can be greatly reduced by the application of detailed mean-field
theories or cluster approximations. However, such calculations have primarily been ap-
plied to the interpretation of NMR measurements, and their potential range of applica-
bility has only begun to be explored.

We have recently started to develop techniques for the first-principles calculation
of liquid crystal properties, utilizing large-scale computer simulation, cluster approxi-
mations, and mean-field theory. In this paper, we describe our first steps toward the
goal stated in the title, namely the directed, computer-aided design of ferroelectric li-
quid crystals (FLCs). Specifically, we present a novel mean-field model for ferroelect-
ric polarization density in smectic C” liquid crystals, and report some preliminary re-

sults obtained using this model.
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Fig. 1. Geometry of the smectic C and c* phases. Liquid crystal molecules are arranged in layers,
and are oriented, on average, along the director, fi, which is tilted by an angle 8 with respect to the
layer normal Z . In the smectic C° phase, a spontaneous ferroelectric polarization appears in the dire-
ction normal to the plane defined by i and % (the tilt plane).

Liquid crystals can be broadly defined as phases of matter having order interme-
diate between that of isotropic fluids and three-dimensional crystals. The geometry of
the liquid crystal phase discussed in this paper, the smectic C phase, is displayed in
Figure 1. This phase is characterized by molecular orientational order (molecular long
axes align, on average, along a particular direction, specified by the director, n), one-
dimensional translational order (molecules are arranged in layers perpendicular to the
z axis), and #ilr order (molecules are tilted, on average, with respect to the layer
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normal %, so that aand Z are not collinear). Only short-range translational order is
present within each layer, so this phase can be thought of as a stack of two-dimen-
sional liquid layers. In fact, smectic C liquid crystals are monoclinic fluids! Moreover,
as discussed below, the low symmetry of this phase implies that smectic C liquid crys-
tals composed of chiral (non-centrosymmetric) molecules (denoted smectic C*) are
ferroelectric fluids {3]. The current high level of interest in FLCs is, in large part, due
to the invention of fast, bistable electo-optic devices (surface-stabilized FLCs, or
SSFLCs) based on these materials [4].

The possibility of ferroelectricity in liquid crystals was first recognized by Meyer
[3], who advanced a simple symmetry argument predicting that the smectic c* phase
should be ferroelectric. The essence of his argument is as follows: an ordinary (non-
chiral) smectic C phase exhibits mirror reflection (o) symmetry with respect to the tilt
plane (the plane defined by f and z) and twofold rotational (C;) symmetry about the
normal to the tilt plane ¥ (a consequence of the it — —h symmetry of the smectic C
phase). The introduction of chiral molecules destroys the mirror reflection symmetry
of the phase, which leads to polar order along the axis normal to the tilt plane (the y
axis). Polar order does not develop along the x and z directions because local C, sym-
metry is still present in the smectic C" phase. If the chiral molecule contains polar
groups, then the polar ordering will result in a macroscopic ferroelectric polarization
density P = ny/. (Inthe following, we will refer only to the scalar polarization density
P= Py.) The smectic C phase has only local C, symmetry because this phase gene-

rally exhibits a helical twist of the tilt direction about the layer normal. This leads to
P = 0 for bulk smectic c* samples. However, if the helix is suppressed (e.g. by surface
interactions, as in SSFLCs [4]), then a nonzero P is manifested.

The foregoing symmetry argument for simply predicts that a nonzero P should
be present, but provides no information about the magniuide or sign of P (by con-
vention, P is positive if it is along Z x 0 and negative otherwise). The measured
values of P vary widely from material to material, ranging from immeasurably small
(|P] <0.1 nC/cm?) to very large (|P| = 1100 nC/cm?). Despite a wealth of empiri-
cal information, the features of molecular structure and microscopic ordering responsi-
ble for such wide variability in |P| remain obscure. An understanding of the variation
of P with molecular structure requires a microscopic theory for smectic C" ordering.

One possible microscopic mechanism for ferroelectric polarization in FL.Cs has
been sketched by de Gennes (see [S], p. 320). He considered molecules having the
symmetry of a fish, i.e. with a distinct head and tail and a distinguishable front and
back. In the smectic C phase, each molecule prefers to be at a certain angle with res-
pect to the layer normal. Moreover, due 10 the monoclinic symmetry of the smectic
C phase, the molecule has an anisotropic distribution of orientations about its long axis.
In de Gennes’ example, a fish-shaped molecule prefers to have its back near the center
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of the layer. Because there is no symmetry operation of the smectic C phase that
transforms a molecule with its back near the center of the layer to one with its front
near the center of the layer, the probabilities of these two molecular orientations will
be different in general. Thus, even the achiral smectic C phase possesses polar orien-
tational ordering. This polar ordering is not manifested in a macroscopic ferroelectric
polarization, however, because of the mirror reflection symmetry of the phase. A given
molecular configuration and its mirror image with respect to the tilt plane make
contributions to P of equal magnitude but of opposite sign and are present with equal
probability in the smectic C phase, so P = 0 overall. This is not true in the smectic c’
phase, however, because the mirror image of any configuration of a chiral molecule
is a molecule having the opposite handedness, which is not present in -an enan-
tiomerically pure smectic C" material. Thus, we no longer have P = (. Retuming to
de Gennes’ example, the two orientations (back near center of layer and front near
center of 1ayer) of a chiral fish with an electric dipole moment pointing out of its right

“eye (i.e. with distinguishable right and left sides) make contributions to P of equal

magnitude and opposite sign, but are present with different probabilities, and so P # 0.
(Notice that two molecular configurations related by the C, symmetry operation make
contributions to P having the same sign and magnitude.) This microscopic mechanism
for P does not require any special intermolecular interactions associated with the chiral
groups in the molecule. P arises as a straightforward consequence of the polar orienta-
tional .ordering already present in the achiral smectic C phase.

3 .

P

e

by

=y

Fig. 2. Schematic depiction of the Boulder model for ferroelectric polarization in the smectic c
phase. Two orientational states of an FLC molecule within the smectic C “binding site” are shown,

illustrating how the monoclinic symmetry cf the mean-field potential produces polar orientational
anisotropy about the molecular long axis.
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The Boulder model [6] combines de Gennes’ argument with the zig-zag hypothe-
sis [7], the assumption that molecular cores are, on average, more tilted than tails in
the smectic C phase, in order to construct a microscopic model capable of specific pre-
dictions regarding P. In this model, the interactions of a given molecule with surroun-
ding molecules are represented by an effective mean-field potential (“binding site”)
which has the form of a bent cylinder with repulsive walls. As shown in Figure 2, the
zig-zag form of this potential breaks the rotational symmetry of the molecular orienta-
tional distribution about the director, and leads to a net ferroelectric polarization den-
sity if the molecule is chiral. The physical inequivalence of core and tail regions
implies that, on average, they will have different tilt angles. The preponderance of
experimental evidence seems to support the assumption that cores are more tilted than
tails. Note that the mean-field potential in the Boulder model is assumed to be achiral
(i.e. mirror-symmetric with respect to the tilt plane). The chirality responsibie for polar
ordering is manifested at the single-molecule level in this model, and molecular chira-
lity is assumed not to lead to any collective chiral ordering. Of course, the presence
of a helix is a manifestation of collective chiral ordering, but the fact that the helical
pitch is large (equal to many smectic layer spacings) for most smectic C" materials is
evidence that such collective effects are weak. To date, the Boulder model has been
used primarily as a conceptual aid, and has been used with some success to rationalize
the observed sign (and to a lesser extent the magnitude) of P for a variety of smectic
C” materials [6]. The model described in this article represents an attempt o turm the
Boulder model into a computational tool capable of yielding quantitative predictions.

Two other microscopic models for P are of note. In contrast to the Boulder mo-
del, the theory of Osipov and Pikin [8] is based on the assumption that specific chiral
interactions are responsible for ferroelectricity in the smectic c* phase (i.e. that the
microscopic ordering of the smectic c* phase differs fundamentally from that of the
smectic C phase). Very recently, Photinos and Samulski have argued that the micro-

scale segregation of chemicaily distinct parts of liquid crystal molecules in the smectic |

C phase, combined with a zig-zag molecular shape, can lead to rotational anisotropy

about the nematic director, and hence produce nonzero P for chiral molecules [9]. Like
the Boulder model, this model assumes that there is no fundamental difference in the |

microscopic ordering of the smectic C and c phases. As far as we know, neither
theory has yielded quantitative predictions of P for specific materials.

II. A MEAN-FIELD MODEL FOR THE SMECTIC C PHASE

As mentioned in the introduction, we attempted to turn the Boulder model into

a computational tool capable of quantitative predictions of P for FLCs. In doing this
we tried to introduce the minimum number of arbitrary assumptions. We assume
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a simple form for the mean-field potential experienced by a single molecule in the -
smectic C phase, and carry out a statistical average over all orientations and conforma-
tions of a molecule subject to this potential, with a specific representation of the mole-
cular structure and intramolecular interactions. We further assume that smectic C orde-
ring is universal in the sense that a uniform parametrization of the mean-field potential
can be used for all smectic C materials. The limitations of this assumption will be dis-
cussed in more detail below. The molecular model and interaction potential used in
these studies are described in Section 111, and the methods used for performing statis-
tical averages are discussed in Section IV. In this section we describe the form of the
mean-field potential used in this work. :
To describe the mean-field potential experienced by a single molecule in the sme-

ctic C phase, we adopted the modular mean-field formalism of Photinos et al. [10]
which is an extension of earlier work by Marcelja [11] and Luckhurst and co-workers,
[12]. This theory is a generalization of the Maier-Saupe theory of nematics [5] to fle-
xible molecules. The Photinos theory represents the potential of mean torque as a sum
of orientational potentials acting on individual rigid molecular segments, together with
nearest-neighbour segment interaction terms. This theory has been used with consider-
able success to model NMR measurements on nematic liquid crystals and flexible so-
lutes in nematic soivents [10].

For a simple chain molecule with a discrete set of conformations, the potential
of mean torque in the nematic phase has the form

N, N,-1
Vimg@,m = -0y 3 P80 -0, ¥ P38, i),

i=1 i=1

M

where @ denotes the orientation of the molecule, # is a conformation index, § . is a
o o, . s ’ 1
unit vector along the ith rigid molecular segment (generally taken to coincide with a

nearest-neighbour bond), N is the number of segments, w, and w, are coupling cons-
tants, and

. n 1 . o X
P(s,-,sj;ﬁ)=.5[3(si~ﬁ)‘(sj-n)—s,--sj]. )

Here, as above, i is the nematic director. As discussed by Photinos et al. [10], three
cases can be distinguished: (1) the uncorrelated bond model (wy =0); (2) the chord
model (w; = wy); and (3) the biaxial block model (w; # wp). This general form for the
potential of mean torque is dictated by the requirement of i — ~h symmetry within
the framework of a second-rank tensor dependence [10].

With this form of mean-field potential, the average of any quantity A(w, 1) can
be obtained by averaging over all orientations and conformations,
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@=z1y fdmA(w,n)G(n)exp{-B[me(w,n) * Vi 1}, %)
n

Here B = 1/(kgT), Vi, (n) is the intramolecular potential energy for conformation n,

G(n) is a kinetic metric correction [10], and

Z=Efdma(n)exp{-ﬁlvmf(w,n) + V(1Y @)
n
is the configurational partition function. -
We decided to use the biaxial block model in the preseni study because It 1s
easily extended to branched molecules, and because it has been found to give the best
overall description of the ordering of flexible solutes in nematic solvents [10]. We ex-
tended this model in several respects to construct a mean-field theory appropriate for
smectic C materials and to remove the restriction to a discrete set of conformational
states. (As described in the Section IV, we used a fully flexible molecular model). Our
mean-field potential can be written in the form
i " s apy O
Vi) = = 3 00 P(3:3:8) - 3 01;P(8;830,) - 09 P(8c.8:R¢)
i=1 ij
where the first sum runs over all bond segments in both liquid crystal tails, the second
sum runs over all nearest-neighbour pairs of bond segments in both tails, and Athe third
term is an orientational potential that couples to the liquid crystal core, with s . a unit
vector parallel to the core end-to-end vector. n, and n_ are the reference directors for

tail segments and the core segment, respectively. Zig-zag ordering can be imposed on |

the molecule by choosing flt to be inclined with respect to fxc. Different coupling con-

stants are assigned to each segment and to each segment pair to account for the exis-

tence of a number of chemically distinct bond types in typical FLC materials. The @o-
lecular core is defined as the minimal contiguous (connected) group of atoms contain-
ing all rings. : .

In this case, we have a slightly different expression for the average of a quantity
A,

(a)=2z"1 j AtV ANy expl-BLV i) + Vi N1} (6)

where . . y
Z= fdrNexp{—mvmf(r )+ Vit

section.
To simplify the expression for the potential of mean torque, we have assumed

that the coupling constants depend only on the segment lengths:

-

D

The form of the intramolecular potential energy Vim(r)N) is detailed in the next

i
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Computer-Aided Design of Ferroelectric Liquid Crystals 33

g |s;]?

@y;;=Wils; s ®

m0c=W0cIsc|2' ‘
where s; is the ith bond vector and s, is the core end-to-end vector. Finally, to reduce
the number of effective parameters, we chose W, / W, = 0.85 (this ratio was found to
be optimal for alkanes dissolved in nematic solvents [10]) and W, = W,,.

With these simplifying assumptions, the model depends only on two parameters,
the orientational coupling constant, W,,, and the tilt angle of the core reference director
relative to that of the tails, 6, = cos™'(h ¢ * ). If cores are assumed to be more tilted
than tails in the smectic C phase, then i, x i |z X i, so that P in the direction of
n, X i is positive.

A few comments are in order regarding the assumptions that have been made in
deriving this mean-field potential. First of all, note that we are using a purely orienta-
tional potential. A proper mean-field potential for a smectic would also depend on the
z coordinate of the molecular center of mass. The potential that we have written down
represents the effective mean-field potential obtained by integrating out the z-depen-
dence. Because P depends only on the effective single-molecule conformational-orien-
tational distribution (and not on the z distribution), such a procedure is justified. Se-
condly, note that the key physical assumption is the assumption of zig-zag ordering,
which is introduced into the model via independent core and tail reference directors.
This is the sole source of rotational anisotropy in the model. Each term in the potential
is invariant under rotation about the corresponding reference director, but the introduc-
tion of two reference direciors leads to a global orientational symmetry breaking.
Thirdly, note that our model does not distinguish between smectic C and smectic c*
liquid crystals. The mean-field potential is achiral (i.e. invariant under mirror reflection
in the plane defined by fi, and n ), which implies that chirality is manifested only at
the single-molecule level in our model. Finally, an underlying assumption of our mo-
del is that smectic C ordering is universal in the sense that a uniform parametrization
of the mean-field potentialkcan be applied to a variety of FLC materials. This assump-
tion is necessary if our model is to have predictive power. The remaining assumptions
are made in the interest of simplicity, both to reduce the number of arbitrary parame-
ters in the model and to facilitate its application to a wide variety of FLC materials
in a uniform and automatic way.

HI. MOLECULAR MODEL AND FORCE FIELD

The molecular model used in this study is a hybrid between the all-atom and ef-
fective-atom representations of molecular structure. We use an all-atom representation
for aromatic rings (i.e. hydrogen atoms are included explicitly) and an effective-atom
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representation for aliphatic tails (CH;, CH,, and CH; groups are treated as single
spherically symmetric interaction sites). The effective-atom representation greatly redu-

ces the computational effort required to carry out statistical averages by reducing the |

number of pair interactions that need to be computed (by at least a factor of 4). While
this approximation works reasonably well for liquid alkanes [13], the corresponding
approximation for benzene appears to be t0o crude in that it grossly misrepresents the
molecular shape and charge distribution [14]. For this reason our molecular model re-
tains explicit hydrogens on aromatic rings.

The intramolecular interactions were represented by a specially designed empiri-
cal force field, the hybrid force field (HFF), which is currently being developed at the
University of Colorado. We are developing this force field in order to correct some
of the most serious shortcomings of standard empirical force fields and to represent
intramolecular interactions within the hybrid representation described above. HFF can
be written in the form

VHFF(rN) = Vb M Va + Vt + Vi *+ Vvdw +V ®
where the various terms correspond to bond streiching, bond angle bending, dihedral
torsion, improper torsion, van der Waals, and Coulomb interactions, respectively. We
chose fairly standard functional forms for the individual terms in Vg, but developed

our own parametrization in order to represent intramolecular interactions in liguid cry-
stals faithfully. To this end we carried out extensive ab initio quantum chemical calcu-

coul ®

lations to derive accurate equilibrium geometries and torsional potentials. HFF will be k

described in detail in a subsequent publication {15].

For our single-molecule simulations, we found it necessary to introduce an addi-
tional elongation potential, Vekmg, to prevent molecules from folding due to intramole-
cular van der Waals attractions. The tendency to fold is an artifact of carrying out si-
mulations in vacuum, in which case the intramolecular interactions are unscreened by
intermolecular interactions. Vo, has the form

V

elong

-0 |re. | (10)

where r, is the molecular end-to-end vector (the vector joining the endpoints of the
two talls) For the simulations reported here, we took o = (.15 kcal/mole/A, which is
the value obtained from a crude estimate of the decrease in the van der Waals energy
of an alkane chain upon folding.

IV. COMPUTATIONAL METHODOLOGY

Because of the large number of degrees of freedom for evgn/'fa single liquid crys-
tal molecule, carrying out the statistical average of equation 6 is a nontrivial task, par-
ticularly for a fully flexible molecular model. For this reason we resorted to computer
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simulation for the evaluation of statistical averages. In this study, we adopted the hyb-
rid Monte Carlo (HMC) method {16]. In the next few paragraphs we briefly describe
this method and discuss other details of the simulations.

The HMC method was originally developed in the context of lattice field theory
[16], but has recently found application to problems in condensed matter physics [17].
HMC is a hybrid of microcanonical molecular dynamics (MD) and canonical Monte
Carlo (MC), in which short MD trajectories are generated to propose trial moves for
a MC procedure. A single HMC move consists of the following three steps:

1. Given the current configuration v, sample new momenta pN from a Maxwellian
distribution,

ok (P) = 25 exp| -B ¥ T
i=1 -

(11

where the m; are the particle masses and Zg is a normalization factor.

2. Evolve the system forward in time for ~NMD MD timesteps of size At according to
the equations of motion generated by a guidance Hamiltonian Hg, to produce a new
set of coordinates and momenta 'V ,p’N ).

3. Accept the new configuration with probability

P, =min[1,exp(-BAH)] (12)

where AH =H@™N p™) - H@V, p") is the change in the true Hamiltonian H.
Otherwise, reset the coordinates to .

Provided that the MD algorithm used to integrate the equations of motion is time
reversible and area-preserving (|J| = 1™ p™) 3¢ pM)| = 1), it is easy to show
that the HMC procedure satisfies detailed balance and generates configurations gover-
ned by a canonical distribution [16]. MD algorithms that satisfy these criteria are des-
cribed below. The HMC method depends on two parameters, Ny, and At, which need
to optimized in general. In practice, the optimization with respect to Ny, is the most im-
portant. Notice that if the equations of motion were integrated exactly, and if Hg = H,
the discretization error AH would be zero, and thus P, . would be unity (the Hamilto-
nian is a constant of the motion). The use of a discrete-time approximation for the dy-
namical evolution of the system (and/or the use of a guidance Hamiltonian Hg # H)
leads to a finite discretization error and an acceptance rate smaller than unity.

HMC resembles canonical dynamics {18, 19] in that it uses MD to generate a ca-
nonical ensemble. What are the advantages of HMC? Firstly, HMC is guaranteed to
yield a canonical ensemble, whereas canonical dynamics is known to exhibit nonergo-
dic behavior, and hence fail to produce a canonical distribution, in some cases [191.
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HMC is, therefore, more reliable than canonical dynamics. More importantly, HMC
is a much more flexible technique than canonical MD. Some indication of the flexibi-
lity of HMC is reflected in the possibility (alluded to above) of generating the dyna-
mics from a guidance Hamiltonian H different from the true system Hamiltonian H.
It is even possible to use a guidance Hamiltonian with an explicit time dependence,
provided that the time variation is symmetric over the interval of the HMC trajectory.
In our simulations of FLC materials, we used an HMC scheme in which some part of
the potential energy varies sinusoidally between the true potential energy and a modi-
fied potential energy over the course of an HMC trajectory,

RS RS

V(e =vEM) + %{1 - cos 'N‘;i%? }[Vmod(r"’) -vaMy, 43
This variant of HMC, which we call potential variation HMC (PVHMC), enables one
to dynamically remove large energy barriers separating disjoint regions of configura-
tion space during the course of a single HMC trajectory, thereby greatly increasing the
barrier-crossing rate in some cases. We have found PVHMC to be very effective in
improving conformational sampling in simulations of LC molecules, which in many
cases have large barriers to internal rotation. In this case, we typically modify from
1 to 3 torsional potentials per molecule, reducing the torsional barriers by as much as f
a factor of 5 in the course of an HMC step. A number of other variants of HMC are
possible in the context of molecular simulation, and it is possible to mix different sorts
of HMC moves in a given simulation, or mix HMC moves with other types of MC
moves (for instance including volume-changing MC moves to generate an NPT
ensemble). A more detailed discussion of HMC will appear in a forthcoming publica-
tion {20].

The requirement that the MD algorithm used in HMC be reversible and area-pre-
serving is, as it turns out, not a disadvantage. In fact, one of the simplest and most
widely used MD integration algorithms, the leapfrog integrator [21] (which is equiva-
lent to the familiar Verlet integrators), satisfies these criteria. Unfortunately, it appears
to be very difficult, if not impossible, to construct a reversible and area-preserving
integrator for systems with constraints (e.g. a molecule with constrained bond lengths).
Because constraint dynamics is one of the most commonly used time-saving techni-
ques in molecular simulation, this would appear o0 be a serious drawback of HMC.
Fortunately, a reversible and area-preserving multiple-timestep MD (MTSMD) method
(essentially a nested leapfrog integrator) has recently appeared {22, 23], which is at
least as efficient as constraint dynamics for molecular simulations [24, 25]. As a con-
sequence of the area-preserving property, both the leapfrog and MTSMD integrators
have intrinsic long-term stability, which makes them excellent integrators for both MD
and HMC.
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In this study, we used a MTSMD scheme with four levels of force evaluation.
Nonbonded (van der Waals and Coulombic) forces were evaluated every 6.5 fs (We
refer to this as the large integration timestep). Bond stretching forces were evaluated
12 times per large integration timestep (roughly every 0.5 fs), bond angle bending for-
ces were evaluated 6 times per large timestep, and the remaining components of force
(dihedral torsion, improper torsion, mean-field, and elongation forces) were evaluated
3 times per large timestep. This scheme was found to be optimal for molecular sys-
tems with implicit hydrogens, and is about 50% faster than constraint dynamics [25].
In order to use such a large timestep for systems with explicit hydrogens, we set the
hydrogen mass equal to that of carbon. Because the equilibrium properties are inde-
pendent of mass distribution, this has no effect on the static properties of the system,
and enables us to use a significantly larger timestep than would otherwise be dictated
by the high frequency of the C-H streich mode.

The optimization of the HMC algorithm with respect t0 Ny is discussed in
detail elsewhere [20]. For molecular fluids, we find that Ny, must be relatively large
(Nyp 2 200) in order for HMC to be of comparabie efficiency to MTSMD. The situa-
tion for small Ny, is analogous to that for a random walk with a very small stepsize,
in that the system does not have time to flow very far through configuration space
before the velocities get reset. This leads to poor performance in terms of decorrela-
tion of observables. On the other hand, it does not make sense to make Ny, larger
than the integrated autocorrelation time for the observable of interest, as this will lead
to a greater expenditure of computational effort for the same number of independent
measurements. In the simulations described here, we chose Ny, = 400, which led to
integrated autocorrelation times for P ranging from 1 to 8 HMC steps. Each simulation
consisted of 20% PVHMC moves and 80% standard HMC moves, which yielded an
acceptance rate of ~ 90% in all cases.

We carried out simulations for 28 compounds, displayed in Figure 3, for several
values of W, and 6!, Each simulation consisted of an initial conjugate-gradient mini-
mization of the potential energy of the molecule in the external potential
Vit long) followed by a 2 x 10° MD timestep (500 HMC step) équilibration run
and a 2 % 10° MD tirnestep (5000 HMC step) production run.

Figure 4 displays a number of instantaneous molecular configurations, projected
onto the tilt plane, from a simulation of W314, with W,=0.07 kcal/mole/A?,
8, = 45°. Clearly, the molecule explores a wide range of conformations and orienta-
tions. Tests of our computational scheme for achiral molecules reveal that the expected
symmetries of the conformational and orientational distributions are respected 0 a
good approximation, so we are reasonably confident that we are achieving adequate
configurational sampling in our simulations. This conclusion is supported by the obser-
vation that our results are essentially independent of initial conditions.
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Fig. 3. Chemical structures of the FLC materials studied in this article.
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The choice of reasonable values for W, and €, is of key importance for our cal-
culations. For the purpose of fixing W, we made use of C!> NMR measurements of
orientational order parameters for specific bond segments in several compounds from
the homologous series An, Bn, and Cn in the smectic C phase [26] (see Figure 3. We
performed a series of simulations for a single member of the Cn series, C7, and found
that the NMR order parameters were well reproduced for Wy =0.07 kcal/mole/A2,
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- with 8, = 15°. This value of W, was used for most of the runs reported here. The cal-
culated order parameters depend much less strongly on 6, and so the NMR measure-

ments do not serve to constrain this parameter. For this reason, we carried out runs for

several different values of 0. In all, four series of runs were carried out: for
Wy =0.07 kcal/mole/A2, 8, = 15°, 30° and 45°, and for W, =0.06 kcal/mole/A?,

N r el
S
PN
LSS

X

Fig. 4. A series of instantaneous configurations, projected onto the tilt plane, from a mean-field
simulation of W314, for W, = 0.07 keal/mole/A?, 0, = 45°. This figure gives some indication of
the large configuration space sampled by individual molecules in the smectic C phase.

The ferroelectric polarization density P is related to the y-component of the aver-
age molecular dipole moment (u) via P = p(py), where p is the molecular number den-
sity. For the compounds studied here, we assumed a mass density of 1 gm/cm2 in cal-
culating P, which is a reasonably good approximation for most smectic C materials.
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Table. Measured and calculated polarization densities for the compounds shown in Figure 3.
Calculated polarization densities for four different parameter sets are listed: (1) Wy=0.07
gealfmole/A%, 8., =159 (2) W, = 0.07 keal/mole/A%, 6, = 30% (3) W, =0.07 kcal/mole/A%,
001 = 45° (4) Wy = 0.06 kcal/mole/.f\z, 0,1 = 15°. Temperatures and measured optical tilt angles
(where known) are also listed.

Pca]c(nC/cmz)
Compound| T (°C) | 80()* | Peyp(nClem?)®
(1) (2) &) “)

wi62 | 30 | 315 +98 +23122 -17425 -8+24 ~16+22
w206 | 34 - +111 +H46+22 | +126123 | +139122 | 436419
w214 | 283 | 303 +81 | 410521 | +167424 | +166124 +46120
w215 | 30 | 268 +24 +80123 | +121£21 +77423 +36121
waie | 423 | 229 +118 +38120 +58+23 | +132425 +7£21
w347 | 35 27 +64 +67126 +89122 | +194227 +93121
w348 | 1085 | - +121 +65t18 | +104£18 | +12119 +56117
MDW7 | 30 - -125 -22128 -98427 | -112128 -11+29

A7 71 20 -140 -94128 -99127 | -105£25 ~71429

A8 66 | 20 ~150 43128 | 117127 | -178%28 -35430

A9 61 18 -40 ~79+26 | -126329 | —173%33 -89+30

B7 53 - -80 91424 | -167+25 | -160%26 -59130

c7 44 | 24 280 | -10326 | -15828 | -196%30 ~99132

c8 37 | 21 —280 | -102+26 | -174130 | -219433 35133

c9 43 20 -130 | -108129 | -132£29 | -199430 ~83130
w193 | 38 | 258 +43 | 414530 | 4305132 | +440133 | +137134
wail | 32 | 21 +37 | 4218447 | 430141 | 4357253 | +142443
w213 | 162 | 205 -15 -30£25 | -194136 ~72423 -93127
w3il | 10 | 301 +49 +61121 +54123 | +112430 +45121
w313 | 65 35.2 -305 | -202457 | 238455 | -256%68 | -12349
w34 | 33 32 426 | -303t60 | 25162 | —469+70 | -116%55
w3l | 20 | 25 —252 | 202462 | -345t65 | -517£75 | -138166
w317 | 30 | 255 -129 | -180+62 | 36163 | -390+69 | -211%59
w361 | 108.5 | - -378 | -15456 | -249164 | 34876 | -227161
w363 | 25 26.5 -870 | 273172 | -547487 | 609198 | -231180
w364 | 25 31 -718 | -200483 | -334191 | -604196 | -233476
w365 | 25 305 -880 | -151389 | —430#81 |-584%102 | -175475
w34 | 70 | 245 -183 | -15447 | -257348 | -316160 | -163+47

V. RESULTS AND DISCUSSION

The calculated ferroelectric polarization densities, Py, for the compounds shown
in Figure 3 are listed in Table I, together with the experimentally measured polariza-
tion densities, Pe,p [27, 28]. The experimental values listfid are the saturated values,
i.e. the maximum values of P measured in the smectic C* phase for the materials in
question. Roughly half of the materials studied do not have a smectic c’ phase. The
values of Pexo listed for these compounds are the extrapolated polarization densities
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obtained from measurements on mixtures of these compounds with achiral smectic C
host materials [6]. Also listed in Table I are the optical tilt angles Bopt, where known,
which vary from 18° to 35°.
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Fig. 5. Scatier plot of P,,, vs. P,  (symbols). The dashed line is the line Pexp =P, The
experimental and calculated values are reasonably well correlated, although some large deviations
from the line P, = P, are evident.

In general, our model reproduces qualitative trends in the data well. The correct
sign of P is observed in almost all cases (the only exception being W162), and a gene-
ral correlation between the experimental and calculated magnitude of P is evident.
This can be seen in Figure 5, which is a scatter plot of Py vs. Py, for W, = 0.07
kcal/mol/A2, 0,1 = 45°. There is a clear tendency for the data points to follow the line
Peatc = Pexpr although there are some notable deviations, discussed in more detail
below.

Several features of the data shown in Table I are worth noting. First of all, we
see that the uncertainties in P, range from 20 nC/em? to 100 nC/em?, and generally
increase with increasing P. This implies that the current method is not well suited to
the study of low-P materials or to the investigation of small variations of P with che-
mical structure. It is currently feasible for us to reduce the uncertainties in our calcula-
tions by a factor of 2 (by carrying out runs that are 4 times as long). In the long run,

however, an analytic solution of Equation 6 should be the best way of eliminating sta-

tistical uncertainties. Even if statistical uncertainties are eliminated, however, it is clear
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Computer-Aided Design of Ferroelectric Liquid Crystals 43

that our model is too simple o reproduce many of the observed variations of P with
molecular structure, if a fixed parametrization of V_; is used. For example, our model
is relatively insensitive to changes in the number of methylene groups in the nonchiral
tail, and so is not capable of reproducing the strong dependence of P on n for the An
and Cn homologous series. Our model is also relatively insensitive to subtle changes
in the structure of the core, for instance in the series of compounds W313, W314,
W316, and W317, in which P is experimentally observed to depend strongly on the
placement and orientation of the bridging ester group in the core. Both of these effects
are collective in nature (reflecting changes in global ordering with molecular structure)
and so are not included in the single-molecule theory used here. Although such effects
could in principle be accommodated by varying the parameters in Vg, this would re-
quire abandoning the universality assumption, and would not be in keeping with the
spirit of our approach.

Secondly, it is evident that our model severely overestimates the magnitude of
P for materials having lateral substituents at the first carbon of an alkyl tail (W193,
W211, and W213). This may reflect a deficiency of our current force field, a break-
down of the universality assumption (significantly smaller values for W, and/or 6,,,
may need to be used for these materials), or some more fundamental shoricoming of
our model.

Finally, we observe that the spontancous polarization densities of high-P mate-
rials (W363, W364, W365) are reproduced by the model only for the largest value of
8, (8., =45°), and that the best overall agreement between theory and experiment
for all compounds is obtained for this value of 8. At present, we are unable to judge
whether such a large value of 9, is physically reasonable. The resolution of this issue
awaits experimental measurements capable of providing detailed information about the
relative orientations of core and tail groups in FLC molecules.

Several factors complicate the interpretation of our results. For one thing, the
experimental data listed in Table I were collected under a variety of thermodynamic
conditions. In particular, the optical tilt angles vary by almost a factor of 2 for the
compounds listed, which makes a uniform comparison of P, with P, difficult,
since P is expected to have a strong dependence on the tilt angle. Moreover, it is not
Clear how to relate the 6, of our model to 8, since it is not possible to calculate
8, Within the framework of our model. Finally, the experimental measurements them-
selves are subject to considerable uncertainty. For these reasons, and because the uni-
versality assumption necessarily limits the quantitative predictive power of our model,
we chose t0 use raw, saturated polarization densities for purposes of comparison, with
the implicit understanding that only semi-quantitative agreement of theory with
experiment can be expected.
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Disfavored

Favored

Fig. 6. The three molecular conformations important in the Chisso effect. Conformation A g)is
assumed to be energetically preferred relative to conformation C (g*). This assumption leads to the

prediction of a net negative polarization density, arising from the dipole moment of the second bond

in the chiral tail. In this picture, the backbone of the chiral tail beyond the second bond is assumed
to lie in the tilt plane, with the core more tilted than the tail.

In light of this, the level of agreement between theory and experiment evident in
Table I and Figure 5 is impressive, and clearly demonstrates the potential of this appro-
ach for yielding semi-quantitative predictions of P. More importantly, our results pro-

vide strong support for the Boulder model for ferroelectric polarization in FLCs, and

cast doubt upon theories that rely on specific chiral interactions to produce ferroelectri-
city [8). Moreover, our calculations enable us to examine in detail specific features of
the molecular orientational and conformational distributions relevant to the determina-
tion of P, and to identify those polar groups that make the largest contributions t0'P,

An example of the type of information that our calculations can provide pertains

to the so-called “Chisso effect” [6]. This effect has been invoked to rationalize the
polarization of materials such as W311. As illustrated by Figure 6, the polarization in
this material is thought to arise from an energetic preference for one gauche rotational

isomer (g") about the 7 (third) bond in the chiral tail relative to the g" isomer. In this

picture, the ferroelectric polarization arises primarily from the bond dipole associated
with the second bond in the chiral tail, which has a significant component normal to
the tilt plane in the g~ configuration. (The absolute configuration of the compound
shown in Figure 6 is opposite to that of W311, and so this argument predicts a negative

-

.
.
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2
%
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larization, whereas W311 has positive polarization. For the same reason, g* rather
than g~ should be the energetically favoured isomer in W311.) This general picture
is supported by 6-31G™" calculations [15], which show that the g~ and t isomers are
about 1 kcal/mole lower in energy than the g* isomer. The question is, how important
is this effect, and how is this picture modified by the orienting mean-field potential?

We have measured the fractions of g* and t rotational isomers about the P
(second) and vy bonds in W311 for W, = 0.07 kcal/mole/A2, 0, = 45°, and have found
that, as expected, the g* isomer about the y bond is somewhat more probable (33.5%)
than the g~ isomer (31.4%). The t isomer is more probable (35.2%) than either gauche
isomer. The same behavior is observed for 8, = 30°, but the situation is reversed for
8, = 15°, with the g~ isomer being more probable (33.8%) than g" (30.6%). The pic-
ture thus tums out to be somewhat more complicated than Figure 6 would suggest.
When conformations of both the B and y bonds are considered, it is found that the tg*
conformation is significantly more probable (31.5%) than the tg~ conformation
(17.6%) for 8, = 45°, in agreement with the Chisso argument (similar behavior is ob-
served for 6 ;= 15° and 6, = 30°). However, three other conformations are present
with significant probability: tt (17.0%), g (18.2%), and g" g~ (13.8%). An analysis of
the partial contributions of various conformations to the overall polarization density
reveals that the majority contribution to P comes from the tg* conformation in all ca-
ses, as expected from the Chisso argument. Surprisingly, the contribution of the tg~
conformation to P is nearly zero, rather than negative. This implies that the orientatio-
nal ordering of the tg~ conformation is weaker than that of the tg* conformation or
that the preferred orientation of the tg™ conformation is significantly different from
that shown in Figure 6. We have also analyzed individual bond dipole contributions
to P for W311, and find that the majority contribution to P comes from the $ bond
in the chiral tail, as predicted on the basis of the Chisso argument.

An analogous effect is thought to explain the large polarization densities of nitro-
substituted compounds such as W314. In this case, the preference for a specific gauche
isomer (here, the g~ isomer) about the y bond leads to a large contribution to P from
the nitro group. In the g~ state, the nitro group is rotated out of the tilt plane, and both
the nitro and C-O (8 bond) dipoles contribute additively (63.9% and 28.6%, respecti-
vely, for Wy = 0.07 kcal/mole/A2, 0,.; = 45°) to the overall polarization. In this case,
our results appear to be at variance with the Chisso argument, with the g isomer
being significantly more probable (41.2%) than either g~ (31.6%) or t (27.2%). As for
W311, however, an examination of conformations of both the §§ and y bonds shows
that the picture is somewhat more complicated, with 5 important conformations pre-
sent: tg— (30.3%), tg* (28.0%), tt (17.9%), g*g* (13.2%), and gt (9.3%). Notice that
the tg~ conformation is somewhat more probable than tg”, in agreement with the sim-
ple picture of Figure 6. However, the situation is reversed for ., = 30° and 6, = 15°.
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Nevertheless, we find in all cases that the largest partial contribution to P (~ 50%)
comes from the tg~ conformation, as expected from the Chisso argument. The reason
for this is somewhat different than that suggested by Figure 6, however, having more
to do with the orientational distributions of various conformations than with simple
conformational statistics. In fact, we find that the tg* conformation makes a negative
contribution to P, which implies that the preferred orientation of this conformation is

quite different from that shown in Figure 6.

On the whole, our results are in accord with our earlier intuition about the origins

of ferroelectricity. Only bond dipoles rigidly coupled to the chiral center contribute
significantly to P, and the ordering is generally consistent with that inferred from the

Boulder model [6]. Clearly, however, our model is capable of revealing new physics

(e.g. with regard to the Chisso effect), and should prove to be a powerful tool for de-
signing FLC materials having specific properties. A more detailed description of our
results will appear in the near future [29].

VI. CONCLUSIONS

In this article, we have shown that a simple modular mean-field theory for the

ferroelectric polarization density in FLCs is capable of yielding semi-quantitative pre-
dictions of P, and can give considerable insight into the molecular origins of P. Our
findings strongly support the physical mechanism for P embodied in the Boulder mo-
del, and cast doubt on theories that invoke specific chiral interactions to produce polar
ordering in FLCs.

We are currently working on an analytic version of our theory, which should en-
able us to carry out more systematic studies for a much wider variety of materials. We
have also initiating work on cluster approximations for realistic liquid crystal models
in an attempt to include intermolecular interactions and correlations in a direct way.

Models of this type have a much wider range of applicability than has been indi-.

cated here. We plan to extend our theory to the modelling of NMR and FTIR spectra

of LCs, and to the calculations of linear and nonlinear optical properties of LCs.
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