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ABSTRACT: In the paper we summarise in short our works on the influence of the spatial non-uni-
formity of the transport centres density on the transient cuirents profiles, and on the stationary cur-
rent-field characteristics of thin dielectric layers. We concentrate ourselves on the numerical results
only:

1) Monte Carlo simulations of non-dispersive and dispersive transient currents in the classical small

signal monopolar time-of-flight experiment, both for multiple-trapping, and hopping transport
mechanisms;

2) Calculations of the high-field non-ohmic current-field, and differential conductivity-field characte-
ristics within the Bottger-Bryksin model of 3D random resistor network, both for small, and large
polarons in amorphous systems. The numerical results reveal some interesting features specific to the
layer non-uniformity, which are very difficuit to predict and/or describe within an analytical
approach.

1. INTRODUCTION

Because of their direct applications in microelectronics, thin dielectric layers are
of great interest in solid state physics. Electric transport properties are here of the fun-
damental importance [5, 7). There are two basic mechanisms of electronic transport
in the bulk of non-ideal solids: multiple-trapping, and hopping. The first of them,
multiple-trapping mechanism (MT) consists in the electron (or hole) band transport,
interrupted repeatedly by the carrier trapping at the material imperfections (localised
states, so called traps). Once trapped (temporarily immobilised) carrier is after some
random time thermally activated to the band of extended states, where it participates
again in the band transport. The hopping mechanism (H) consists in the carrier jumps
directly between localised states (tunnelling, or thermally activated tunnelling), without
visiting the extended band states. There exists an extensive literature on both transport
mechanisms in their applications to thin dielectric layers, placed between two planar
contacts. Most of the work that has been done refers to the layers with random in
space and in energy distributions of trapping/hopping centres, but the average total
(integrated over energy) centres distribution is usually assumed to be uniform over the
layer thickness L (independent on the distanced from the injecting contact). The
experimental results are usually compared to the theoretical predictions, and in such
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(D) family of x-dependent functions, i.e. the shape functions describing the spatial
variations of the fraction of centres, which are distributed in energy according to fg).
According to the general theory of electronic states in random systems [6] the most
natural choicels of the f — functions are: an exponential distribution (~exp(~¢/kT ),
where T is the characteristic temperature, k — the Boltzmann constant) in the case of
MT mechanism, and the Gaussian distribution of standard deviation o, in the case of
H mechanism. As far as the S(x, D) functions are concemed, we used mainly exponen-
tially decreasing (increasing) in x spatial distributions, S(x; D)~exp(xx/D) (and their
linear combinations), which correspond to defects of diffusive or radiative origin. The
factorised form of N(x, €) is sufficiently flexible to cover a rather wide range of pos-
sible centres distributions in x and € in real systems. '

We consider a layer of thickness L placed between two planar contacts (at x =0
and x = L, respectively), with an x-dependent concentration of trapping/hopping cen-
tres. At +=0 a carrier is generated at x = 0, and an extemal electric field E enforces
its motion towards the x = L contact. Such individual carriers walks are averaged in
order to obtain time evolution of the carrier packet density n(x, t), and the electric cur-
rent j(¢) in the external circuit can be calculated. The field E is held constant and uni-
form, so that no space charge effects are included.

The carrier packet n(x, t) evolves in different ways for MT, and H mechanisms,
and for each of them two limit cases may be distinguished: non-dispersive (Gaussian),
and dispersive (non-Gaussian) transport. If the dispersion of times of flight (between
x =0, and x = L) of individual carriers is low, the initially generated sheet of carriers
moves towards the collecting electrode as a Gaussian packet of increasing in time
width [31]. As a result, the current measured in the exiemnal circuit is approximately
constant, and decays rapidly at times close to the moment, at which the carriers packet
centroid reaches x = L'(non-dispersive transport). On the other hand, if the times of
flight of individual carriers differ by many orders of magnitude (due to deep trappings
or hard hops), the current measured in the extemal circuit decays from ¢= 0 on, and
the “effective time-of-flight” is related to the change of the current slope in the log-log

scale [28]. Let us discuss in tum the cases of MT and H transport mechanisms, both
in the dispersive, and non-dispersive limits.

2.1. Multiple-trapping transport mechanism

The theory of the isothermal TOF experiment in spatially uniform layers is due
to [31] (non-dispersive transport), and to [28, 29] (dispersive transport). In the former
case the transport equations in the form generalised on non-uniform systems can be
solved analytically for n(x, 1), the latter being expressed by the hyperbolic Bessel func-
tion of the fist order of a complicated argument [20, 21]. Thus, the numerical work
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in this simplest case of non-dispersive multiple-trapping transport is limited only to
the calculation of j(#) (integration of n(x, #) in respect of x, and differentiation in
respect of ¢ [8]). In the case of the dispersive transport, however, no exact analytical
solutions to the transport equations can be found, and only some approximate formulas
can be derived using ad hoc simplifications of unknown accuracy. Here the Monte
Carlo (MC) simulation [18] is an excellent way to obtain the current profiles (instead
of the numerical solution of the system of partial differential-integral transport equa-
tions). The MC algorithm is very simple. One needs to generate at random, according
to proper distribution functions, the free drift time in the conduction band before the
trapping event, the depth of the encountered trap, and the carrier dwell time in the trap.
The carrier moves towards the collecting electrode only when it remains in the con-
duction band. Averaging over 10%-10° individual carriers random walks (each consi-
sting in 103-10* trapping/detrapping events) gives almost exactly smooth current profi-
les. An example is shown in Figure 1 (exponential variations of the trap density in x).
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Fig. 1. Dispersive multiple-trap-
ping TOF current profiles: points
— MC simulation, lines — various
approximate analytical expres-
sions, suitable for a determina-

tion in the basis of the experi-
mental results. f(€) ~ exp(—e/kT ),
S(x; D) ~exp(—x/D), L/D =35.0,
dispersion parameter 7/T_=0.5
(A), 0.33 (B), 0.2 (C) [20].
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In the MT mechanism the efficient carrier mobility decreases on increasing trap
density, and the dispersion degree increases on increasing width of the trap energetic
distribution. Thus for monotonously decreasing in space trap concentiration the carriers
move faster near the collecting electrode, and the characteristic current maximum
appears (under certain conditions) immediately before the effective time of flight. On
the other hand, for increasing trap density the carriers motion is slowed down near the

tion of the spatial trap distribu-
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collecting electrode, leading to the current dumping. The MC results, despite their
illustrative character allow also to establish the accuracy and the range of validity of
the approximate analytical expressions (Figure 1, [20]). Because of the high flexibility
of the MC method it was possible to investigate a wide range of possible energetic
and spatial traps distributions in both isothermal [16, 22], and non-isothermal [23, 30]
cases (the latter for an arbitrary sample heating scheduling).

2.2. Hopping transport mechanism

The hopping TOF transient currents are more difficult in theoretical treatment,
and computer experiments are often performed in order to elucidate certain features
of the hopping transport in materials characterised by on-diagonal or/and off-diagonal
disorder ({1, 11-14] in each case for spatially uniform layers). The first MC simula-
tions of the hopping TOF transient currents in spatially non-uniform systems have
been performed by the present authors, and their co-workers. We report briefly on the
results obtained for non-uniformly doped/defected crystalline layers (sec. 2.2.1), and
amorphous layers (sec. 2.2.2).

2.2.1. Non-uniformly doped or defected crystals

The simulation system is similar to the one used by Ries and Bassler [14]: a
regular cubic lattice containing N, x N, x N, sites with periodic boundary conditions
imposed in directions perpendicular to the applied field. A fraction ¢ of the total num-
ber of the lattice nodes are chosen as hopping centres, and distributed along the direc-
tion of the external field E according to S(x; D). The energies taken from the Gaussian
distribution are then assigned to the transport sites. The remaining fraction 1 — ¢ of the
lattice nodes is labelled as host sites not participating in the transport process. The car-
rier packets n(x, f) were obtained by averaging the random walks (between x = 0, and
x = L) of =10 individual carriers. An individual hop from a given occupied centre, say
at ry, to one of the neighbouring empty centres, located at r;, i = 1,...,342 (from a 7 x
X 7x7 cube centred on ry), has been realised as follows. According to the average
Jjump rates vy; [14], random jump rates v; are chosen from an exponential distribution,
and the most probable jump is accepted in the simulations. The MC simulations have
been performed for a wide range of the system parameters: centres concentration c,
0.1<c <1.0; standard deviation ¢ of the Gaussian distribution in energy,
0.0 < 6 <£7.0KT,; spatial exponential non-uniformity parameter L/D, 0.0 < L/D < 3.0.
The system dimensions were N, = N, = 40, 40 < N, <4000.

For an decreasing in x hopping centres density the carriers moving towards x =L
enter the region of harder jumps, and their motion is slowed down (contrary to the MT
mechanism). With increasing degree of non-uniformity, L/D in the exponential case,
the average slopes before the effective time-of-flight increase, so that the increase of
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L/D acts qualitatively as the decrease of the centres concentration ¢, or/and the increa-
se of the energetic distribution width 6. However, there is an important difference in
temporal variations of the current slope. In uniform structures the current initially
decays more rapidly than just before the effective time of flight, due to the carrier
relaxation in energy. On the contrary, in sufficiently non-uniform layers (L/D 2 1) with
a decreasing in space centres concentration, the effect is dominated by the influence
of increasing average distance between the transport sites, and the current profile is
steeper immediately before the time of flight than at much shorter times, when the
most rapid carrier relaxation in energy occurs. After the effective time of flight the
currents decrease more slowly for higher L/D, so that the increasing non-uniformity
acts qualitatively again as the decrease of ¢, or/and the increase of ©.

On the other hand, the increasing with x centres density makes the carrier motion
easier near the collecting electrode, and the effect of the spatial non-uniformity is quite
different. For small times the current profiles are even steeper then for the correspon-
ding transients in uniform systems, but at longer times after injection the rate of the
current decay decreases to zero, and for sufficiently dense systems, a sufficient value
of the non-uniformity parameter (and not too wide energetic centres distribution), the
current increase is observed, which reflects an exponential increase of the effective
carrier packet drift velocity near the collecting contact. The occurrence of the current
maxima immediately before the final current decay in a quite wide range of the para-
meters is the most characteristic feature of the carrier transport in the layers with
increasing in x total centres density (Fig. 2). After the effective time of flight the cur-
rent slopes decrease with increasing degree of non-uniformity, L/D, similarly as in the
case of decreasing in space centres density.
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Fig. 2. R-e-hopping transient currents, MC
simulation, Gaussian energetic centres
distribution with standard deviation
G =3.5kT, S(x; D) ~exp(x/D), c=02,
non-uniformity parameter L/D = 0.0 (a),
1.0 (b), 2.0 (c), 3.0 (d). Cubic lattice
constant d =7 x 10710 m, wave-function
overlap parameter 2do = 5.0 (o — recipro-
cal Bohr radius), T=400K, E=1.1x
x 10® V/m; the time is normalised to
1/v = 1, where 7T is the average dwell time
of carrier located at a site of undiluted
(c = 1.0) cubic lattice with six nearest
neighbours, current in arbitrary units [26].
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The comparison of the curves for exponentially decreasing and increasing centres
density (and the same L/D, c and ©) shows a remarkable polarity dependence of tran-
sient currents [26], similarly as in the case of the MT mechanism [18, 20]. The effec-
tive time of flight is an important characteristic of the current profiles. Its dependence
on various parameters (in the base of the MC simulations) has been discussed in [26].

Most of the simulations have been performed for extremely thin layers
(= 0.05 pm), and one could suspect that the strong influence of even moderate centres
density non-uniformity on the current profiles is limited only to such ultrathin systems.
This is not the case. Recently, we have performed extensive simulations on much gre-
ater samples (up to L = 3 pym, averaging 1000 individual carriers random walks over
up to = 107 hopping centres in the simulation box). It turns out that all the characteris-
tic features of the current profiles due to the centres density non-uniformity remain un-
changed or even, under certain conditions, become more distinct [27].

2.2.2. Non-uniform amorphous systems

As far as amorphous hopping systems are concerned, a new algorithm has been
developed [24]. Instead of performing carriers random walk on once generated centres
distribution in the whole sample (up to ~107 hopping sites) we generate a random
neighbourhood of each actually occupied centre. With its continuous configuration
changes, the algorithm corresponds io the effective-medium-approximation. Moreover,
the repeated fast jumps within isolated high density clusters (which only slightly
influence the current profiles, but consume a Iot of CPU time) are eliminated auto-
matically, and the layer is really infinite in the directions perpendicular to the external
field (no periodic boundary conditions need to be applied). The TOF transient current
profiles in amorphous layers have been discussed in [24, 25]. The overall influence
of the centres non-uniformity on the TOF currents is similar as in the lattice gas model
of the previous section, and the detailed comparison of the cases of full, and limited
off-diagonal disorder goes beyond the scope of the present paper.

3. NON-OHMIC HOPPING CONDUCTIVITY IN NON-UNIFORM LAYERS

The stationary current-field and conductivity-field characteristics of random three
dimensional hopping systems, at arbitrary electric field strength can be calculated nu-
merically within a model proposed in [3]. We have applied the model to the investiga-
tion of the characteristics of spatially non-uniform layers, mainly with exponential sha-
pe function S(x; D)~exp(-x/D), and Gaussian energetic centres distribution. Extensi-
ve numerical calculations have been performed for r-, and r-e-hopping in the cases of
a strong electron-phonon interaction (small polarons in amorphous solids), and a weak
electron-phonon interaction (band-like transport). In what follows we limit ourselves
to the small polaron transport (for band-like transport see [ 10], and references therein).
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Fig. 3. A: current-field r-hopping characteristics (F'= eEBa‘1/2, current in arbitrary units) in their
dependence on the non-homogeneity parameter L/D: a) L/D =0.0; b) L/D. = 0.5;‘c) LD = ll.O.;'d)
L/D = 1.5;e) L/D = 2.0; f) L/D = 2.5, strong electron-phonon coupling; B: differential conductivities
O(E")/S(E’ = 0) calculated from characteristics a-f of Figure 3A [9]; C, D: as in figures 3A, 3B,
respectively, for a weak electron-phonon coupling [10].

The basic equations describing the hopping conductivity are as follows. For an elec-

tric field E of arbitrary strength, the density j of the dc hopping current is given by

L1 .
J=_fg—2 E/ (Rm"le)xl(m ,m),

im’my=eW _; [p, /(1-p,)expBV,1,/2)=p,(1-p,)exp(-pV /1, /12)],

where R, is the position of the m-th hopping site, Q — volume of the system, N — to?al
site number within volume €, and i(m’, m) is the current running from site m’ o site
m V.=V, =V, V, =E,+eu, E, —energy of the m-th site, e — elementary ch'ar-
ge, u,, — potential of the external field E at the point R, , P = kT, p,,, — the oc?upatlo.n
probability of site m, W, — the symmetrised hopping probability. The latter in the li-
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mits of strong and weak electron-phonon interactions are: W, . = W exp(-2c|R,,,,/ ],
and W, =W, [sinh (B|V,,, /217! exp(-2a|R,,,-|), respectively. The prefactor
W, depends only weakly on E, R,, and €,,. We resolve numerically the system of the
Kirchhoff equations for each node of the equivalent random resistor network, that is,
the system of 500-1000 non-linear algebraic equations for occupations p,, (or equiva-
lently for local chemical potentials) for each value of E (usually about 1000 points).

Figure 3A shows current-electric field characteristics for various degrees of expo-
nential non-uniformity (L/D) for a strong electron-phonon interaction in layers with
no energetic disorder (so called r-hopping, or nearest-neighbour hopping). The chara-
cteristics obtained for non-uniform centres distributions with L/D in the range. 1.0-2.5,
reveal an N-like course, showing a current maximum at fairly low fields, followed by
a current decay down to a minimum value, and by a subsequent exponential current
increase. The overall shape of the curves remains similar. The quantities which depend
remarkably on L/D are the position and the depth of the current and conductivity
minima. With increasing sample non-uniformity the current minima occur for increa-
sing fields, and the minimal current values become lower.

Figure 3B shows differential conductivities 6(E") corresponding to the j vs E’
characteristics of figure 3A (normalised to o(E’ = 0)). The curves corresponding to
L/D > 1.0 practically coincide, and thus the relative differential conductivity variations
as the function of the applied field do not depend on the degree of spatial non-homo-
geneity in the centres distribution, assuming a specific shape, common to all suffi-
ciently non-uniform systems. The point to be noted is that the conductivity saturation
occurs at a certain critical value of the applied field, £, only weakly dependent on
L/D. Thus, the non-uniform systems become ohmic at £, and remain ohmic up to the
highest fields consistent with the assumption of constant carrier concentration. Such
a behaviour is quite different from the case of uniform systems, where there is no con-
ductivity saturation, but the local conductivity minimum is followed by the exponential
conductivity increase. There is also no negative-conductivity region, in contradistinction
to the non-uniform systems. For comparison, Figures 3C, and 3D show the charac-
teristics as in Figures 3A, and 3B, respectively, for a weak electron-phonon coupling.

Figure 4 refers to systems with a Gaussian energetic distribution of centres (so
called r-e-hopping, or variable-range hopping). Figure 4A shows several characteristics
for rather strongly non-uniform system (L/D = 3.0, exponential spatial centres distribu-
tion), whereas Figure 4B shows the corresponding conductivity-field characteristics
(for standard deviations of the energetic distribution equal to 3 kT, 6 kT, 12 kT, and
16 kT). The curves obtained for spatially uniform systems (L/D = 0.0) are presented
in Figures 4C, and 4D, respectively. As it is seen, in uniform layers for not too high
an energy spread in the hopping centres, the local conductivity maximum occurring
just after the ohmic region is followed by a local minimum, the latter being followed
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by an exponential conductivity increase for still higher fields (Fig. 4D). At low tem-
peratures, which is equivalent to a larger energy spread in the hopping centres, the
height of the conductivity maximum increases, whereas the local minimum becomes
shallower and disappears completely for sufficiently low temperatures [4].
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Fig. 4. A: current-field (E” = eEN~ 1313 A, N-centres average concentration, At - sixfold stax?de?rd
deviation & of the centres energetic Gaussian disiribution, cuirent in arbirary unjtsy characteristics
for the non-uniformity parameter L/D =3.0;a) 6 =3kT,b)o6=6kT,.c}o= 12 kT, d) o = 16kT,
strong electron-phonon interaction; B: differential conductivities o(E"Y/o(E” = 0) calculated fror.n
characteristics a-d of Figure 4A; C, D: as in figures 4A, 4B, respectively, for uniform centres distri-
bution (L/D = 0.0) [9].

Our numerical calculations reveal that in sufficiently non-uniform systems, for all tem-
peratures, there is no longer a conductivity maximum, but a very narrow low-field
ohmic range is followed immediately by the conductivity decrease, and after reaching
a negative local minimum the conductivity increases to a very low constant value, at

Electric Transport in Spatially Non-uniform 127

least up to the fields consistent with the assumption of a field-independent carrier con-
centration (Fig. 4B). Such a behaviour of conductivity-field characteristic means, that
the currents (Fig. 4A) assume their maximum value at fairly low fields, and are
strongly damped at higher fields. The effect is due to the appearance of a wide spatial

region of almost completely occupied centres, where the currents i(m, m’) between the
centres tend to zero.

4. CONCLUDING REMARKS

Transient currents measured in the classical TOF experiment are highly sensitive
to the spatial macroscopic-scale variations of the total centres concentration, both for
MT, and H transport mechanisms. The detailed shape of the transients depend in a
very complicated way on the system dilution, the width of the energetic centres distri-
bution, and the spatial variations of the centres concentration, and because of difficul-
ties in the analytical treatment, the MC method turns out to be the only effective tool
for the study of the TOF current profiles in their dependence on various parameters.
The low field and low injection TOF experiment is the best method for the sampling
of spatial changes of transport centres parameters. Transient currents measured in the
conditions of step-like switching on of the electric field are sensitive rather to the mo-
ments of the distribution function S(x; D), then to its exact shape. Thus, from such ex-
periments only the centroid position of the S-function could be determined [17, 19].
Also the discharge currents seem to yield only a very limited information on the layer
non-uniformity [16].

As far as the stationary H-transport characteristics are concerned, the current-field
characteristics, as well as the differential conductivity-field characteristics depend stron-
gly, both quantitatively, and qualitatively on the degree of the spatial non-uniformity in
the centres distribution over the layer thickness. The numerical implementation of the
Bottger-Bryksin model reveals very interesting features specific to non-uniform layers.
The most striking result is the appearance (in sufficiently non-uniform systems) of
wide field-ranges of negative differential conductivity, which follow the ranges of positi-
ve differential conductivity at lower fields. Thus, the model predicts the opening-switch-
like characteristics (which, in general, are of a great technological interest) of extremely
thin, spatially non-uniform H-transport layers, placed between ideal Ohmic contacts.

The work has been partially sponsored by KBN, grant 2 P302 16004. The possi-
bility to perform a significant part of the numerical calculations at Computer Centre
of the Camerino University (Italy) and at TASK (Gdarisk, Poland) is kindly acknow-
ledged.
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