

Thermoelectric enhancement in molecular junctions

J. Ferrer, C. Lambert, <u>V. García-Suárez</u> et al.

University of Oviedo CINN Lancaster University

Centro de Investigación en Nanomateriales y Nanotecnología

Outline

- 1) The GOLLUM code
- 2) Thermoelectric properties of molecular junctions
- 3) Symmetry-induced thermoelectric effects

1) Introduction. The GOLLUM code

- Equilibrium and ab-initio-code-independent

From 2 to 4 electrodes

- Large scale simulations

Graphene break junctions

DNA sequencing nanopores (L. A. Algharagholy ,H. Sadeghi)

- Multi-scale simulations

Transport properties of molecules in solvents (D. Manrique, I. Grace)

- Pulling curves

Conductance as a function of distance. MCBJ experiments (D. Manrique)

- Kondo and Coulomb blockade

Part of the system is strongly correlated

Also, LDA+U

Quantitative and qualitative changes in the transport properties

- Other things: phonon transport, superconductivity, etc.

2) Thermoelectric properties of molecular junctions

- Two electron reservoirs at different temperature

$$L_n = \int_{-\infty}^{\infty} (E - E_{\rm F})^n T(E) \frac{\partial f(E, V, T)}{\partial E} dE$$

Figure of merit. Efficiency of heat to current converters $ZT = \frac{S^2GT}{\kappa} = \frac{1}{\frac{L_0L_2}{L_1^2} - 1}$

- Interference-driven thermoelectricity

 $\Gamma \stackrel{\mathcal{E}_0}{\frown} \Gamma$

Breit-Wigner

Multiple path

 $\overline{ZT = \frac{S_0 \Lambda^2(0)}{t^4(0)\Gamma^4 - S_0 \Lambda^2(0)}}$

- OPE molecule with rotating rings or side groups

Rotation-induced movement of the resonances and antiresonances

- Thermopower and figure of merit

Huge enhancement due to the Fano resonance in the first case

- OPE molecules. MP interference

On-site energy-induced movement of the antiresonance

Reduction of G and κ . Enhancement of S and ZT

3) Symmetry-induced thermoelectric effects

- System: magnetic molecule couple to metallic leads

Metalloporphyrin molecule coupled via sulfur contacts to gold leads

Metal = Fe, Co, Ni, Cu or Zn

- Symmetry-dependent molecular orbitals

d state coupled to π orbitals

Model: four levels coupled to featureless leads

- Thermoelectric properties as a function of temperature for the Fe metalloporphyrin

Thermoelectric properties as a function of temperature

- Thermoelectric properties as a function of the position of the d state and its coupling to the rest of the molecule (γ)

 $T = 250 \, {\rm K}$

 $\gamma_1 = 0.2$

 $\gamma_2 = 0.4$

Cu metalloporphyrin

Changes in

width and

features

position of

- Temperature dependence of S

- Temperature dependence of ZT

- Spin-dependent thermoelectric coefficients

$$\begin{pmatrix} I \\ \dot{Q} \end{pmatrix} = \frac{1}{h} \begin{pmatrix} e^{2} (L_{0}^{\uparrow} + L_{0}^{\downarrow}) & (e/T) (L_{1}^{\uparrow} + L_{1}^{\downarrow}) \\ e(L_{1}^{\uparrow} + L_{1}^{\downarrow}) & (1/T) (L_{2}^{\uparrow} + L_{2}^{\downarrow}) \end{pmatrix} \begin{pmatrix} \Delta V \\ \Delta T \end{pmatrix}$$

$$L_{n}^{\sigma} = \int_{-\infty}^{\infty} (E - E_{\rm F})^{n} T^{\sigma} (E) \frac{\partial f(E, V, T)}{\partial E} dE$$

$$G = \frac{e^{2}}{h} (L_{0}^{\uparrow} + L_{0}^{\downarrow}) \qquad S = \frac{-1}{eT} \frac{L_{1}^{\uparrow} + L_{1}^{\downarrow}}{L_{0}^{\uparrow} + L_{0}^{\downarrow}} \qquad \Pi = \frac{1}{e} \frac{L_{1}^{\uparrow} + L_{1}^{\downarrow}}{L_{0}^{\uparrow} + L_{0}^{\downarrow}} \qquad \kappa = \frac{1}{hT} \left(L_{2}^{\uparrow} + L_{2}^{\downarrow} - \frac{(L_{1}^{\uparrow} + L_{1}^{\downarrow})^{2}}{L_{0}^{\uparrow} + L_{0}^{\downarrow}} \right)$$

$$ZT = \frac{1}{\frac{(L_0^{\uparrow} + L_0^{\downarrow})(L_2^{\uparrow} + L_2^{\downarrow})}{(L_1^{\uparrow} + L_1^{\downarrow})^2} - 1}$$

One of the spin components can mask the effect of the other

.

- Effect of the coupling to the electrodes

Conclusions

- Largest thermopower and *ZT* produced by multiple-path interference effects

- Qualitative details of the figure of merit depend on molecular intrinsic properties

- The highest value of the figure of merit is determined by the coupling strength

Thank you