Intrinsic spin Hall effect at asymmetric oxide interfaces: Role of transverse wave functions

Roberto Raimondi

Dipartimento di Matematica e Fisica http://www.fis.uniroma3.it/raimondi

Final Network Meeting Nanoelectronics: Concepts, Theory and Modelling 23-27 September, Wasovo Palace near Poznań, Poland

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

- Motivations
- Symmetry arguments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Model
- Solution
- Onclusions

Experiments: 2DEG at interface between two oxides (LAO/STO)

- A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
- S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
- M. Huijben et al., Nat. Mater. 5, 556 (2006).
- E. Dagotto, Science 318, 1076 (2007).
- Rashba SOC: $\hbar lpha \sim 5 imes 10^{-2} eV$ Å , A. D. Caviglia et al., Phys. Rev. Lett. 104, 126803 (2010).
- Interval Content of Content of
 - Random Rashba: V. K. Dugaev, M. Inglot, E. Ya. Sherman, and J. Barnas, Phys. Rev. B 82, 121310(R) (2010).
 - A finite-tickness 2DEG: X. Wang, J. Xiao, A. Manchon, and S. Maekawa, Phys. Rev. B 87, 081407 (2013).
 - e-e Interaction controlled Rashba SOC: S. Caprara, F. Peronaci, and M. Grilli, Phys. Rev. Lett. 109, 196401 (2012).

General aim

Move away from the strictly two-dimensional electron gas model

The Rashba Hamiltonian for the 2DEG

$$H = \frac{p^2}{2m} + \boldsymbol{\alpha} \ \hat{\mathbf{e}}_z \times \boldsymbol{\sigma} \cdot \mathbf{p} + V(\mathbf{r})$$

Why SHE is bound to be zero?

(By the way: I have been telling you this since 2005 and may be you are bored to listen to me again!) Operatorial identity:

$$\frac{\mathrm{d}\hat{s}^{y}}{\mathrm{d}t} = -\frac{2m\alpha}{\hbar}\frac{\hat{p}_{y}}{m}\hat{s}^{z}$$

After averaging over the ground states

$$\frac{\mathrm{d}s^{y}}{\mathrm{d}t} = -\frac{2m\alpha}{\hbar}J_{y}^{z}$$

In static circumstances the spin current is bound to be zero!

O. V. Dimitrova, Phys. Rev. B 71, 245327 (2005). O. Chalaev and D. Loss, Phys. Rev. B 71, 245318 (2005).

E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev. Lett. 93, 226602 (2004). R. Raimondi and P. Schwab, Phys.
 Rev. B 71, 033311 (2005). A. Khaetskii, Phys. Rev. Lett. 96, 056602 (2006).

- Stronger attraction to the interface on AI side due to reduced screening
- Asymmetric SOC: Ti vs Al
- Strong simplification: ignore the multi-band structure (for more details: Bistritzer et al. PRB 83, 115114 (2011); Khalsa and MacDonald PRB 86, 125121 (2012); Khalsa et al. arxXiv:1301:2784)

Model in formal terms

The Hamiltonian

$$H = \sum \left\{ \frac{\mathbf{p}^2}{2m} - \frac{\hbar^2}{2m} \frac{d^2}{dz^2} + V(z) - \frac{\lambda_c^2}{\hbar} V'(z) \Theta(z) [p_x \sigma_y - p_y \sigma_x] + V_{imp}(\mathbf{r}) \right\}$$

- $\mathbf{p} = (p_x, p_y)$ momentum operator in the plane of the quantum well
- effective Compton wavelength $\lambda_c \sim 0.7$ Å
- 2DEG (pure Rashba SOC) recovered as limiting case for $r
 ightarrow \infty$

$$V(z) = \begin{cases} Fz & z > 0\\ -rFz & z < 0 \end{cases}$$

• Quantum numbers: in-plane wavevector **k**, spin index λ , subband index n

$$\psi_{n\mathbf{k}\lambda}(\mathbf{r},z) = \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{\mathscr{A}}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ i\lambda e^{i\theta_{\mathbf{k}}} \end{pmatrix} f_{n\mathbf{k}\lambda}(z)$$

Notice: *z*-dependence of SOC implies **k**-dependence of subband wavefunctions!

Why a non-zero SHC is possible?

• As for the 2DEG, there is an identity leading to

$$\frac{\mathrm{d}s^{y}}{\mathrm{d}t} = -\frac{2\lambda_{c}^{2}}{\hbar} \langle V'(z)\Theta(z)\hat{p}_{y}\sigma^{z} \rangle$$

• The standard argument does not apply since

$$\langle V'(z)\Theta(z)\hat{p}_{y}\sigma^{z}\rangle \neq \langle V'(z)\Theta(z)\rangle\langle\hat{p}_{y}\sigma^{z}\rangle \propto J_{y}^{z}$$

• The spin current vanishes only for z > 0, but nothing can be said about z > 0. A calculation is needed

Important parameters

- natural units: length $\ell = (\hbar^2/2mF)^{1/3}$, energy $F\ell$
- $\alpha = (\lambda_c/\ell)^2 \sim 1$ effective dimensionless SOC constant
- Question: to what order there is an effect?

Analytic results in terms of the Airy function

$$f_{k\lambda}(z) = Z \times \begin{cases} \frac{Ai(z - \varepsilon_{k\lambda} - \lambda \alpha k)}{Ai(-\varepsilon_{k\lambda} - \lambda \alpha k)} & (z \ge 0) \\ \frac{Ai(-zr^{1/3} - \varepsilon_{k\lambda}r^{-2/3})}{Ai(-\varepsilon_{k\lambda}r^{-2/3})} & (z < 0) \end{cases}$$

Eigenvalues $E_{n\mathbf{k}\lambda} = k^2 + \varepsilon_{n\mathbf{k}\lambda}$ obtained by imposing continuity of the derivative

$$\frac{Ai'(-\varepsilon_{k\lambda}-\lambda\alpha k)}{Ai(-\varepsilon_{k\lambda}-\lambda\alpha k)} = -r^{1/3}\frac{Ai'(-\varepsilon_{k\lambda}r^{-2/3})}{Ai(-\varepsilon_{k\lambda}r^{-2/3})},$$

Important remark

The qualitative features of the k-dependence of the wavefunctions $f_{nk\lambda}(z)$ can be studied by perturbation theory in $\lambda \alpha k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Evaluation of the Spin Hall Conductivity

Classification of contributions

Due to the subband index, there are are ${\bf intra}{-}{\rm band}$ and ${\bf inter}{-}{\rm band}$ contributions to the SHC

The bare bubble contribution with Fermi level in the lowest (n = 0) subband

$$[\sigma_{SH}]_{yx}^{z} = -\frac{e}{4\pi} \sum_{n} \left[\int_{0}^{k_{F+}} \frac{|\langle f_{n\mathbf{k}-} | f_{0\mathbf{k}+} \rangle|^{2}}{\varepsilon_{0\mathbf{k}+} - \varepsilon_{n\mathbf{k}-}} kdk + \int_{0}^{k_{F-}} \frac{|\langle f_{n\mathbf{k}+} | f_{0\mathbf{k}-} \rangle|^{2}}{\varepsilon_{0\mathbf{k}-} - \varepsilon_{n\mathbf{k}+}} kdk \right]$$

Why inter-band terms?

They arise because wavefunctions of the same wave vector \mathbf{k} and *opposite helicity* are not mutually orthogonal even when their subband indices differ

What about vertex corrections?

In the standard 2DEG case with Rashba SOC the vertex corrections cancel the bare bubble contribution so to satisfy the operatorial identity

- Are vertex corrections important in this case?
- O they behave differently for inter- and intra-band contributions?

Results for inter-band contribution

$$[\sigma_{SH}^{\text{inter}}]_{yx}^{z} = -\frac{e}{\pi}\alpha^{2}k_{F}^{4}\sum_{n\neq 0}\frac{|p_{no}|^{2}}{(\varepsilon_{0}-\varepsilon_{n})^{3}}$$

Vertex corrections unimportant for inter-band terms!

Bare bubble terms originate from inter-band transitions with simultaneous flipping of the spin. Vertex corrections are due to processes where, first, the inter-band transition occurs without changing the spin, followed by a spin flip in the same subband (or the other way around). This costs energy for large enough subband separation.

A methodology remark

The presence of the Airy functions in the solution of the model requires the use of numerical approximations, which render delicate the investigation of **exact** cancellations between different terms. As a strategy, by using perturbation theory, we evaluate the energy eigenvalues in powers of $\lambda \alpha k$

$$E_{0k\lambda} = k^2 + e_1(\alpha k)\lambda + e_2(\alpha k)^2 + e_3(\alpha k)^3\lambda + \dots$$

The expression of the coefficients e_i can then also checked numerically by using Mathematica

The intra-band vertex $\langle 0\mathbf{k}\lambda|\tilde{\gamma}_{x}|0\mathbf{k}\overline{\lambda}\rangle$

• the bare matrix element

$$\frac{1}{2k} \left(E_{0k\lambda} - E_{0k\bar{\lambda}} \right) = \lambda \alpha e_1 + \lambda \alpha^3 e_3 k^2$$

the correction

$$\frac{k_{\lambda}N_{\lambda}}{2N_{0}} - \frac{k_{\bar{\lambda}}N_{\bar{\lambda}}}{2N_{0}} = -\lambda \alpha e_{1} + 2\lambda \alpha^{3} \left(e_{1}e_{2} - e_{3}k_{F}^{2}\right)$$

20

Analytical expression

To order α^1 , the vertex corrections cancel the bare bubble, but not to order α^3 , hence cancellation is not a general feature as guessed on the basis of the operatorial identity

$$\left[\sigma_{SH}^{intra}\right]_{yx}^{z} = -\frac{e}{4\pi} \left\{ \left(1 - \frac{m}{m^{*}}\right) + \frac{\alpha^{2}k_{F}^{2}}{2p_{00}} \left[\sum_{n,m\neq0} \frac{p_{0n}p_{nm}p_{m0}}{(\varepsilon_{n} - \varepsilon_{0})(\varepsilon_{m} - \varepsilon_{0})} - \sum_{n\neq0} \frac{|p_{0n}|^{2}}{(\varepsilon_{n} - \varepsilon_{0})^{2}} \right] \right\}$$
Notice that it vanishes in the Rashba limit $(r \to \infty)$

- Prediction of finite intrinsic SHC in 2DEG at oxides interfaces
- General model for taking into account finite tickness and ẑ-dependence of the SOC away from the pure Rashba limit in strictly two dimensions
- Development of general strategy to deal with vertex corrections in non-easily analytically tractable situations

Collaborators

- Lorien H. Hayden (Columbia, USA)
- Michael Flatté (Iowa City, USA)
- Giovanni Vignale (Columbia, USA)

References

• PRB 88, 075405 (2013)

Thank you for your attention!