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NEGATIVE POISSON RATIOS AT NEGATIVE PRESSURES
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ABSTRACT: Typical isotropic materials exhibit positive Poisson ratios, i.e. shrink (expand) trans-
versely when stretched (compressed) longitudinally. Presented theoretical analysis and computer
simulations of model systems strongly suggest that at dimensionality d 2 2, typical isotropic systems
should behave in the opposite way, i.e. exhibit negative Poisson ratio, at some isotropic tensions
(negative pressures).

1. INTRODUCTION

Poisson ratio, v, being the negative of the ratio of the transverse to the longitudi-
nal strain when the stress along the longitudinal direction is changed, is non-negative
‘for materials known in nature [1]. Manufacturing materials with negative Poisson ratio
12, 31, coined auxetics [4], has attracted to them a broad interest of scientists and
engineers (for a review see Refs. [4-7]). The interest comes not only from the coun-
terintuitive features of auxetics, which require understanding and proper description,
but also from many potential applications of such materials. Various theoretical
models in which v can be negative were proposed [8-17]. All of these studies sug-
gested that the occurence of a negative Poisson ratio requires either special structure
of the system or special form of interacting particles. Recently, however, it was found
that some two dimensional (2D) systems exhibit negative Poisson ratios in a range of
isotropic tension (negative pressure) [18], without special requirements concemning the
structure of the system or the form of interactions. In the present communication we
indicate that the result of Ref. [18] can be generalized to any dimensionality not less
than two. This offers a very simple way to obtain the auxetic behaviour in real
systems [19].

2. ELASTICITY OF D DIMENSIONAL ISOTROPIC MEDIA

Deformation of an elastic body can be described by the (Lagrange) strain tensor,

€;;, defined as:
Y eij=(a,‘uj+ajui+aiukajuk)/2,

where u; = x; — X; is the displacement vector of a material point from the initial posi-
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tion, X;, to the final position, x;, and a,. means differentia‘tion with respect to X‘
(Summation convention is used only for repeating Latin indices. Further on, we will
assume that Greek indices require specification of the character and the range of
summation.) Representing x; by a locally affine transformation of the initial coordina-
tes X; one can write:
what allows one to write the strain tensor in the following form:

First, let us consider the case of an isotropic elastic medium of dimensionality
D =2 which is in equilibrium at zero extemnal pressure. The free energy change, AF,
caused by a deformation of the system, from its equilibrium state‘ witl} g;= 0 to a state
of non-zero strain, can be written as an expansion in powers of invariants constructed
from the components of the strain tensor. For small deformations this expansion can
be truncated at second order terms, and for a unit volume of the isotropic material it
can be writien as {1}

A K 5 1 o )
AF = "2'8?1‘ spge= e+ i(E; - 8t (8 - F0ijtu) @)

where A is the Lame constant, p is the shear module and K = + 2u /D is the bulk

module.

Stability of the equilibrium state requires that the free energy change accompany-
ing a deformation has to be positive for g;# 0, what implies that K and p in Eq.(2)
must be greater than zero. It is easy to see, however, that the Lame constant A can be
negative. ‘ .

Differentiating the free energy, AF, with respect to g; one obtains the stress ten-
sor ¢;; as a function of the strain tensor €;. The resulting formuia can be inverted,
giving

1 1 1 . 3)
€= ETK—&ijckk iU 75 8:0ke) -

Assuming that the only non-zero component of the stress tensor is o,,, one can
express the Poisson ratio as a function of K and

_ & __ DK-2p A @

VETt, (D-DDK+2p (D-Di+2p
It is easy to check that for a stable system the positive sign of A is equivalent to the
positive sign of v. Taking however into account that for stable systems only K and u

must be positive, one obtains:

-lSvSm—7. &)

The above inequalities mean that negative values of the Poisson ratio are not excluded
by the stability requirements. Moreover, it is easy to notice that for infinitely dimen-
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sional systems v cannot be positive. (This, however, does not answer the question
whether “typical” infinitely dimensional systems are auxetic or behave like cork.)
Remark: Tt follows from Eq. (4) that to obtain negative value of v, the ratio u/ K
should be larger that D/ 2.
Let us consider, in tumn, the case when the zero strain corresponds to an equilib-
rium state of an isotropic material at non-zero external pressure p. In such a case the
free energy expansion, analogous to Eq. (2), reads:

A2

AF = -pe;;j+ 5€; + Nee;; =

K 5 1 1 ©®)
= PE;+ e+ p(g; - o5 0i€ke) (€ - 08k »
where the expansion coefficients K and yu are, in general, not equal to the bulk module
and the shear module, respectively. The attractive feature of the above expansion is
that in crystals with a centre of symmetry, at zero temperature, its coefficients fulfil
the Cauchy relation [20], implying that A = u. To find the stability conditions for the
system under pressure p, however, it is more convenient to expand the free enthalpy

(i.e. the Gibbs free energy) change, AG, accompanying a small strain & Such expan-
sion can be written as:

_AF+pAV=_=AG=-%e?i+ﬁ£ije,-j= o
K, . 1 1
=5 + B (&~ 588 (&5~ 5 8:Ek0) -
where K and j7 are the bulk and shear module, respectively, and K = A + 21 /D. AV
is the increase of the initial unit volume V|, caused by the strain €;;.
Stability of the system is equivalent to the requirement that G is minimal at
g;; = 0. Within the above (second order) expansion, the latter condition is equivalent
to positivity of both K and u. Differentiating AG with respect to g; one obtains the
change of the stress in the system as a function of the strain. Inverting these formulae
leads to the analogue of Eq. (3) with K, u replaced by K, x. Thus, the Poisson ratio
can be expressed by the analogue of Eq. (4) with the same replacement:
‘ _ DK-2
"T - D)DK+ 25
The relation between the coefficients K, u in Eq. (6) and those in Eq. (7) can be
established by expanding the volume change into €. Using the definition of volume
in the D-dimensional space and Eq. (1) one can write:

®

v
7 = dellA] = (det[A;4A "2 = (deti2e;; + 8,;1) /2. ®

Expanding the determinant up to the second order in & and taking into account that
the initial (equilibrium) volume, V,;, is chosen equal to unity, one obtains:
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12 2 2
V=(det[2e,-j+8,~j])”2= 1 +ekk+7ekk—e,.j+()(e ),

where 0(82) represents terms higher than of the second order in the componenFs of the
strain tensor. Hence, the increase of the initial volume caused by the strain €; is equal:

1 10
V—1=AV=skk+-2—£ik—e?j+o(82). (10)
Substituting Eq. (10) to Eq. (7) one obtains: _
A-p 2 - 2 an
AF=AG-pAV=-pg; + —5—¢;* (n+pleg;j-
Comparing Egs. (6) and (11) one concludes that: -2
x m 3 ~ 2P (12)
A=h+p, H=p-p, K=K+—p—-

The above formulae suggest that at negative pressures the ratio /K can be ?arge,
leading to v < 0 (see Eq. (8)). Such a possibility will be examined in next sections.

3. HARMONIC CRYSTAL
Elastic properties of real crystals at low temperatures can be approximated by the
harmonic crystal model [20]. In the case of isotropic harmonic crystal the Cauchy
relations, which imply that A = u, lead to:
v= DIZ + 4_ p - (13)
(D-1)DK -4p

The condition v < 0 requires either:

D= 14
p<"'TK ( )

orp>D(D + 1)[2 /4. The latter possibility has to be rejected as it holds true only for
7 <0, i.e. when the system is unstable. '
g For harmonic system at 7' = 0 the free energy of uniformly expanded or compres-

sed system equals: "

k z
=5 (a-agp)
where k is a constant, and a describes the linear distance which is equal to a at

ilibri i tress.
equilibrium without any external s
From the definition of the pressure and the bulk module, and thg fact that the
volume of the system is proportional to 4P, the condition for the negative value of v,
Eq. (14), can be rewritten as:

—D-—+-2-l10< a< _572_00’
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where the second inequality follows from the stability condition, K> 0). The above
equation means that the harmonic system exhibits v < 0 in a (D-dependent) range of
negative pressures at any dimensionality.

4. TETHERED SOLID

At high temperatures when the thermal motions of the particles increase, the role
of the anharmonic part of the interparticle interactions cannot be neglected. This intro-
duces essential complications to the theory because anharmonic models cannot be sol-
ved analytically. To understand the tendencies accompanying the temperature increase,
it is reasonable to study the very limit of anharmonicity — the hard body models. The
simplest hard body model is the hard sphere system. Unfortunately, this model is
stable only at positive pressures what does not allow for studying the influence of the
negative pressure on the Poisson ratio. For this reason we consider certain generali-
zation of this model, known as the tethered solid [21]. The interaction potential betwe-
en the particles corresponds to a well whose walls are placed at r = Opinandr=0
the interaction potential is zero within the well and infinity otherwise.

In the present paper we restrict our considerations to a particular case of the te-
thered solid with o; = 0; 6., we take as unity. To calculate the free energy of the
system we use the smoothed free volume theory [22]. The free volume treatment gives
asymptotically exact equation of state in the close packing limit of hard spheres [23].
It offers also proper description of the density dependence of the elastic constants for

hard spheres and discs [24, 25]. For the present model the free volume approximation
gives:

max’

AF = -Dlog(1 - a), (7)
where a is the linear size parameter, a = (V/V max)”D ,and V. is the maximum value
of the volume of the system, V. The computer simulations performed for hard spheres
in three and two dimensions [24, 25] revealed very week volume dependence of the
ratio of A/u = o.. Approximating this ratio by unity one can write v in the same form

as in Eq.(13). Explicit calculations of the pressure and the bulk module of the system
lead to the following condition sufficient for v < 0:

1
l-—=<a<l1- (18)

D D+4
Remark: One can check that the qualitative conclusion that in the stability regime of
the D dimensional tethered solid there is a pressure range in which v is negative,
remains correct even if one assumes that o is different from unity [19].

Validity of the free volume approximation in the case of the tethered solid can
be tested by comparing its results with the exact, in principle, data obtained via com-
puter simulations. Various methods of determining the elastic properties of solids are
known (for references see, e.g., Ref. [25]). The fluctuation method in which the com-
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pliances are computed from the correlations of the strain tenspr ﬂuctuationsblgsl,lftor 1‘t{s1
simplicity, the most attractive method for hard body interacn.ons [25]. We w1. a1v01

here describing details of the simulations; they can be found in Ref. [1.9]. In ‘Fxg. 'we
present the (predicted theoretically and computed by the Monte Carlc? sunulatxorns)1 iso-
therm of the three dimensional tethered solid. Fig. 2 shows the comparison of the .vo u.me
dependence of the negative Poisson ratio, obtained from the free V(?lume approx1matt;§)r:
and computer simulations, of the three-dimcnsional‘ tethered solid. (‘)ne.: canf;e\e a

the very simple free volume approximation offers quite aca.xrate description 0 et stist
tem. The agreement is also fair in two dimensions [19?. T‘hxs allows f)ne to §xpec. a
the free volume approximation is correct, at least qualitatively, for higher dimensions.
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We should stress that the upper stability limit for the pressure of the tethered
solid, [19],

. DP
P min Gmax/kTEpmin = D — I)D-l

is in a good agreement with the simulation data both for two and three dimensional

systems. This indicates that the collapse of the system, observed in_simulations at

certain p’,'m-,,, is caused by reaching by the system the stability limit K= 0.

S. SUMMARY AND CONCLUSIONS

Exact calculations prove that at any dimensionality there exists a range of isotro-
pic tensions (negative pressures) at which a harmonic system is stable and exhibits
negative Poisson ratio. The same result can be obtained for the D-dimensional tethered
solid within the free volume approximation.. Computer simulations performed for two
and three dimensional systems confirm the predictions of the free volume approxima-
tion [19]. The considered systems represent very different interaction potentials and
opposite mechanisms of the elasticity. The properties of the harmonic system are
determined by the energy only, whereas the properties of the (extremely anharmonic)
tethered solid are determined by the entropy alone. This suggests that in other systems
in which both the mechanisms are “mixed”, the negative values of v should also occur
in certain ranges of negative pressures, as long as the temperature is sufficiently low
to not break their stability.

As the occurrence of the negative Poisson ratio at negative pressures does not
require preparing any special microscopic structure of the system, this mechanism may
be interesting from the point of view of potential applications.
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