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1. INTRODUCTION

In spite of what most readers would most probably claim, the image presented
in Fig. 1 is not a photograph of the diffraction pattern of a quasicrystalline structure
— it is a computer graphics image of the attractor of a particular iterated function Sys-ii
tem. It is the apparent similarity of these two objects that made us to perform the stu-
dy described below.

Fig. 1. A computer graphics image of an invariant
measure of a particular iterated function system
with probabilities.

The main aim of it was to make a reconnaissance tour into those parts of the
theory of the iterated function systems where quasicrystalline structures can be found.
The tour is far from being completed, but since results we obtained seem to be inte-
resting, we dare to present them.

Since most readers are more familiar with quasicrystals than with iterated func-
tion systems, the main emphasis of the introductory part of the present paper will be
devoted to the latter. It seems to us that such a physics oriented introduction can be of
a use for many readers; original literature on the theory of the iterated function systems
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is rather difficult to read. Avoiding any simplifications, we shall try to make the theo-
ry as transparent as possible. The price paid for it will be omission of formal proofs.

2. ITERATED FUNCTION SYSTEMS
AND THE RANDOM ITERATION ALGORITHM

Reading today the already classical Fractals: Form, Chance, Dimension by
Benoit Mandelbrot [1] one is still amazed by the apparently non-exhaustible richness
of forms which fractal objects may take. No doubt, the fast and overwhelming success
of Mandelbrot ideas is in a great part due to the beauty of the graphical shape of the
first book on the subject. There must have been a lot of hard program writing to
produce all the high resolution pictures. Yet today most of them can be reproduced
without too much effort by a single numerical tool: the random iteration algorithm
(RIA) developed by Bamsley [2]. To convince the reader that these are not but empty
words we dare to present Fig. 2 [3]. All pictures present computer graphics images of
the invariant measures of some iterated function systems with probabilities. They
prove, we hope, that the technique of iterated function systems is very powerful. It
allows one to create images very similar to many complex objects seen in nature.
What we want to demonstrate in the present paper is that the quasicrystalline pattemns
are among them.

Fig. 2. Computer graphics images of the invariant measures of a few iterated function systems with
probabilities.
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In what follows we shall describe in brief the basic structure of the theory of the
iterated function systems. Its detailed exposition can be found, among others in Ref [2].
Presenting a few basic theorems on which the random iteration algorithm is based we
shall provide them with comments expressed in terms of the computer graphics
procedures. It secems that the gap between the languages of the measure theory, in
which the theorems are formulated, and that of the practical computer programming
is large enough to confuse many possible users of iterated function systems.

Most fractals, of which one would start thinking when asked to tell a few words
on the subject, are subsets of the two dimensional Euclidean plane R%. To fix
attention, we shall be staying in all examples presented below within this topological
dimension but in general the metric space, where all the iterated function theory
works, may be of any dimension and nature.

Let (X, d) be a complete metric space e.g. a two dimensional plane R? with
Euclidean metric. Let AIFS = {w}, Wy, Wy,..., w,} be a set of contractive transforma-
tions defined within (X, d), i.e. forany w,, a=1,2,.., n, there exists s€ R, 0<s <1,
such that for any x, y€ X

d(w e (0) . wo () < sd(x, ) 1)

A.IFS defined in this manner is called a hyperbolic iteration function system.

Iterated function systems are used as means of transportation within the abstract
space H(X) whose elements are compact subsets of X. Starting a travel within any
space is better to know how to measure the distances within it. Below, we define such
a tool for H(X). '

2.1 Iterated Function Systems

Definition 2.1

Let H(X) be the space of all compact subsets of X. It can be equipped by a
Hausdorff metric . Its definition goes in three steps.
1. One defines the distance between a point and a subset:

dl(x,B)=min{d(x,)’):ye Bl V)
y
2. One defines the distance from one subset t0 another subset:
d,(A,B) = max{d, (x,B): € Al ?3)
. x

(A wolf caged within set B tries to catch a sheep locked within meadow B. The clo-
sest distance the wolf can reach to the refuge seeking sheep is equal to dy(4, B). {4])

3. Distance d, thus defined is not symmetrical. The final step of the definition
removes this fault:

h(A,B) = max{d,(A, B),d,(B,A)} @
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Space H(X) equipped with metric 4 is complete. Thus, any Cauchy sequence of
compact subsets of X finds its limit within the space. Equation:
Wr(A) = wi (AU w,(A)U..Uw, (4), &)

where all transformations w, € F.IFS, a.=1, 2,..., n, are contractive, defines within
H(X) transformation W which can be shown to be contractive as well. See Ref. [2]
p. 82. Being contractive, it is continuous and has a unique fixed point F within H(X)
which, by definition, stays invariant under the action of W

Wep(F)=F (6)

Fig. 3. All roads lead to Rome.

Set F is said to be the arractor of F.IFS. Since F belongs to H(X), it is a
compact subset of X. How to find it? Starting from any compact subset G, and
applying in an iterative manner transformation Wy

G =Wgp(G) ' )

one produces a Cauchy sequence Gy, G, G,,... of compact sets which converge to F.
See Fig. 3. Since H(X) is complete, the limit also belongs to the space. This is the
essence of the beauty and efficiency of the iterated function system algorithm.
Changing parameters of transformations within an IFS one may reach within space
H(X) places of incredible beauty. The book by Bamsley makes the first guide to them.

2.2 Random Iteration Algorithm

‘ The IFS algorithm in its original form allows one to produce “black-and white”
pictures of fractal sets. A point of space is, say, black when it belongs to the attractor
of the IFS or, it is white when it does not belong to it. Yet, as we may easily see
looking through the window, real objects, even if of fractal structure, are not black and
white. Even a black and white photograph of an X-ray diffraction pattern of a crystal
p'roves that the latter is not black and white: its Bragg diffraction spots are not either
single points nor finiie size circles. They are smooth, rapidly decaying functions
localised with their maxima at well defined points and spreading with their tails,
through the whole plane of the picture. The diffraction pattern D(x, y) is a sum of such
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functions. Any photograph deforms strongly their height distribution: high intensity
diffraction spots make whole circular parts of the photograph film practically black
while those of a very weak intensity do not manage (o leave even a single trace on it,
This is particularly well visible in the photographs of the diffraction patterns of the
quasicrystals for which the set of points on which the Bragg spots are localised should
be dense in plane, yet the final contrast ability of the photographic film allows one to
record but a final subset of it.

The black-and-white technique of the IFS algorithm may be used to reproduce
the silhouettes of many complex objects, but to mimic their grey shadow structure the
algorithm must be extended. See Fig. 4. The random iteration algorithm makes such
an extension. This is how it works.

Fig. 4. Attractor of an IFS (on
the left) and the invariant mea-
sure of the same IFS with proba-
bilities.

In addition to the set of contraction transformations {w;, wy, W3, ... w,} of an
AIFS one defines a set of real numbers {p, Py. P3» - P} SUCh thatp; +py+p3+ ..+
+p,= 1. The set {wy, wy, W3, .. Wy, P1s P2> P35 s p,} will be called an iterated
function system with probabilities and we shall denoté it by A.JFSP.

Let A € X be the attractor of an AJFS = {wy, Wy, W3, ... Wy, P> P2» P3s v Pt
Let x,, be a point belonging to A. The following iterative procedure can be applied (we
define below its i-th step): '

RIA 1. One of the {w;, wy, W3, ... w,} transformation is chosen, say w;, with
a probability given by p;.

RIA 2. Point x;_; is transformed into point x; = W (XD

Since, by assumption, the starting point Xo belongs to the attractor A, all
following points xy, Xy, <.y Xj» «r generated by the procedure will also belong to it. (If
x, is not the member of A, then the consecutive points X, Xp, ..., X;, ... Will, in general,
also be not members of the attractor. Since, however, transformations of A are
contractive, the points will rapidly converge 10 it and, in view of the finite resolution
of any technical means by which they can be visualised, they may be presented as
belonging to A.)

Let us see, how the random iteration algorithm works in the case of the simplest
IFS which defines (as its attractor) a square. Let us denote such an IFS as E.IFS. The
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E.IFS consists of four affine transformations {w;, w,, w;, w4} each of which
transforms the square into one of its four quarters. See Fig. 5.

w(4) || w4)

Fig. 5. Square A can be seen as a sum of four of its copies obtai-
ned by application of four affine transformations {w, w,, ws, wyl

w(a) | W

To initiate the random iteration procedure we choose a single point e.g. Py =
= (0, 0), one of the four transformations {wis wo, Wi, w,} is chosen at random and
point Py, is transformed into P;. Then the choose-and-transform procedure is repeated
in the iterative manner. Fig. 6 presents frames taken from the computer graphics
display during the iteration process.

Fig. 6. First 100000 points pro-
duced by the random iteration
algorithm for the ELIFS descri-
bed in the text. p; =p,=p3=
= p4 = 0.25 for the image shown
on the left; p; =04, py=p3=
= p4 = 0.2 for that on the right.

In the particular iteration sequence presented on the left of the figure the
probabilities p;, p,, p3 and py, with which the four transformations wy, w,, w; and wy
were chosen, were equal. One can see that as a result the iteration procedure was
producing points which covered the square in a uniform manner. .

The image changes radically, when the four probabilities are not equal to each
other. See right part of Fig. 6. Here, the density of the cloud of points produced 'by
the iteration procedure is no more uniform but displays a very intricate structure which
reflects the non uniformity of the process in which the transformation of the IFS were
chosen during the iteration procedure. Each set of probabilities {py, ps. P3. P4}
determines its own characteristic density pattern over the square A. (We use the term
“density” in a heuristic manner. Since attractors of iterated function systems display
in general fractal structure, the densities of which we shall be talking may strongly
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differ from what an experimentalist would usually mean. If one thinks of the density
of something material, e.g. a mass, spread within a 2D Euclidean space X then one
must take into account also such singular forms of it as a linear and point masses. To
describe such densities in a formal manner one must use the concept of the generalised
functions (distributions) e.g. the Dirac delta function.) As the iteration procedure

continues, the pattern becomes better visible, more and more fine details of it are

appearing on the computer display; unfortunately, the finite pixel size of any computer
graphics display puts an inevitable end to this process. Below we shall discuss the
problem in more detail.

In the previous paragraph attractors of iterated function systems were shown to
make fixed points of contraction transformations which the systems define in the space
(H(X), h) of compact subsets of X equipped with the Hausdorff metric. In the same
manner, any IFSP will be shown below to define its own “density pattern”, as a fixed
point of a contraction transformation within the space of all such patterns. Let us
present a very brief outline of the mathematical formalism within which the above
statement can be formulated and proven.

Let (X, d) be a compact metric space. Let P(X) be the set of normalised Borel

measures on X. (If one thinks in terms of computer graphics images printed with a

laser printer of infinite resolution on a piece of paper, then X can be thought of as the
surface of the paper while P(X) will be the set of all possible patiens one can print
on it using toner of a unit mass.) The P(X) space can be equipped with a metric i.e.
a tool which not only allows one to tell one patten from another, but also to
determine in a quantitative manner how much they are different.

Let G(X) be the set of all continuous, real valued functions g such that for all x,

ye X, |g0) - g0 <d(x, y).

Definition. 2.2.
The Hutchinson metric dy; on P(X) is defined by:

dH(}l,V)=SUP£Jrgdll“ _fgdvl ®
2<G | ¥ x

Remark

Returning once more to the technical terminology of computer graphics the
definition of the Hutchinson metric can be interpreted as follows. Having two different
patterns © and 0, both printed with the unit mass of toner (in a technique which
allows to obtain the whole continuous range of the grey shadows) we want to find a
single number which would tell how much they are different. A possible way of

R R
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achieving the goal is to put the two patterns into two identical optical systems which
project them onto two photodiodes and measure the integrated optical density of the
patterns. Obviously, since the amount of toner used to draw both patterns was equal,
such a measure would show identical values. This is the proof that the patterns are
normalised. To reveal the difference between them, we cover the patterns with a pair
of identical optical filters, e.g. glass plates with smooth (limited density gradient!) grey
shadow design fused into them, and perform once more the measure of the integrated
optical density. With the exception of some singular cases, such a measure will
produce two different numbers if only © and O are different. The problem is to find
such a pair of identical filters for which the difference will be the largest one.

One can prove that the space of measures P(X) equipped with such a metric is
also compact. As discussed in the previous part, contractive transformations defined
in space X transform compact sets into compact sets. What happens to measures
during such transformations?

Let w be such a contractive transformation and w™! be its inverse. (We assume
the inverse exists, which is not automatic.) If p is a normalised Borel measure on X,
ie. pe P(X), then p,, defined by equation:

1,4 =pw (1) ©
is also a normalised Borel measure on X i.e. it belongs to P(X).
Let AJFSP ={wy, Wy, W3, ... Wy, P1, Pas P3s - Py} bE an IFS with probabilities.
Definition 2.3 ,
The Markov operator M, associated with AJFSP is defined by the formula:
My p— v =M, such that
V() = pyp vy () * pap(wy () + -+ P (w, ()
where § is an arbitrary Borel set.

(10)

If p is a normalised Borel measure, then is a normalised Borel measure as well.
Thus the Markov operator transforms any the P(X) space into itself. One can prove
that if all transformations {w,, w,, w3, ... w,} of an A.IFSP are contractive within X
then the Markov operation M, is also contractive in P(X). Contractivity factors of
AJFS and M, are equal.

Being contractive, mapping M, is continuous. It has a unique fixed point within
P(X) i.e. there exists a normalised Borel measure, let us denote it by p4 such that

My =Py an

i.e. it stays invariant under the application of the Markov operator associated with
A.IFSP.
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Which is the relation between the attractor of AJFS and that of AJFSP? Ty
former one, A, is a subset of X, while the latter one, p,, is a measure defined withj
the same space; A is the support of p,. The Bamnsley random iteration algorithy

allows one to visualise both. If one runs it on a digital computer, displaying -
consecutive points on a graphics display, the image which appears becomes better ang .
better visible. It strongly reminds the photographic development process. If the firg -
point with which the iteration procedure starts belongs to A, so will the all of them ‘
They cover A with a density proportional to p,. This phenomenon is described ina

precise manner by the Elton’s theorem and its corollary. See Ref. [2] p. 370.
Theorem 2.1

Let AJFSP = {w}, Wp,.... W Py, Ppos P} b an iterated function system with
probabilities defined with a compact metric space (X, d). Let x5 x{, X,,... be a
sequence of points produced by the random iteration algorithm applied to AIFSP. Let
p4 be the invariant measure for A.JFSP. Then, with probability one the following

holds:

n —poo
for all continuous functions f: X — R and all x
Corollary.

Let B be a Borel subset of X such that its boundary 9B is of measure zero i.e.
14(0B) = 0. Let N(B, n) be the number of those points from the sequence xy, x;, X,
...s X, defined above which fall inio B. Then, with probability one
N(B,n)

+1 (13)

By (B) = lim

n -0

for all starting points x.

Obvious limits put on the process of this decoration are the accuracy of the com-
puter and the finite size of pixels of any graphical display. One must be aware that in
view of the second factor, the image of the invariant measure may become less visible
also when the run time is too long. Assuming that the plotted picture is black and
white, it will inevitably loose in the end its density structure; all points belonging to
A will be covered and what will be seen is but the silhouette of the support of the in-
variant measure. This is in fact how the image on the left part of Fig. 4 was obtained.

3. ITERATED FUNCTION SYSTEMS WITH CONDENSATION

There exists an extension of the theory of the iterated function systems which is
of particular importance t0 what we are aiming to present. One may assume, namely,

. 1 ) -
lim =7 X 60 ){f(x)dm(x) 1
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that one of the transformations of an X./FSP, let us denote it wy, has a particular

| property - it transforms the whole space X into a compact subset C of it according to

a the following rule:
wgi X = wg(x) = random(C) (14)

where by random(C) we denote a point chosen at random from set C. As shown by
Bamsley, essential theorems of the iterated function systems preserve their validity,
as the condensation transformation is allowed to enter the set of iterated functions. For
our purposes, one particular form of the condensation transformation is of major
importance. We assume that the condensation set consists of but one point C =P € X.
In this case, obviously, the condensation rule becomes even more simple: -

W0:X —)Wo(x) =P, (15)

In what follows, X will be always a plane equipped with the Euclidean metric
and a Cartesian coordination frame. We shall also assume that P is located at the
origin of the frame: P = (0, 0). In such a case, transformation wy can be considered
as the limit of an affine transformation in which all its scaling, rotation and translation
parameters were brought to 0.

How an IFSP with condensation behaves under the application of the random
iteration algorithm we shall discuss in chapter 5.

4. QUASICRYSTALS AND THEIR DIFFRACTION PATTERNS

The ideal infinite n-dimensional crystal is an object built from a finite number
of identical elements in such a way that it stays invariant under translations whose
vectors belong to a countable set of (integer coefficients) lincar combinations of #
elementary vectors — a lattice. The matter density function of a crystal can be
expanded in a Fourier series. The Fourier transform consists of point sharp peaks
whose positions belong to another countable set of (integer coefficients) linear
combination of n elementary vectors — the reciprocal lattice. Translational symmetry
puts a strong restriction on all other possible elements of the symmetry of a crystal.
In particular, its rotational symmeiry axis can be but two-, four- or sixfold. All other
kinds of rotational symmetry are strictly forbidden. '

Does any object whose Fourier transform consists of sharp peaks display the
translational symmetry? The answer is —no. The Penrose tilings [5] make the simplest,
but nontrivial example. As demonstrated in 1982 by Alan Mackay, this man made,
plane filling structure, built but from two kinds of rhombi, lacks the translational
symmetry, but its diffraction pattern displays sharp peaks and, what makes it even
more beautiful, contains a clear fivefold rotational symmetry axis [6].
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There exist uncountably many versions of the Penrose tiling. They are alj |

different globally, yet any finite piece of each of them can be found in any other.

Objects, which lacking the translational symmetry display sharp peaks diffraction k‘

patterns were found in physics laboratories. In 1984, Shechtman, Blech, Gratias and
Cahn published first diffraction patterns (of a rapidly cooled AlMn alloy) which
displayed the forbidden fivefold symmetry axis (7]. Since this discovery, more than
600 papers were published on the new class of materials, commonly referred to as
quasicrystals [8]. Most quasicrystalline materials are produced by nonequilibrium

technologies such as quenching. From the thermodynamic point of view they are
metastable i.e. when heated change their structure into one translationally invariant

lattices. There exist, however, few examples of quasicrystals which are stable

thermodynamically and be grown up to the size of several millimetres. The diffraction

patterns of all the materials display one of the forbidden rotational symmetries.
In what follows we shall look into the possibility of using the iterated function
system technique to produce pattems of quasicrystalline symmetry.

5. CAN ITERATED FUNCTION SYSTEMS BE USED TO PRODUCE
QUASICRYSTALLINE PATTERNS?

One of the most remarkable and pleasant features of the Bamsley algorithm is
a smooth dependence of the shape of set A on the parameters of the iterated function
system A.JFS for which the set is the attractor. This is stated formally in by the
following theorem (see Ref. [2]):

Theorem 5.1

Let AIFS = {wy, w,, w3, ... w,} be an iterated function system of contractivity
s defined in a complete metric space (X, d). Let all of its transformations w, o= 1,
2, ..., n, depend continuously on a parameter p € P, where P is a compact metric
space. Then the aitractor A(p) depends continuously on p with respect to the Hausdorff
metric A(d).

What it means in practice one can easily imagine. If within a numerical
procedure one starts varying in a smooth manner parameters of the transformations
which define A.JFS, one will observe on the computer graphics display a smooth
variation of its attractor. Performing a systematic study of this phenomenon we arrived
in one of the computer runs to the limits of validity of the Bamsley algorithm. The
limit has proven to be very interesting. See Fig. 7. It presents a sequence of attractors
of a particular iterated function system with probabilities, let us denote it by
Q(s).IFSP, which consists of five affine transformations and five probabilities {wg, w,
Wo, W3, Wgi P» P1» P2» P3 P4} Since any affine transformation can be represented by
a sequence of : a scaling (s, sy), a rotation (¢, ¢y) and a translation (¢, ty), we shall
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in what follows describe the transformations by giving all six parameters of the three
components. In the particular case of Q(s)./FSP the values of the parameters are as
follows:

to=1,0=0 (16)
S¢.0=5y0=5y Where 0<so<1 17)
¢x’0=¢y‘0=0 (18)

po=¢ where 0<e<1. (19)
1, = (1/4) cos(2mi/4) , (20)

i = (1/4) sin(2mi/d) (21)
$yi=S,;=S. where 0<s<1, (22)
0= ¢y,i =0, 23)

plz(l *2)/4, fOl' i= 192»3,43

Fig. 7. Images of the invariant measures of the Q(s).JFSP. Scaling factor s was equal 0.01, 0.4, 0.5,
0.6, 0.95 and 1.0, respectively, for consecutive figures (starting at the upper left corner). Scaling
factor s, for the central function was equal 0.01 and its probability € was equal 0.1.
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Figure 7 presents a sequence of attractors of the Q(s).JFSP for a few values of s which

determines the contractivity factors of the four, non-zero translation transformationg
of the IFSP: wy, w,, wy and w,. The scaling factor of the wy transformation was set
equal to 0.01. It is rather awkward to present invariant measures, when wy is indeed
a condensation to a single point. The computer graphics images are in such a case
built from separate, single pixels which makes them very difficult to reproduce.

For s = 0.5, Fig. 7c the attracting set makes a square oriented with its diagonals
along the translation vectors defined by Eqs‘(20, 21).

As s goes below this critical value, the attractor becomes totally disconnected. As
s decreases, the scale of its self-similar details shrink, what makes them one by one
disappear from the computer graphics display, but from the formal point of view
nothing of this kind really happens. In the limit s =0, however, a real transition
occurs: all four transformations wy,...,w, become singular and define four condensation
poinis located at points determined by the translation vectors. Thus, the attractor of
0(0).IFS consists of but five points:

Pi=(yty), i=1,2,3,45 (25)

angd all invariant measure is concentrated on them.
Using the Dirac delta function we may write the measure as a sum of five such

delias whose amplitudes are defined by the set of probabilities of QJFSP :
5

Booy ™ 2 pid(F-1) (26)
i-1

A similar story happens at the other end of the s validity range. For 5> 0.5 the
attractor of Q(s)./FS is no more disconnected - it becomes overlapping, but as long
as s < 1 it is bounded. Its actual size depends on the value of the translation vectors
and s. As s becomes equal 1, the four transformations w), w,, w;, w,, which depend
on it, are no more coniractive. The sysiem leaves the range of validity of the theorems
discussed above, but still, as Fig. 7f indicates it, the structure of the invariant measure
simplifies considerably. Now, most of the invariant measure becomes concentrated
around vortices of a square laitice locked at the condensation point (0, 0) defined by
transformation wy,. The peaks of the invariant measure presented in the figure are
smooth, due to the finite value of the s, scaling parameter, which, as explained above,
we have set for practical reasons. When, however, s; =0, once more the measure
becomes singular and can be represented as an infinite sum of Dirac delta functions
localised at the vortices of the square lattice defined by transformations wy, w,, w;,
w, , which at the s = | limit become pure translations:

Boa)= 2, Ped(F-7) @7
k=1

where vectors T, indicate positions of all vortices of the square lattice. The meaning
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of the amplitudes p, is essential. As one can guess, the random iteration algorithm
applied to Q(1)./FSP produces a kind of a random walk on a square lattice. Four
possible directions and the step length of the walk are determined by the translation
vectors of transformations wy, w,, w;, w,. Their probabilities are determined by p;,
py» P3 and p, which do not, however, sum up to unity, since there exists a non zero
probability of choosing the condensation function wy, what in terms of the random
walk means that the walker with non-zero probability is from time to time brought to
the starting point. Amplitudes p, describe the probability that the random walker visits
vortex number k. Due to the existence of the condensation transformation, which with
probability p,=¢& makes the random walker to retum and start its walk from
beginning, the invariant measure is not smeared out onto the whole lattice but remains
well localised on vortices close to the origin. Values of p, decay fast with the distance
from the central point. Thus, the sum

E p, remains finite (= 1).
k=0

‘Fig. 8. A larger part of the invariant measure of
Q.IFS obtained in the s=1 limit. 55 was set
equal to 0.03 to visualise those points of the
lattice which in the random iteration procedure
were visited more often.

Obviously, in the s =1 limit, transformations wy, w,, w3 and w4 are no more
contractive, consequently, the Bamsley theory is no more valid. Yet, as shown above,
the invariant measure exists and displays nice, from the point of view of a physicist,
properties. We shall not look into the details of the formal theory of such IFS-s but
we shall rather exploit them to describe objects interesting from the point of view of
a physicist.

Looking at figures and one may ask oneself a general question:
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Which is the form of the invariant measure for an IFSP built from, say n = 3,4,5,6,
7 ... symmetrically distributed translations and 1 condensation transformation?

Vectors of the symmerrically distributed translations are given by:

2ni
1ei= acos(T)
o 2ri 28)
1yi= asm(-—-;l-—-)
where g is the magnitude of the translation vectors and » is their number.
Even without trying, one would replay that for n = 3 and 6 the invariant measure
should be concentrated on vortices of a triangular lattice, which indeed is the case. See

Fig.

™ 4 B ] I
Fig. 9. Invariant measure for an v
IFSP built from three translations A
wy, w,, wy and one strong con- } s ® B b W

traction wy.

As previously, we have put the scaling factor s, of w, equal to 0.01 to make the
image better visible. For sy = 0, but a triangular lattice would be seen. ;

Results of the above calculation could be predicted. But, what happens when the
angle between the translation vectors is neither any multiplicity of 2/2, 2/3 or 2/4? Fig.
10. presents the simplest n=5 case.

Fig. 10. The case of an IFSP
built from five translations wy, 7
Wy, Wi, Wy, W and one strong
contraction wy for which s5=
= 0.01 and p, = 0.1.

¥

As easy to see, the fivefold symmetry of the star made by the translations vectors

of the IFS induces the same type of symmetry for the invariant measure. And this is

a general rule. Figure 11 presents a few next cases.
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Fig. 11. Central parts of a few IFSP-s built on symmetrical systems {wy, wy,..., w,}, n =7, 8,..,,12,
of elementary translations. The additional, strongly contractive transformation w, was in all
presented cases the same: sy = 0.01, py = 0.1.
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Let us discuss in more detail the structure of images presented in Fig. 11. The
random iteration procedure applied to the particular IFSP-s, in which one
transformation is contractive and all others are (distance and area preserving)
translations, produces a random walk (with retums occuring with probability
determined by p,) on the sets of points to which one may get using the elementary
translations. The structure of such sets, let us denote them by Q, depends obviously
on n. In a few cases the structure is particularly simple: Q,, 03, Q4 and Qg have the
form of regular lattices. In all other cases, sets Q, are dense in the plane, yet as clearly
seen from Fig. 11, in a computer run not the whole plane becomes evenly covered.
On the contrary, the density with which the points produced by the random iteration
procedure cover the plane displays a clear hierarchy: apparently some of the points

from Q, are more often visited then others. The explanation of the fact is rather

simple. Firstly, probability that the random walker arrives to some of the points is
very low, since to arrive to them the walker must perform (without any return) a large
number of steps which may be difficult in view of the finite probability of
transformation w,, , which brings the walker to the starting point. Secondly, to all
points of ¢, one may arrive by more than one path. In what follows we shall consider
the two problems in more detail. To fix attention we shall illustrate some partial
solutions with the case O, most interesting from the point of view of a physicist.

6. RANDOM WALKER MODEL
FOR INVARIANT MEASURES OF Q,. IFSP

The basic questions are as follows:
1. Which is the probability that the random walker has made k steps without any
return?
2. To which points of the plane can random walker arrive with k-steps?
3. How many different k-step paths lead from the starting point to each of such
points?

We start with question 1. To answer it, let us imagine that a large number, say
N, of random walkers start a walk. The probability that they will make the first step
is equal (1 — pg). Thus, after the first step of the iteration procedure we shall find

1 _ 29
No " =poN @)
walkers remaining at the starting point, since they have chosen transformation wy.

Each of the remaining once
Nl(l) =(1-pgN (30)

have chosen one of the n translations and is found standing at one of those points of

Invariant Measures with Quasicrystalline Symmetry

109

Q, to which one may arrive with but one step. Let us denote this subset Q,, ;.
In the next step of the iteration procedure, the situation will be more complex.
The number of walkers found at the starting point will be equal:

2) 1 1 2 .
Ny =P0N0)*P0N1()=P0N+Po(1'Po)N G

since pONél) of them were unlucky enough to choose w, for the second time while
poN{Y were hit by the bad luck for the first time.
The number of those distributed among points of Q, ; will be equal:

N® = (1-pND (32)

since we find here only the walkers which have freshly arived from the starting point;
those which stayed here previously either have returned to the starting point (already
considered) or went one step forward to the subset Q, 5:

2
Ny = (- pN{D = (1= p)*N 33)

In general, after the i-th step of the iteration procedure populations of walkers at
consecutive levels Q, ,, to which they have arrived arrive, will be given by:

i-1
) i-1)
Np’' = N
o =Po E:
k=0 ¢ (34)

NO=-pNGD k=12,

j"po & N

Fig. 12. Schematic representation of the ran-
dom walkers problem. They either go up
along the lader of @, ,, and this happens
with probability (1 — pg), or with probability
Po fall back to the starting point.

Thus, after the i-th iteration, all levels up to the i-th one will be populated. See Fig. 12.

In the limit of infinite number of iterations a stationary state is assymptotically
reached. At this state all populations remain constant i.e. are invariant under the
application of rule (34). Thus we have:

N:=P0 E Nkm
k=0

Ne=(-pNgy, k=1,2,...

(35

Since
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> N =N
k=0
at this state populations of consecutive levels are given by:
Ny =Npo=Ndo
N =Npo(1 -po)*=Ngy, k=123..

(36)

where, by

oo

N 37
=N =po(l ‘Po)k
we denoted the stationary probability that a random walker can be found at the k-th
level of the walk i.e. at a point located within subset O, ;. .
Each of subsets Q,, ; (except Q, o = {(0, 0}) contains more than one point and the
N,.. walkers must be distributed between them. See Fig. 13.

Qs T

Fig. 13. Structure of subsets Q,, , for S
the n = 10 case, k=1, 2, 3. Points Q . \\% %/
connected with the dotted line can be 102 |
reached from a single point belon-
ging to the previous level.

Q10,1

QIO,O

The distribution of walkers among the points from a level Q,,  is goyemed by
the ratio of different paths via which a walker can arrive to a given point P;, we
denote it by m, (P), to the total number of paths M, . which lead to the k-th level:

m, (P

Ton kN i

r”vk(Pi)-:__A"ik——’ i= 1,2 ..... Ln.k’

(38)
Ln.k

where M,=3Y, m, (P), k=123..
i-1

From the point of view of the complete random walker problem, the ratio is equ'al 0
the conditional probability that, having arrived to the k-th level, the.walke‘r f}nds itself
in a concrete point P;. By L, , we denoted here the number of po.mts within subsets
O, ie. the number of points to which the walker can amve In exactly k steps.

|
|
|
|
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Finding numbers m, ,(P) and M, , analytically is probably not easy. On the other
hand, a numerical procedure which determines them is rather simple.

Knowing the probabilities g, of arriving to the k-th level and the conditional
probabilities rn,k(Pj) one can find the total probability R(Pj) that a walker is found in
point Pj. One needs just sum up contributions coming from all levels within which the
points is accessible by at least one path:

R, ;)= g;} G Py, j=12.3,.. (39)

Note, that the sum starts with k£ = 0 to include into the consideration also the starting
point P; = (0, 0) = Q,, . Note also, that we have changed the variable which indexes
points within @, which is equal to the sum of all subsets Q,, ,:

0,= D 0,4 40)
k=0

In a numerical calculations, set 0, is updated in steps as consecutive sets Q, , are
found numerically.

Returning back to the formalism of the iterated fuunction systems with
probabilities we conclude, that the invariant measure for the Q,(€).IFSP is an infinite
sum of Dirac deltas whose amplitudes are given by probabilities Rn(Pj):

Bo = YR, (PP3(F-F), j=123. (41)
n j=1

The amplitude of the delta function localized at a paricular point P; depends
basically on the length / of the shortest paths via which a random walker can arrive
to it. When [ is large, i.e. point P; is found for the first time within 0, then R, is
certainly small. The decay of the probability with / depends obviously on pg- For
pp—> 1al R, — 0.

7. ITERATED FUNCTION SYSTEMS
WITH CONDENSATION AND BONDS

The problem of a random walk with return on sets Q, can be modified in a
manner that proves very useful in possible applications of IFSP-s to describe
quasicrystalline diffraction patterns. Namely, one may assume that any walker is not
allowed make more than K steps without retumn, i.e. if one was lucky enough not to
choose condensation transformation w,, for K consecutive times, then next time he is
forced to choose it. See Fig. 14.

Such a limit put on the walkers modifies values of the stationary populations
reached in the limit of infinite iterations. As easy to check, now we have:



112 P. Pieradski et al.

K
Ng =N{Y (1-po)*H!
o N F-po @)

N7 =Ng(-p)*, k=123..K

What happend here, in comparison with the unlimited walk case, is that the shape of
the population distribution is preserved, but the absolute values are different since N
walkers must be now distributed but on a finite number of levels.

A probability to find a walker at the i-th level is now given by:

K
- { ‘ ) (1 - ky-1
qd0 k£=1, A pO) } » (43)

dp=qo(1 -pg)¥, k=12..K

Fig. 14. Random walker model with a bond.
Any of the walkers cannot make more than K
steps. After the K-th step it is forced to return to
the starting point.

The rest of the reasoning goes along the same path as we presented it for the un-
limited walker case. Except for the limit put now on values of k, equations (38), (39)
preserve their validity. Eq. (40) tumns now into a definition of a finite part of Q,:

K
0, = U 2u )
k=0

The number of points in any of the Q,(,K), K =1,2,3.., sets is finite. See Figs 13
and 16. As a result, the number of Dirac delta functions in Eq. (41) also becomes
finite and computer graphics images of such invariant measures are much simpler. Fig.
17 presents a few examples. In all presented cases the largest number of steps K 2

random walker may make without any return was put equal to 5 except for the last ‘
image for which K = 4. Probability of transformation w, was set equal to 0. The
amplitude of the delta functions are in the figure coded as the surface of circles whose

centers are localized in points belonging to Q,(,K) . As clearly seen, the function located
at the origin has the largest amplitude. There are two reasons for that. First of all, this
single point is the only member of the whole Q, o set from which all radom walkers
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Fig. 15. Cor'ltribution of consecutive 0, k> n=10,k=0,1, 2, 3, to the invariant measure of the
Q10-IFSP with abond K = 4. Pg = 0. The invariant measure itself is shown in the last (thick) frame.

o) o s T LT T,
o o ce o T
o TS

Fig. 16. Cox.ltribution of consecutive Qn,k ,n=10, k=0, 1, 2, 3, to the invariant measure of the
0,0-IFSP with a bond K = 4, Py =0.5. In contrast to Fig. 15, p, = 0.5.
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Fig. 17. Invariant measures for Q,.IFSP-s with a bond calculated according to the random walk
model. n =4, 6, 8, 10, 12, 14.
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Fig. 18. Invariant measures for Q,.IFSP with a bond K = 5 (4 for the last image) obtained by means
of the random iteration procedure. n =4, 6, 8, 10, 12, 14.
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start and the probability to find a walker at the level is equal g, > g, > ¢,... according
to Eq. (43). Secondly, point (0, 0) belongs also to all sets Qn’m, m> 1 (it does not
belong to @, ;) and thus the probability in question is still higher. Fig. 18 presents
images of invariant measures obtained by means of the random iteration procedure.
Probability p, of the condensation transformation wy was set equal to 0. Number of
pixels drawn around centers where the invariant measure is nonzero is equal to the
number of times which the iterated point visited each of the centers. Compan'son of
Figs. 17 and 18 proves that the random walker model works very well.

8. QUASICRYSTALLINE PATTERNS FOR IFSP-s CONSISTING
OF BUT CONTRACTIVE TRANSFORMATIONS

As mentioned above, simple interpolation allows one to create IFSP-s which in
a smooth manner join two arbitrary invariant measures. Many interesting phenomena
can be observed on the graphics display when such interpolations are performed for
IFSP-s used to produce the diffraction quasicrystalline patterns.

Let Q,(s).IFSP denote a continuous family of IFSP-s built on ten symmetrically
oriented affine transformations {w;(s), Wy(8),...wo(8)} with the scaling parameter
0 < 5 < 1 and one strongly contractive (in the limit: condensing) scaling transformation
w(Sg). For s =0, the 10 transformations turn into condensations to 10 symmetrically
distributed single points as shown in Fig. 19.

For s = 1, 55 =0, the IFSP tums into one of the particular IFSP-s which produce
the singular quasicrystalline measures. Looking carefully at the images of invariant
measures produces by the IFSP for 0 < s < 1 one may notice that at s~ 0.618 a well
defined pattern appears on the graphics display. See Fig. 19. Since in this case

Fig. 19. Invariant measures of the
Q;(s).IFSP with a bond K =35

for s =0 and
.‘/5__1
"

=

all transformations are contractive, all theorems of the Bamnsley theory apply. The
observed invariant measure has a compact support. Unfortunately, intensities of

its peaks are not in even a qualitative accordance with those of a quuasicrystalline
diffraction pattern.



116 P. Pierariski et al.

CONCLUSIONS

Quasicrystalline diffraction patterns belong to most rich geometrical objects,
Bragg reflections within any finite piece of such a pattern are located on an infinite
set of points. At the first sight any attempt to reproduce them with a simple algorytm
should be futile. The study we presented proves that this is not necessarily the case,
As demonstrated, the technique of iterated function systems is versatile enough to
reach the aim, at least in the qualitative terms. Invariant measures of some particular
iterated function systems with probabilities which we constructed display a strong si-
milarity to the images of the diffraction patterns obtained in real experiments. In the
ideal case the invariant measures can be expressed as sums of an infinite number of
Dirac delta functions. Their amplitudes can be calculated using notions of the random
walk theory. The orderings of the amplitudes and that of the Bragg reflections are in
qualitative agreement. A quantitative analysis of the problem needs still some more
work.
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