Spin dynamics and magnon linewidth in the long wavelength limit in diluted magnetic systems

Akash Chakraborty^{1,2*}, Stefan Kettemann^{2,3}, and Georges Bouzerar^{3,4}

¹Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany ²Jacobs University Bremen, 28759 Bremen, Germany ³Pohang University of Science and Technology (POSTECH), Pohang 790-784,

South Korea

⁴Institut Néel, CNRS, 38042 Grenoble Cedex 09, France *e-mail: a.chakraborty@jacobs-university.de

Spin wave excitations in disordered magnetic systems has been one of the most widely studied fields in condensed matter physics for several decades now. However, a careful and extensive search reveals a longstanding controversy on one important aspect, which is the wavevector dependence of the spin wave intrinsic linewidth. Many different theories have predicted this dependence to be as varied as q^3 to q^7 , but no general agreement has prevailed till now. We give here a detailed analysis of the low-temperature spin wave excitations in disordered (diluted) ferromagnetic systems and show that in the long wavelength limit the linewidth is in fact proportional to q^5 . This is in agreement with some previous theoretical studies on Heisenberg ferromagnets, which predicted a q^{d+2} dependence (d is the dimensionality). The linewidth is extracted from a proper finite size analysis of the magnon spectral functions, taking into account the effects of disorder and spin fluctuations. One of the primary difficulties in extracting the correct wave-vector dependence is the fact that the q^5 behavior holds only for sufficiently small q values. This possibly explains the failure to observe this behavior experimentally, where it is often impossible to reach such small \mathbf{q} values. In addition, we also demonstrate that evaluating the linewidth from the moments associated with the magnon spectral density is incorrect, as it leads to a linear dependence in \mathbf{q} .