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ABSTRACT: A new numerical technique, which may be useful for large scale microscopic simula-

tions of model chemical systems is presented. The method allows one to study systems composed
of millions of particles using a small computer. It may be applied to model a wide range of non-
equilibrium phenomena associated with chemical reactions. A few applications of the method, na-_
mely: a homogeneous oscillations of concentrations, a chemical wave front propagation and nenequi-
librium spatial correlations of reagents in a steady state of a chemical system, are briefly discussed;

I. INTRODUCTION

It is surprising that complex behaviour of a chemical system, whichis-composed “

of an enormous number of individual molecules of reagents linked together by compli- %

cated interactions, can be usually succesfully desribed on the basis of kinetic equations
using such simple variables as concentrations and temperatures. The equations may
be also applied for fast chemical processes, giving a reasonable approximation for the
observed evolution. However, for very fast chemical phenomena the nonequilibrium
effects may play an important role [1]. In the case of nonlinear systems the presence
of fluctuations may significanly influence system’s evolution [2]. The standard
methods of chemical kinetics do not take into account nonequilibrium effects nor fluc-

tuations. Therefore, generalization of these methods is important for the future deve- .

lopment of chemical kinetics. Many theoretical papers concerned with this probiem
have been published in the recent years. (3, 41.

However, it is difficult to test new theoretical ideas by comparing them with
experimental results because the real reactions are extremly complex and usually we
do not know all the elementary processes involved. Even for the Belousov-Zhabotin-
skii reaction, which has been intensively studied for about 40 years, we are not able
to name the ellementary processes and give their rate constants.

Large scale computer simulations of chemical systems allow us to test theories
using idealized, model reaction schemes and thus, they play the role of “experiments”
in which, contrary to the real experiments, all the elementary reaction steps are known.
The most popular simulation techniques are the Bird method [5] and the lattice-gas
cellular automaton [6]. These methods allow us to study the time evolution of systems
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composed of millions of particles. Moreover, they are fast enough to give us informa-
tion on collective phenomena like chemical oscillations [7], front propagation [8, 9]
or Turing structures [10], for which characteristic times are much longer than the cha-
racteristic time describing intermolecular interactions. In order to speed up simulations,
it is usually assumed that a parameter, which describes chemical properties of a parti-
cle, has no influence on its mechanical' motion. This parameter may be regarded as a
“colour”, which allows us to distinguish different reagents and it changes if a collision
is considered as reactive, but if does not affect interactions between particles.

However, both methods mentioned above involve serious approximations. In the

Bird technique the pairs of colliding particles are randomly selected. The criterium for
a collision involves velocities only and it does not take into account particle’s posi-
tions. Therefore, the technique is appropriate for sysiems characterized by a very low
density. Considering a lattice gas automaton one assumes a special geometry of a
simulated system: particles may occupy nodes of a lattice only. Within a single time
step a particle jumps to one of the neighboring nodes, thus the speed of every particle
is the same. As one may expect this method may not be applied if energetic effects
associated with a chemical reaction (a thermal activation for example) are considered.

In this note I would like to present a new numerical technique, which allows for
large scale computer simulations and which is free of simplifications mentioned above.
There is no doubt molecular dynamics is the most appropriate for microscopic simu-
lations [11]. However, this method is the most time consuming and its direct appli-
cation in the case of a large system requires supercomputing facilities. The method
presented below may be adopted even on a personal computer and it allows us to stu-
dy systems as large, as those treated with the use of the Bird method or reactive lattice
gas automaton. It originates from the molecular dynamics technique for reactive hard
spheres [12]. The particles are represented by hard spheres and the collisions are
regarded as elastic. Each sphere is assigned a parameter which describes its chemical
properties. Some of the collisions are considered as reactive, according to the assumed
chemical processes. The chemical identity parameters of colliding spheres are updated
afier every reactive collision. '

A step towards more efficient simulations was suggested in [13] and then succes-
sfully used to calculate the influence of nonequilibrium effects on a rate constant in
a system with a thermally activated reaction [14]. It was based on an observation that
if the mechanical motion of particles is separated from chemical processes then a traje-
ctory of a chemical system is the same as the one for an equilibrated system of hard
spheres. Thus, many different reaction paths are created from a single equilibrium tra-
jectory (which may be recorded on a computer disk) by assigning the chemical identi-
ty parameters to all particles and checking if successive collisions are reactive or not.
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The method mentioned above gives reaction paths for a chemical system with the
same number of particles as the one for which the equilibrium trajectory was recorded
However, if the equilibrium trajectory is obtained for the periodic boundary condi-
tions, then a spatial extension of system’s size is possible. The periodic boundary con
ditions mean that the simulated system is regarded as an elementary cell in an infinite
system, which is invariant with respect to the translations by the vectors corresponding
to cell’s edges. Knowing the evolution within a single (elementary) cell we have the |
information about positions and velocities for particles in the whole system. Therefore
a prerecorded trajectory gives us the evolution of a system which is expanded by a &
number of edge lengths in each direction. Of course, the pericdic boundary conditions %
remain satisfied for the expanded system. If a chemical identity of molecules is %
neglected than such expansion does not bring us any new information, as the motion
in all replicas of the elementary cell is identical. Moreover, it may lead to wrong con .
clusions because the correlations extending over a single cell are affected by artificial- |
ly introduced periodicity. However, for a multicomponent chemical system, in which
the motion is not related to chemical identity, the situation is different. First, different
chemical compositions may be initialized in various cells by marking the equivalent :
(by periodicity) spheres in a different way. Secondly, a steric factor (probability that
a collision is reactive), if it is not equal to unity, differentiate the time evolution in
various cells, because a collision between the equivalent particles may be reactive in
one cell and nonreactive in another. Because of the periodic boundary conditions a
free flow of molecules between the neighboring cells is ensured. Thus, one obtains the
evolution of a system which is much larger than the original one. Let us also notice
that the number of collisions per particle, which decides about the time scale of simu-
lated processes, is the same for both the original and the expanded systems.

The suggested method is extremely efficient from the computer point of view.
In the case of chemically reacting hard spheres only times of collisions and ide’%ltitjes'
of colliding objects have to be recorded in order to restore a trajectory. Next, when
an expanded system is created one needs only one large array to store the chemical
identities of all particles (one may use logical or short integer variables), whereas the
other quantities as velocities, positions and momenis of Coliisions ai¢ periodic in space
and they do not require a large memory. In practice on my home computer with 16Mb
of RAM, I may easily perform simulations involving 10’ particles. I believe that simi- .
lar scale of computation is too difficult for the largest existing computers if the
“orthodox” technique is applied.

T R T SO AT O R

II. SIMULATIONS OF AN OSCILLATING SYSTEM

SRR SR R

The simplest model of an oscillating chemical system consists of three following
reactions [15]:
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A+B 3 A+A (1a)
k

B+C 3 B+8B (1b)
ky

C+A =5 C+C (Ic)

If the reactions proceed in a closed system, the sum of concentrations of 4, B and C
(denoted as a, b and c respectively) is costant (a + b + ¢ = ng). Therefore we have:

ae [0,np], be [0,ny], ce [0,ny]

The kinetic equations for a system (1) read:

da
-a—t—=klab-k3ac (2a)
db
~==kybe - kyab (2b)
dc
—(ﬁ = k}C(I - ksz (ZC)

There are three degenerated stationary states of system (2):
{a=nypb=0,c=0} {a=0,b=nyc=0} {a=0,b=0,c=ng

and there exists another stationary state, in which concentrations of all reagents are
different from zero:

ky ks ky

RIS }

fa= vkt ky Tk kv ks

Ifaz0,b#0andc # 0 then the set of equation (2) can be transformed to the
form: “ '

din(a)

T=klb"k3C (33‘)
din(b)
—— =k = kb (3b)
din{(c)

d[ = k3a = k2C (30)
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Fig. 1. An oscillating trajectory obtained in molecular dynamics simulations for system (1). The
concentrations of A, B and C as functions time are plotted using solid, dashed and dotted lines
respectively (Fig. 1A). The same trajectory is represented on the phase space (a X ¢) in Fig. 1B.
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From (3) it follows that:

din(a 0% ")
dar =
Thus for an initial condition a{¢ = 0), b(r = 0), c(z = 0) different than a stationary
state, the system (1) oscillates along the trajectory defined by the condition:

0

a6 e’ = a = 026 = 0 = 0" )
These oscillations can be easily modelied by molecular dynamics. Figure 1A shows
time evolution of the system (1) for 9 600 000 spheres (the original trajectory, calcu-
lated for 1200 spheres at the packing fraction 1 = 0.35 was expanded by.20 box’s
edge lengths in each direction). Initialy the system is composed of 2 880 000 spheres
denoting A and C (@(t=0)=c(tr=0)=0.3) and 3 840 000 spheres representing
B(b(t = 0) = 0.4). The steric factors for all raections (1) are the same and equal t0 0.2.
Any oscillating trajectory defined by Eq. (4) is unstable and this unstability is reflected
by changes in the amplitude of oscillations seen in Figure 1A. The influence of
internal fluctuations on a trajectory is also clearly visible on its representation in the
phase space (@ X c).

III. PROPAGATION OF A CHEMICAL WAVE FRONT

The chemical wave front propagation may be regarded as the simplest manifesta-
tion of an organized spatio-temporal behaviour in a nonhomogeneous chemical system.
Here I consider the wave front which appears in a system with reaction describing
quadratic autocatalysis:

A+B 5 a+a (5)

For reaction (5) both states: composed of pure A and composed of pure B are statio-
nary; the first one is stable and the other is unstable. In a nonhomogeneous system a
front of concentration propagates into regions composed of pure B.

From the assumed reaction scheme (5) it follows that sum of dénsities of 4 and
B (denoted as a and b respectively) remains constant (@ + b = ng). Therefore the sys-
tem may be completely described by a single concentration — for example a. The
“classical” approach to the problem is based on a reaction-diffusion equation, which
for reaction (5) has the form [16]:

da

ngab+DVZa=ka(n0~a) + DV (6

where k denotes the rate constant. It is convenient to describe front propagation using
the scaled variables: concentration ¢. = a/n, rate constant K = nok(K = ngkg), ime T = K¢
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and the space variable & = Vx/Dr, where D is the diffusion constant. In these new

variables Eq. (6) reads:
da.

The studies on equation (7) (and especially on its one dimensional version) have
a long history originating from works by Fisher [17] and Kolmogorov et. al. [18] (for
a chronography of research on chemical fronts see [19]). Let us consider a stationary
wave front propagating along the x-axis with a constant velocity v. A stationary front

profile may be described in the reference frame moving together with it:

oy =a€,.y=o® ®)
where { =& - v1. The front profile as a function of ¢ variable satisfies equation:
do.  3?
v{é« a;;+a(1—a)=0 )

This equation admits solutions which are stable with respect to local perturbations for

all velocities, which are greater or equal than the critical one v;, = 2 (or in non-sca-

led variables v_. =2 VkD ). The particular solution of Eq. (6) which corresponds to

min

Vpnin I8 Very important because it was shown by Mc Kean [20] that a step-function ini-
tial distribution of A evolves into a wave front propagating with this minimal velocity.
This result was later generalized by Bramson {21] and by Merkin and Needhan [22],

who proved that velocity of any front originating from an initial condition, such that
the concentration of A vanishes for all { greater than {,, converges to the solution pro-
pagating with v, Unfortunately, the analytical solution for the profile corresponding
o the minimum velocity is not known.

The shape of fronts profile is uniquely related to the scaled velocity. If one consi-

ders the inflection point of o({) then the following relationship between o and v is

hold:

ve=wkD = —@a(l - a)(%%-J_l

An alternative description of a wave froni propagaiion comes from the recently
developed methods of extended irreversible thermodynamics {4, 23]. For reaction (6)
the coupled equations for the density of A and for the accompanying diffusion flow
read:

da
W=ka(n0—a) -V/J,

a7,

~r=-LU,+DVa) an

—===a(l-a)+Via 0]

(10) .
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where J, denotes the diffusion flow associated with a. Egs (11) may be considered as
describing processes in two different time scales: a slow one for the conserved
variable @ and fast one for a non conserved variable J,. If the relaxation of J 4 I8 infi-
nitely fast (L — oo) then the second equation gives: |

J,=-DVa
and the set of equation (11) reduces to Eq. (7). Using the same rules of scaling as

pefore, defining the scaled diffusion flow as 1 =J_/n, and assuming that a front
depends only on & one obtains:

Jo 0 g

e Al Sy

E o l(! - d o - la (12)
L9t fep 95 JfeD

Finding an analytical solution of this set of equations seems difficult, however an ap-
proximation for fronts velocity can be obtained if one assumes that /L (reaction-dif-
fusion number) is small. In this case we can assume that:
Ly ) X d o
— = —-;Ea TN -gz-a
and the equation for wave front is:
do. ? o« ¥
?T':(I(I "(X)*"‘gfg(ﬁ“"zs:g(l
Assuming the stationary form of front solution (Eq. (8)) one obtains the following
relationship between the derivatives at the inflexion point of the profile:

oo a
(-af)i, [Wl
and the front’s velocity: \
v=v@= ~\/@a(1 -a)(%(g-)—l !
. R EAREIAE
153 ()

Let assume that in the case of small /L the shape of the front, described in the
scaled variables, is the same as the solution obtained for x/L = 0 (and thus it is descri-
bed by the shape corresponding to the minimum stable velocity). Using Eq. (10) we
obtain the following rule of velocity scaling with respect to the steric factor sz

fr 1

-spY)
v 2i/xoD d

(13)

(14)

(15)

i

(16)

where ¥ denotes
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Ko [dPa | (o)1
el
and it is easy to show that vy is positive. The assumption on the independence of shape
of profile on s leads to the conclusion that the value of y is constant for all systems
characterized by the same diffusion constant and collision frequency.
Let us notice that the results given by the classical, parabolic reaction dlffusmn
equation and by the extended irreversible thermodynamics are qualitatively different
The first method says that the scaled speed of a front is constant, in the second this
speed is an increasing function of sp
The simulation were performed by a periodic expansion of an equilibrium trajecto
ry, which was recorded for a system composed of 500 hard spheres characterized by
the mass m = 32 a.u and diameter the 6 =5 A. The average kinetic energy of sphere
corresponded to temperature 300 K, but this value is not very important, as tempera
ture may be easily changed by rescaling time. The trajectory was recorded for sphere;

placed in a cubic box with the side lenght d = 14.7¢ and thus the packing fraction was .

n =0.0824.

The expanded system was initialized as homogeneous in x- and y-directions,fj
which means that the initial average concentrations of A and B in all the cells characteri-
zed by the same range of the z-variable were the same. The periodic boundary con-
ditions were used in x- and y-directions. In order to observe front propagation the
initial concentration of reactants were nonhomogeneous in the z-direction. Part of the
simulations started form an initial concentrations described by a step-function: all the |
spheres, for which z < z;, were marked as A, all the others as B. In other simulations

there was a wide interval of z (usually about 100 ¢ in lenght) within which the initial

concentrations of both reactants were different from zero. A modified periodic boun-
dary conditions (the chemical identity parameter of a sphere crossing the boundary of

an expanded system was reversed) were used in the z-direction. To analyze the resulis,
the system was divided into slices perpendicular to the z-axis (500 total). The fraction
of particles representing each of reactants is averaged within every slice. The simula-
tion were performed for a system expanded by 14 side lengins in x- and in y-directions
and by 100 side lengths in the z-direction. Thus, the total number of spheres
considered was 9 800 000.

Fig. 2. shows a typical time evolution of a fronts of concentration. The steric
factor used was s = 0.22. As Fig. 2. shows, a well developed, stationary concentration
profile appears within less than 100 ps. Observing the distance travelled by a front as
a function of time it is easy to obtain the phase velocity as a function of the rate con-
stant (in practice I focused my attention on the shift of a point corresponding to
o = 0.5). For simulations performed at the same packing fraction, the diffusion con-
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stant does not change. By substituting the values of the diffusion constant

D =062
(D=0. 'I;;)

and of the collision frequency
1
(g = 0.766-p—s)

to the expression for the minimum stable velocity one obtains that:

v

o

(]
=2fkoD =1378—
ps

or

\/SF
v
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Fig. 2. The profile of concentration of A as a function of z-variable for a few selected moments of
time. The dashed line shows the initial concentration of A. The solid lines from left to right corres-
pond to times: 104 ps, 208 ps, 416 ps, 519 ps and 622 ps.

For the slowest reaction the minimum stable velocity is a good approximation of the
observed speed of a front. However, the velocity scaled by a square root of the steric
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factor is an increasing function of sy. This effect cannot be explained on the basis of
a standard parabolic reaction-diffusion equation (6).
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Fig. 3. The front velocity scaled by \/—s; as a function of the steric factor; stars mark the results of
simulations, the dashed line shows the minimum stable velocity and the solid line is a numerical
fit based on Eq. (16) (y = 1.006).

One can adjust the modified expression for velocity (Eq. (16)) to the results of
simulations. If one uses the value of 2‘\/K0D given above then for y= 1.066 a good

approximation for the observed velocities is achieved. The comparison between theory .
and simulations is presented in Fig. 3. Similar results supporting a hyperbolic reaction’

diffusion equation (Eq. (11)), rather than the parabolic one (Eq. (6)) have been recen-
tly obtained for chemical fronts propagating in a system characterized by higher
packing fraction (n = 0.14, [24]).

1V. NONEQUILIBRIUM SPATIAL CORRELATIONS
: IN A CHEMICAL SYSTEM

Another interesting application of periodically expanded molecular dynamics is
concemed with spatial correlations between concentrations of reactants, which correla-
tions may appear in a steady state of a chemical system if the detailed balance condi-
tion is not satisfied [25]. This feature justifies calling these correlations as nonequi-
librium one.

|
EE
|
i
|
|
|
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Let us consider two coupled reactions:
k)
X+X=X+Y
ko
ky
X+Ye¥+Y
k.
On the basis of a master equation, which tréats diffusion as a jump process and a che-
mical reaction as a birth-and-death process one may show that the nonequilibrium
spatial correlations have the form [26]:

an

<(n(r) - ns)(m(rl) - ms)>chem =

Cnm

; (18)
= nssNMS(r -F ) + mﬂ

e €XP(-K | F - )

Ir-r']
where n(r) and m(r) denote the concentrations of the reagents X and Y at the point r
and n,, m are their concentrations in a steady state of (17). The constants Cy;, and
« are related to the chemical dynamics and diffusion and for reactions (17) they read:

2

CXX = _Z(klxs - k—l'xsys)
2

Cyy =20k -k 1x.y,)

2
Cyy = -20k %, —k_yx5) (19)

and

2=%(~2k1x:+ kg = k) (¥, =X, = 2k 53 (20)
The results of simulations performed for various sets of rate constants and diffe-
rent packing fractions are discussed in paper of Gérecki et al. ([27]) and here I shall
refer to them. Typical partial radial distribution functions for reagents X and ¥ as well
as the equilibrium radial distribution function for the considered system of spheres are
shown in Figure 4. The results were obtained from an equilibrium trajectory describing
a system composed of 1331 spheres and characterized by the mass m = 32 a.u. and the
diameter ¢ = 5A. The packing fraction was 1} = 0.51. This system was expanded by
8 edge lengths in each direction, thus the total number of particles was 681472.
The fact that our system was obtained by a periodic expansion simplifies the cal-
culation of intermolecular distances. Now it is sufficient to know the distances for par-
ticles within a single cell only because distances between corresponding particles
within the other cells are the same. However, because the chemical composition is var-
ious in different cells, the equivalent pairs of spheres may contribute to different pari-
tial distribution functions. The steric factors for reactions (17) were: s, = 0.8,s_, = 0.4,
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5, =02, 5_,=0.8. It is easy to see that the partial radial distribution functions are
distinctly different from the equilibrium radial distribution function. Extracting the

equilibrium correlations from the partial ones ([27]) one can obtain information on o

nonequilibrium correlations caused by the presence of chemical raections. The range
of nonequilibrium correlations (~ 0.156) is of the order of the mean free path (0.05¢
for n=0.51). I would like to stress that in all simulations, in which the detailed
balance condition was satisfied, the partial distribution functions were the same as the
equilibrium distribution function and thus the nonequilibrium chemical correlations
vanish,

8.0 -
70 It

v Fig. 4. The comparison between the ra-
6.0 - dial distribution function for the equi-

librated system of spheres (solid line,
1 = 0.51) and the partial radial distribu-
“tion functions of reagents of (17): gyy
(dotted line, the second curve from the
boitom), gyy (short dashed line, the up-
per curve), gyy (long dashed). The steric
factors for reactions (17) are: [s; = 0.8,
s_;=04,5,=02,5_,=08]
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A test for the functional form of correlations (Eq. (18)) is shown in Figure 5. and |
the results were obtained for a system of 614400 spheres at | = 0.29. They correspond

to two sets of steric factors; the curves closer to the x-axis were obtained for 5, =04,

5.,=02, 5,=02, 5_,=0.2, the other curves are for: 5, =0.8, s_; =04, 5,=0.2,

s_, = 0.8. The results of simulations are in a good agreement with the theory: the cor-
relations between like- and unlike- reagents have the opposite signs (Eq. (19)), but the
rates of their decay are the same (Eq. (20)). Moreover, the functional form of correla-
tions, given by Eq. (18) is confirmed (the best fit for the simulation data in the form
(18) is plotted using the short dashed line on Fig. 5). However, the quantitative analysis
of results exhibits differences. At very short distances the correlations decay slightly
faster than Eq. (20) predicts. This effect was also observed in simulations performed

by Nicolis et al. [28], who were using the Bird technique. Moreover, the theory based
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on the master equation does not take the excluded volume effect into account and the
observed amplitudes of correlations are larger than it is given by Eq. (19) (see dis-
scusion in [27]).

A
0.12
3 0.08 -
" ]
C
2
B 1
ot }
\6 4
5 0.04 A
Fig. 5. The nonequilibrium spatial ]
correlations < am >, . (with the
density factor (x; +y,)" excluded) ]
for a system f:hafactenzed by 0.00 - R e e o
1 = 0.29; the solid line shows the 1.0 ) 1.2 1.4 1.6
data obtained in simulations, whe- distance /(sphere diameter)
reas the dashed line is the best fit '
based on Eq. (18). The pair of cur-
ves which is closer to the x-axis B
corresponds to {s; = 0.4, s_; = 0.2, 0.00
s,=0.2, 5 5=02], the other to
[Sl = 0s8, S_l = 0.4, S2 = 0.2,
5_,=0.8]. A shows correlations
. between X and Y; B — correlations
between Y and Y.
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V. CONCLUSIONS

The applications of periodically expanded molecular dynamics technique discus- |
sed above show that the method allows one to perform simulations, which seems to |
be very difficult if the standard molecular dynamics is used. The scale of simulations 1
is large enough to measure interesting quantities with the accuracy, which makes com-

parison with theory possible. The author believes that the method will find a lot of

new applications, important for further development of chemical kinetics, in near

future.
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