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ABSTRACT: We calculate the drift velocity for a random walk on percolation clusters in the pre-

sence of an external field from the steady-state solution for site probabilities. We find that the drift'
velocity decreases rapidly after reaching a maximum. Close to the percolation threshold the decrease”

is exponential and we observe at strong field that the velocity can be reduced by over million times,

1. INTRODUCTION

Diffusion in disordered systems under the influence of a biased field exhibits

complex behaviour [1-7]. An interesting problem is the existence of drift in biased
diffusion on percolation clusters. White and Barma [8] calculated the drift velocity on
one-dimensional lattice with random-length branches and on the diluted Bethe lattice.
In both cases they found that the drift velocity vanishes once the exiernal field exceeds

a critical value. Barma and Dhar [9] assuming an exponential distribution for the

particle density in the steady state on percolation clusters showed that the drift velocity
vanishes above the percolation threshold for large enough values of the field. Pandey
[10] performed a MC simulation of a random walk on a 3-D random lattice in a
biased field. His simulations support the suggestions of Botteger and Bryskin [11] that
the drift velocity goes to zero only for an infinite biased field.

In this paper we study the dependence of the drift velocity on the biased field by
finding the numerical solution of the steady-state on finite percolation clusters above
the percolation threshold.

2. BIASED DIFFUSION ON PERCOLATICN CLUSTERS

In a previous paper [12] we described the diffusion on percolation clusters using :

a random Lorentz model (RLM) [13]. Lattice sites in the RLM are occupied by parti-
cles with probability p and impurities with probability 1 — p. The walker performs a
pure random walk over cluster sites and can also visit sites occupied by impurities
which play role of reflectors, i.e. when the walker reaches an impurity site then it is
reflected backward to the cluster site visited previously. Hence the motion of the
walker is limited to sites of single cluster and sites occupied by impurities which are
nearest neighbours of the cluster. It is worth noting that in the most popular model,
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“the myopic ant in a labyrinth” [1], the walker cannot jump to sites with impurities
and the transition rates change from site to site.

In this paper we modify the RLM for the biased percolation problem on a square
Jattice. We do that by changing a pure random walk into a biased random walk over
percolation cluster sites. In other words the transition rates are the same for each clus-
ter site but they depend on the biased field. The bias is chosen to be constant at clus-
ter sites and it pushes the walker in a positive direction with probability p, = (1 + B)/4
but reduces the chance for go in a negative direction with probability p_ = (1 — B)/4.
The zero bias corresponds to B = 0 whereas B = 1 denotes infinitely large bias. There
is no influence of bias on sites occupied by reflectors. :

The method we use to calculate the drift velocity of the walker is based upon a
steady-state solution for site probabilities, P(r, i, N), finding the walker after N steps
at site r with velocity directed along lattice vector e,. Assuming the lattice constant
and the time step equal to unity we find that the instant velocity of the walker is one
of the four vectors: e,; =(x 1, 0), e +o = (0, £1). The site probabilities for the steady
state fulfils the following equation

Py(ri)=3 TP (r-e;)) 1
) J

where an element of the transition matrix, 7' ij(i"’), denotes the probability of changing
the velocity from e; to e; after a jump to site r. At cluster sites T, j=Tj=p, and
T_yj= T_2j = p_; whereas, at a site occupied by a reflector the walker changes the sign
of the velocity with probability equal to 1: T;= S(ej +e).

The equation (1) can be solved iteratively for a given cluster. We start from a
steady-state for zero bias which is easy to find exactly [12]. Putting a small bias we
solve Eq. (1). Then the bias is increased and a new steady-state is calculated using the
previous solution as the initial state. Hence steady-states are generated from the initial
state (at N = 0) in which all starting positions and directions for the walker have the
same probability. We apply the overrelaxation method to solve Eq. (1) (note that for
zero bias it resembles the discrete Laplace equation). We stop the iterations when rela-
tive difference of site probabilities at two successive iteration is smaller than € = 1074
or when the number of iteration exceeds 10°. In the latter case we do not accept the
solution of Eq. (1) as a steady-state one.

The percolation clusters we used to calculate steady-states were generated on the
square lattice of 1192 sites by the MC method, i.e. lattice sites are occupied by parti-
cles with probability p and by impurities with probability 1 - p. We used periodic
boundary conditions similar to those in the MC simulations of Pandey [10].

After finding the steady-state for a given value of biased field we calculate the
drift velocity
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V= ;Ej Py(r.j)e; Q)

and average over 10 clusters. Calculations were performed above the percolation thre- .
shold (p, = 0.593) for the following values of probabilities: p = 0.60, 0.65, 0.70, 0.8,

3. DISCUSSION

The drift velocity is a not monotonic function of the bias (see Fig. 1). It changes ‘ 

linearly at small bias, reaches a maximum, and decreases very fast for a strong bias;
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Close to the percolation threshold, p = 0.65, the drift velocity decreases exponentially
and for B = 0.9 its value is reduced by over a million times. We observe the noise in
the behaviour of the velocity for a very strong bias due to the accuracy (€) of the

steady-state solution. We discuss this problem below. The maximum of the drift velo-

city decreases very fast as the probability p approaches the critical value p,. For
example, v, =8.1x 107}, 1.4x 1072,3.5x 107> and 5.4 x 107 forp = 0.8,0.7, 0.65
and 0.60, respectively. The position of the maximum moves toward zero bias as p

goes to p, from above. In the region of small fields, the drift velocity is a linear func-
tion of the biased field, v, = v B. The linear coefficient v, decays as p approaches the

critical value p, (see Fig. 2).
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A main reason for the vanishing of the drift is the trapping of the walker in the

dangling-ends or backbends of the cluster. In order to discuss this problem we calcu-
lated the density of probability,

P =3 P(r.j),
J

of finding the walker at site r in the steady-state. The interval (0, 1) has been covered
by a sequence of intervals {/;, [,,...} and we counted the fraction of site probabilities

P (r), in the interval
2\n (2\n-1
w56

The results for p = 0.65 are plotted in Fig. 3. Density of site probabilities (DOSP) has
a sharp maximum for small bias (B = 0.05). Note that at zero bias all sites have equal
probability. As the bias increases the maximum of the DOSP decreases and its posi-
tion moves towards very small probabilities. This means that a majority of sites has
a very small probability P (r). On the other hand, the DOSP is stretched out towards
higher probabilities as the bias increases; this means that there is a very small fraction
of sites with a significant value of P (r). These sites play the role of traps. The walker
can be trapped in a dangling end with a probability which depends on its size and the
value of biased field. A trapping centre, in our model, consists of a single cluster site
and two or three reflectors in its nearest neighbourhood blocking motion along the
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field direction. Hence the walker in the trapping centre does not rest but oscillates be-
tween the site and reflectors, and its mean velocity is equal to zero. We observed that,
in a single cluster, there are several dominating trapping centres (each centre has a

probability of order 107!) and the probability of finding the walker in these centre ig
between 0.7 and 0.9 for clusters with p = 0.65 and B = 0.95.
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Probabilities which contribute to the drift velocity may change from 107! to
1070 fora strong biased field (see Fig. 3). The error in the calculation of the site pro-
bability depends on &: 3P(r, j) ~ eP(r, j). Hence the accuracy of the drift velocity in
our method depends on € and the magnitude of the higher site probabilities. We esti-
mate the accuracy in the case of a strong bias and close to the percolation threshold
from 1078 to 1075, The convergence in our method is slow for values of bias which
result in a rapid decay of the drift velocity. For example the number of iterations
needed to get the steady-state solution with € = 10* was more than 10% for clusters
very close to the percolation threshold.

Finally we comment on the problem of diffusion-like behaviour (for small times)
and drift-like behaviour (for long times) in biased diffusion. The contribution to the
mean square displacement R(N) of a walker coming from drift is v x N. Thus the num-
ber of steps in a MC simulation should be of the order of 107-10 to observe drift-like
behaviour in a strong biased field.
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